大学物理练习题_C1-1质点运动学
(完整版)大学物理题库
第1章 质点运动学一、选择题 1. 一物体在位置1的矢径是 r 1, 速度是1v . 如图1-1-1所示.经∆t 时间后到达位置2,其矢径是 r 2, 速度是2v .则在∆t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ∆-12 (D) t r r ∆+12 2. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量(B) 加速度是描述物体位移变化率的物理量(C) 加速度是描述物体速度变化的物理量(D) 加速度是描述物体速度变化率的物理量 3. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为v , 则在∆t 时间内[ ] (A) v v ∆=∆ (B) 平均速度为∆∆r t (C) r r ∆=∆ (D) 平均速度为t r ∆∆ 4. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的t d d v 和td d v 的变化情况为 [ ] (A) t d d v 的大小和t d d v 的大小都不变 (B) t d d v 的大小改变, t d d v 的大小不变 (C) t d d v 的大小和t d d v 的大小均改变 (D) t d d v 的大小不变, td d v 的大小改变 5. 下面各种判断中, 错误的是[ ] (A) 质点作直线运动时, 加速度的方向和运动方向总是一致的(B) 质点作匀速率圆周运动时, 加速度的方向总是指向圆心(C) 质点作斜抛运动时, 加速度的方向恒定(D) 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边6 下列表述中正确的是[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直(B) 物体作直线运动时, 法向加速度必为零(C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零7 一物体作匀变速直线运动, 则[ ] (A) 位移与路程总是相等(B) 平均速率与平均速度总是相等(C) 平均速度与瞬时速度总是相等(D) 平均加速度与瞬时加速度总是相等图1-1-18. 在地面上以初速v 0、抛射角θ 斜向上抛出一物体, 不计空气阻力.问经过多长时间后速度的水平分量与竖直分量大小相等, 且竖直分速度方向向下?[ ] (A) )cos (sin 0θθ+gv (B) )cos 2(sin 0θθ-g v (C) )sin (cos 0θθ-g v (D) g0v 9. 从离地面高为h 处抛出一物体,在下列各种方式中,从抛出到落地时间内位移数值最大的一种是 [ ] (A) 自由下落 (B) 以初速v 竖直下抛 (C) 以初速v 平抛 (D) 以初速v 竖直上抛10. 作圆周运动的物体[ ] (A) 加速度的方向必指向圆心 (B) 切向加速度必定等于零(C) 法向加速度必定等于零 (D) 总加速度必定不总等于零11. 质点作变速直线运动时, 速度及加速度的关系为[ ] (A) 速度为0, 加速度一定也为0(B) 速度不为0, 加速度也一定不为0(C) 加速度很大, 速度也一定很大(D) 加速度减小, 速度的变化率也一定减小12. 下列几种情况中, 哪种情况是不可能的?[ ] (A) 物体具有向东的速度和向东的加速度(B) 物体具有向东的速度和向西的加速度(C) 物体具有向东的速度和向南的加速度(D) 物体具有变化的加速度和恒定的速度 13. 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动14 . 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin ,R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为[ ] (A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,215. 物体不能出现下述哪种情况?[ ] (A) 运动中, 瞬时速率和平均速率恒相等(B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变16. 某物体的运动规律为t k t2d d v v -=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是[ ] (A) 0221v v +=t k (B) 0221v v +-=t k(C) 02121v v +=t k (D) 02121v v +-=t k17. 如图1-1-33所示,站在电梯内的人, 看到用细绳连接的质量不同的两物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态, 由此他断定电梯作加速运动, 其加速度的[ ] (A) 大小为g , 方向向上(B) 大小为g , 方向向下(C) 大小为g /2, 方向向上(D) 大小为g /2, 方向向下二、填空题 1. 一辆汽车以10 m.s -1的速率沿水平路面直前进, 司机发现前方有一孩子开始刹车,以加速度-0.2m.s -2作匀减速运动,则刹后1 min 内车的位移大小是 .2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 .3. 如图1-2-3所示,甲、乙两卡车在一狭窄的公路上同向行驶,甲车以10 m.s -1速度匀速行驶, 乙车在后. 当乙车发现甲车时, 车速度为15 m.s -1,相距1000m .为避免相撞,乙车立即作匀减速行驶,其加速度大小至少应为 .4. 一质点沿x 轴作直线运动,其t v -曲线如图1-2-5所示.若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 .5. 一质点沿x 轴作直线运动, 在t = 0时, 质点位于x 0 =2 m处. 该质点的速度随时间变化的规律为2312t -=v ( t 以s 计). 当质点瞬时静止时,其所在位置为 ,加速度为 .6. 已知一个在xOy 平面内运动的物体的速度为j t i 82-=v .已知t = 0时它通过(3, -7)位置.则该物体任意时刻的位置矢量为 .7 距河岸(看成直线)300 m 处有一艘静止的船,船上的探照灯以转速为1m inr 1-⋅=n 转动,当光束与岸边成30°角时,光束沿岸边移动的速率=v .8 一物体作如图1-2-15所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度的大小τa = ,轨道的曲率半径=ρ .图1-2-3图1-1-33 1s m -⋅/v 1221345.25.4()t 1-第2章 动力学基本定律一、选择题1. 下列说法中正确的是[ ] (A) 运动的物体有惯性, 静止的物体没有惯性(B) 物体不受外力作用时, 必定静止(C) 物体作圆周运动时, 合外力不可能是恒量(D) 牛顿运动定律只适用于低速、微观物体2. 下列诸说法中, 正确的是[ ] (A) 物体的运动速度等于零时, 合外力一定等于零(B) 物体的速度愈大, 则所受合外力也愈大(C) 物体所受合外力的方向必定与物体运动速度方向一致(D) 以上三种说法都不对3. A 、B 两质点m A >m B , 受到相等的冲量作用, 则[ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等(C) A 比B 的动量增量大 (D) A 与B 的动量增量相等4. 如图2-1-4所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的[ ] (A) 速度逐渐减小, 加速度逐渐减小(B) 速度逐渐减小, 加速度逐渐增大(C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?[ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化6. 一物体作匀速率曲线运动, 则[ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零(C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 7. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有tm t m F d d d d v v +=.物体作怎样的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上?[ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动(C) 变质量的直线运动 (D) 变质量的曲线运动8. 如图2-1-8所,质量相同的两物块A 、B 用轻质弹簧连接后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间[ ] (A) A 、B 的加速度大小均为g(B) A 、B 的加速度均为零(C) A 的加速度为零, B 的加速度大小为2gF 图2-1-4 图2-1-8 1m 2m(D) A 的加速度大小为2g , B 的加速度为零9. 假设质量为70 kg 的飞机驾驶员由于动力俯冲得到7g 的净加速度, 问作用于驾驶员上的力最接近于下列的哪一个值?[ ] (A) 10 N (B) 70 N (C) 490 N (D) 4800 N10. 如图2-1-10所示,升降机内地板上放有物体A, 其上再放另一物体B, 二者的质量分别为A m 、B m .当升降机以加速度a 向下加速运动时(a <g ), 物体A 对升降机地板的压力为 [ ] (A) g m A (B) g m m )(B A + (C) ))((B A a g m m ++ (D) ))((B A a g m m -+ 11. 一质量为60 kg 的人静止在一个质量为600 kg 且正以-1s m 2⋅的速率向河岸驶近的木船上, 河水是静止的, 其阻力不计.现人相对于船以一水平速度v 沿船的前进方向向河岸跳去, 该人起跳后, 船速减为原来的一半, 这说明v 值为[ ] (A) -1s m 2⋅ (B) -1s m 12⋅ (C) -1s m 20⋅ (D) -1s m 11⋅ 12. 牛顿定律和动量守恒定律的适用范围为[ ] (A) 仅适用于宏观物体(B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用(D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体13. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点[ ] (A) 比原来更远 (B) 比原来更近(C) 仍和原来一样 (D) 条件不足不能判定14. 如图2-1-14所示,停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高m 1,不计绳梯的质量, 则气球将[ ] (A) 向上移动m 1 (B) 向下移动m 1(C) 向上移动m 5.0 (D) 向下移动m 5.015. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块,这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小(B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大16. 有两个同样的木块, 从同一高度自由下落, 在下落途中, 一木块被水平飞来的子弹击中, 并陷入其中.子弹的质量不能忽略, 若不计空气阻力, 则 [ ] (A) 两木块同时到达地面 (B) 被击木块先到达地面 (C) 被击木块后到达地面 (D) 不能确定哪块木块先到达地面图2-1-10 a A B图2-1-16图2-1-1417 将一物体提高10 m, 下列哪种情形下提升力所做的功最小?[ ] (A) 以-1s m 5⋅的速度匀速上升(B) 以-1s m 10⋅的速度匀速提升(C) 将物体由静止开始匀加速提升10 m, 速度达到-1s m 5⋅(D) 使物体从-1s m 10⋅的初速度匀减速上升10 m, 速度减为-1s m 5⋅18. 质点系的内力可以改变[ ] (A) 系统的总质量 (B) 系统的总动量(C) 系统的总动能 (D) 系统的总角动量19. 作用在质点组的外力的功与质点组内力做功之和量度了[ ] (A) 质点组动能的变化(B) 质点组内能的变化(C) 质点组内部机械能与其它形式能量的转化(D) 质点组动能与势能的转化20. 在一般的抛体运动中, 下列说法中正确的是[ ] (A) 最高点动能恒为零(B) 在升高的过程中, 物体动能的减少等于物体的势能增加和克服重力 所作功之和(C) 抛射物体机械能守恒, 因而同一高度具有相同的速度矢量(D) 在抛体和地球组成的系统中, 物体克服重力做的功等于势能的增加21. 有A 、B 两个相同的物体, 处于同一位置, 其中物体A 水平抛出, 物体B 沿斜面无摩擦地自由滑下, 则[ ] (A) A 先到达地面, 两物体到达地面时的速率不相等(B) A 先到达地面, 两物体到达地面时的速率相等(C) B 先到达地面, 两物体到达地面时的速率不相等(D) B 先到达地面, 两物体到达地面时的速率相等22. 将一小球系在一端固定的细线(质量不计)上, 使小球在竖直平面内作圆周运动,作用在小球上的力有重力和细线的拉力.将细线、小球和地球一起看作一个系统, 不考虑空气阻力及一切摩擦, 则[ ] (A) 重力和拉力都不做功, 系统的机械能守恒(B) 因为重力和拉力都是系统的内力, 故系统的机械能守恒(C) 因为系统不受外力作用,这样的系统机械能守恒(D) 以上说法都不对23. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变(B) 只有合外力为零的保守内力作用系统机械能守恒(C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所做之功为零, 则该力称为保守力24. 在下列叙述中,错误的是[ ] (A) 保守力做正功时相应的势能将减少(B) 势能是属于物体体系的(C) 势能是个相对量,与参考零点的选择有关(D) 势能的大小与初、末态有关, 与路径无关25. 如图2-1-25所示,劲度系数-1m N 1000⋅=k 的轻质弹簧一端固定在天花板上, 另一端悬挂一质量为m = 2 kg 的物体, 并用手托着物体使弹簧无伸长.现突然撒手, 取-2s m 10⋅=g , 则弹簧的最大伸长量为[ ] (A) 0.01 m (B) 0.02 m (C) 0.04 m (D) 0.08 m26. 在弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的[ ] (A) 6倍 (B) 8倍 (C) 9倍 (D) 12倍27. 从地面发射人造地球卫星的速度称为发射速度v 0, 卫星绕地球运转的速度称为环绕速度v , 已知rgR 2=v (R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力, 对于发射速度v 0[ ] (A) v 越小相应的v 0越大 (B) 01v v ∝(C) v 越大相应的v 0越大 (D) 0v v ∝ 28. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为[ ] (A) 2v (B) v 2 (C) v 21 (D) 2v 29. 如图2-1-29所示,用铁锤将一铁钉击入木板, 设铁钉受到的阻力与其进入木块的深度成正比, 铁锤两次击钉的速度相同, 第一次将钉击入木板内1cm, 则第二次能将钉继续击入的深度为[ ] (A) 0.4cm (B) 0.5cm (C) 1cm (D) 1.4cm30. 如图2-1-30所示,一被压缩的弹簧, 两端分别连接A 、B两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ ] (A) 1 : 1 (B) 2 : 1 (C) 1 : 2 (D) 1 : 431. 关于功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点做的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所做的功的代数和必然为零. 在上述说法中[ ] (A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的32 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是[ ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒图2-1-3033. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统[ ] (A) 动量、机械能以及对一轴的角动量守恒(B) 动量、机械能守恒,但角动量是否守恒不能断定(C) 动量守恒,但机械能和角动量守恒与否不能断定(D) 动量和角动量守恒,但机械能是否守恒不能断定34. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图2-1-34所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 [ ] (A) 221v m (B) )(2022m m m +v (C) 220202)(v m m m m + (D) 2022v m m 35. 物体在恒力F 作用下作直线运动, 在∆t 1时间内速度由0增加到v , 在∆t 2时间内速度由v 增加到v 2, 设F 在∆t 1时间内做的功是A 1, 冲量是1I , 在∆t 2时间内做的功是A 2, 冲量是2I 。
大学物理质点运动学考试真题
大学物理质点运动学(一)1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +∆时间内的位移为r ∆,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆),平均速度为v ,平均速率为v 。
(1)根据上述情况,则必有( )(A )r s r ∆=∆=∆(B )r s r ∆≠∆≠∆,当0t ∆→时有dr ds dr =≠(C )r r s ∆≠∆≠∆,当0t ∆→时有dr dr ds =≠(D )r s r ∆=∆≠∆,当0t ∆→时有dr dr ds ==(2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)ds dt;(4下列判断正确的是:(A )只有(1)(2)正确 (B )只有(2)正确(C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。
对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。
下述判断正确的是( )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的(C )只有(2)是对的 (D )只有(3)是对的1-4 一个质点在做圆周运动时,则有( )(A )切向加速度一定改变,法向加速度也改变(B )切向加速度可能不变,法向加速度一定改变(C )切向加速度可能不变,法向加速度不变(D )切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A )匀加速运动,0cos v v θ=(B )匀减速运动,0cos v v θ= (C )变加速运动,0cos v v θ= (D )变减速运动,0cos v v θ= (E )匀速直线运动,0v v =1-6 以下五种运动形式中,保持不变的运动是 ( )(A)单摆的运动. (B)匀速率圆周运动. (C)行星的椭圆轨道运动. (D)抛体运动. (E)圆锥摆运动.1-7一质点作直线运动,某时刻的瞬时速度v=2m/s,瞬时加速度22/a m s-=-,则一秒钟后质点的速度 ( )(A)等于零. (B)等于-2m/s.(C)等于2m/s. (D)不能确定.1-8 某物体的运动规律为2dv kv t dt=-,式中的k 为大于零的常数.当t=0时,初速为v 0,则速度v 与时间t的函数关系是 ( ) (A)2012v kt v =+ (B)2012v kt v =-+ (C)201112kt v v =+ (D)201112kt v v =-+a(二)1.一运动质点在某瞬时位于矢径r(x ,y )的端点,其速度大小为:(2003、2006级上考题) (A )dtr d dt dr (B) (C )22(D) ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx dt |r |d 2.某质点的运动方程为6533+-=t t x (SI ),则该质点作(A )匀加速直线运动,加速度沿X 轴正方向;(B )匀加速直线运动,加速度沿X 轴负方向;(C )变加速直线运动,加速度沿X 轴正方向;(D )变加速直线运动,加速度沿X 轴负方向。
《大学物理》练习题库
大学物理练习题第一章 质点运动学一、选择题1. 一质点在某时刻位于位矢 (,)r x y 的端点处,其速度大小为( )A.dr dtB.d r dtC.d r dt 2. 一质点作曲线运动,任意时刻的位矢为r ,速度为v ,那么( )A v v ∆=∆B r r ∆=∆C t ∆时间间隔内的平均速度为r t ∆∆D t ∆时间间隔内的平均加速度为v t ∆∆3. 以下五种运动的形式中,a保持不变的运动是( )A 单摆的运动B 匀速率圆周运动C 行星的椭圆轨道运动D 抛物运动4. 下面选项中的物理定义中属于理想模型概念的是( )A 机械能B 质点C 位移D 转动惯量5. 质点以速度v =4+t 2m/s 作直线运动,沿质点运动直线作OX 轴,并已知t =3s 时,质点位于x =9m 处,则该质点的运动方程为( )A x =2tB x =4t +t 3/2C x =4t+t 3/3+12D x =4t +t 3/3-126. 质点做匀速率圆周运动时,其速度和加速度的变化情况为( )A 加速度不变,速度在变化B 速度不变,加速度在变化C 二者都不变D 二者都在变7. 某物体的运动规律为dv /dt =-kv 2t ,式中的k 为大于零的常数,当t =0时,初速度为v 0,则速度v 与时间t 的函数关系是( )A v =kt 2/2+v 0B v =-kt 2/2+v 0C 1/v = kt 2/2+1/v 0D 1/v = -kt 2/2+1/v 0二、填空题1.设质点的运动方程为r =R cos ωt i +R sin ωt j (式中R ,ω皆为常量),则质点的速度v= , v 的大小= ,加速度a = ,写出轨道方程 。
2.质点的运动方程为j t i t r 223+=,则质点的速度表示v = ,加速度a = ,t =1s 时,v 的大小= ,写出轨道方程 。
3.一质点沿X 轴作直线运动,它的运动方程为:x =3+6t +8t 2-12t 3 (SI),则(1)质点在t =0时刻的速度v 0= ,加速度a 0= 。
大学物理题库-质点运动学习题与答案解析
第一章 质点运动学一、选择题:1、在平面上运动的质点,如果其运动方程为j bt i at r22+= (其中b a ,为常数),则该质点作[ ](A ) 匀速直线运动 (B ) 变速直线运动 (C ) 抛物线运动 (D ) 一般曲线运动2、质点以速度124-⋅+=s m t v 作直线运动,沿质点运动方向作ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动方程为[ ](A) t x 2= (B) 2214t t x += (C) 123143-+=t t x (D) 123143++=t t x3、某雷达刚开机时发现一敌机的位置在j i 96+处,经过3秒钟后,该敌机的位置在ji612+处,若i 、j分别表示直角坐标系中y x ,的单位矢量,则敌机的平均速度为[ ](A )j i 36+ (B )j i 36-- (C )j i -2 (D )j i+-2 4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]5、一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠(D )v v v,v ≠=[ ] 6、一运动质点的位置矢量为)y ,x (r,其速度大小为[ ](A)dt dr (B )dt r d (C )dt r d (D )dt r d (E )22)()(dt dydt dx +7、某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数,当0=t 时,初速度为0v ,则速度v 与时间t 的函数关系是:[ ](A )0221v kt v += (B ) 0221v kt v +-=(C ) 021211v kt v += (D ) 021211v kt v +-=8、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ ] 9、质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的.(D) 只有(3)是对的. [ ] 10、一质点在运动过程中,0=dtr d ,而=dtdv常数,这种运动属于[ ] (A )初速为零的匀变速直线运动; (B )速度为零而加速度不为零的运动; (C )加速度不变的圆周运动; (D )匀变速率圆周运动。
《大学物理学》质点运动学练习题
质点运动学学习材料一、选择题1.质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( )(A ) (B ) (C ) (D )【提示:由于质点作曲线运动,所以,加速度的方向指向曲线的内侧,又速率逐渐减小,所以加速度的切向分量与运动方向相反】2. 一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 ( )(A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
【提示:将t =3代入公式,得到的是t=3时的位置,位移为t =3时的位置减去t =0时的位置;显然运动规律是一个抛物线方程,可利用求导找出极值点:24d x t dt =-,当t =2时,速度0d xdtυ==,所以前两秒退了4米,后一秒进了1米,路程为5米】3.一质点的运动方程是cos sin r R t i R t j ωω=+,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是 ( )(A ) -2R i ; (B ) 2R i; (C ) -2j ; (D ) 0。
(2)该质点经过的路程是 ( ) (A ) 2R ; (B ) R π; (C ) 0; (D ) R πω。
【提示:轨道方程是一个圆周方程(由运动方程平方相加可得圆方程),t =π/ω到t =2π/ω时间内质点沿圆周跑了半圈,位移为直径,路程半周长】4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度υ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 ( )(A )大小为2υ,方向与B 端运动方向相同; (B )大小为2υ,方向与A 端运动方向相同;(C )大小为2υ, 方向沿杆身方向;(D )大小为2cos υθ,方向与水平方向成 θ 角。
【提示:C 点的坐标为sin 2cos 2C C l x l y θθ⎧=⎪⎪⎨⎪=⎪⎩,则cos 2sin 2cx cyl d dt l d dt θυθθυθ⎧=⋅⎪⎪⎨⎪=⋅⎪⎩,有中点C 的速度大小:2C l d dt θυ=⋅。
大学物理第一章质点运动学习题
1 2 间的关系为= v0t − bt ( SI)。 s 2,质点加速度的大小和方向。 求:(1) 任意时刻t,质点加速度的大小和方向。 任意时刻
求:
a
α
r aτ
R
R
τ
dt
r an
4
a = an + aτ =
2 2
(v0 − bt )4 + (− b )2
R2
r (v 0 − bt ) an a 与切向轴的夹角为 α = arctg = arctg (− Rb ) aτ
v v v v dr 解:v = = 2i − 2tj dt v v v v v t = 2 v2 = 2i − 4 j t = 0 v0 = 2i
v2 = 22 + 42 = 4.47m/ s 大小: 大小:
−4 方向: 方向: θ = arctan = −63o26′ 2
θ为 2与 轴的夹角 v x
x = −t 2 (SI)
例5:一质点运动轨迹为抛物线 : 求:x= -4m时(t>0)粒子的 时 粒子的 速度、速率、加速度。 速度、速率、加速度。 解: x= -4m时 t=2s 时
x t =2 dx vx = −4m s vx = = −2t dt t =2 dy 3 vy = −24m s vy = = −4t + 4t dt v v v 2 v = vx + v2 = 4 37 m s v = −4i − 24 j m/ s y 2 dvx d x −2 ax = s = = −2m ay = −12t 2 + 4 = −44(m −2 ) s 2 dt dt v v r a = −2i − 44 j m⋅ s−2
y = −t 4 + 2t 2(SI)
大学物理第一章 质点运动学-习题及答案
第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
大学物理练习题_C1-1质点运动学(含答案解析)
本习题版权归西南交大理学院物理系所有《大学物理AI 》作业No.01运动的描述班级________学号________姓名_________成绩_______一、选择题1.一质点沿x 轴作直线运动,其v ~t 曲线如图所示。
若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为[](A)0(B) 5 m(C) 2 m (D)-2 m (E)-5 m解:因质点沿x 轴作直线运动,速度v =x 2t 2v (m ⋅s -1)21O-112.5234 4.5t (s )d x,d t∆x =⎰d x =⎰v d tx 1t 1所以在v ~t 图中,曲线所包围的面积在数值上等于对应时间间隔内质点位移的大小。
横轴以上面积为正,表示位移为正;横轴以下面积为负,表示位移为负。
由上分析可得t=4.5 s 时,位移∆x =x =1(1+2.5)⨯2-1(1+2)⨯1=2(m )22选C2.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率v 0收绳,绳不伸长、ϖv湖水静止,则小船的运动是0[](A)匀加速运动(B)匀减速运动(C)变加速运动(D)变减速运动(E)匀速直线运动解:以水面和湖岸交点为坐标原点建立坐标系如图所示,且设定滑轮到湖面高度为h ,则xh 2+x 2d l x d x =-=v 0题意匀速率收绳有22d td t h +x 小船在任一位置绳长为l =d x h 2+x 2=-v 0故小船在任一位置速率为d t x 22d 2x 2h +2x =-v 0小船在任一位置加速度为a =,因加速度随小船位置变化,且d t 2x 3与速度方向相同,故小船作变加速运动。
选Cϖ3.一运动质点在某瞬时位于矢径r (x ,y )的端点处,其速度大小为[]d r (A)d t ϖd r (C)d tϖd r (B)d t(D)⎛d x ⎫⎛d y ⎫ ⎪+ ⎪d t d t ⎝⎭⎝⎭22ϖϖϖd x ϖd y ϖϖϖd r解:由速度定义v =及其直角坐标系表示v =v x i +v y j =i +j 可得速度大d t d t d t ϖ⎛d x ⎫⎛d y ⎫小为v =⎪+ ⎪d t d t ⎝⎭⎝⎭22精品文档选D4.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有[](A)v =v ,ϖϖϖϖϖ(B)v ≠v ,v =vv =v ϖϖϖϖ(C)v =v ,v ≠v (D)v ≠v ,v ≠vϖd s ϖd rϖϖ解:根据定义,瞬时速度为v =,瞬时速率为v =,由于d r =d s ,所以v =v 。
大学物理试题及答案(1-4章)
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式tsd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d hl t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv 2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v-t图中求出各段的斜率,即可作出a-t图线.又由速度的定义可知,x-t曲线的斜率为速度的大小.因此,匀速直线运动所对应的x-t图应是一直线,而匀变速直线运动所对应的x–t 图为t的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin =', t TR y π2cos -='坐标变换后,在O x y 坐标系中有t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BA tB A y1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan ==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2)令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3)当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hl αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x ,y )变换至系O′中的点(x ′,y ′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解 取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和。
《大学物理》各章练习题库
《大学物理》各章练习题库第一章 质点运动学姓名:__________ 学号:_________ 专业及班级:_________1. 某质点的运动方程为6533+-=t t x (SI),则该质点作( )(A)匀加速直线运动,加速度为正值; (B)匀加速直线运动,加速度为负值; (C)变加速直线运动,加速度为正值; (D)变加速直线运动,加速度为负值。
2.一质点沿直线运动,其运动方程为)(62SI t t x -=,则在t 由0至4s 的时间间隔内, 质点的位移大小为:( )A m 6;B m 8;C m 10;D m 12。
3.下列说法正确的是( )A. 在圆周运动中,加速度的方向一定指向圆心B. 匀速率圆周运动的速度和加速度都恒定不变C. 物体作曲线运动时,速度方向一定在运动轨道的切向方向,法向分速度恒等于零,因此其法向加速度也一定等于零D. 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零4.某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
实际风速与风向为( )A. 4km/h ,从北方吹来B. 4km/h ,从西北方吹来C. 4√2km/h ,从东北方吹来D. 4√2km/h ,从西北方吹来5.沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为n a = 。
6.在XY 平面内有一运动的质点,其运动方程为)(5sin 55cos 5SI j t i t r+=,则t 时刻其速度=v_____________________________。
7.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = 。
8.质点P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度ω与时间t 的关系为2kt =ω,已知t =2s 时,质点P 的速率为16m/s ,试求t=1s 时,质点P 的速率与加速度的大小。
习题一质点运动学(答案)
习题一 质点运动学院 系: 班 级:_____________ 姓 名:___________ 班级个人序号:______一 选择题1.某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?[ C ](A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°.(D) 西偏南30°.2.在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为[ B ] (A) 2i +2j. (B) 2i +2j.(C) -2i -2j . (D) 2i -2j.3. 水平地面上放一物体A ,它与地面间的滑动摩擦系数为.现加一恒力F如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角应满足(A) sin θ=μ. (B) cos θ=μ.(C) tg θ=μ. (D) ctg θ=μ.[ C ]4. 一质点沿x 轴运动的规律是245x t t =-+(SI 制)。
则前三秒内它的 [ D ](A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ;(D )位移是-3m ,路程是5m 。
解:3253t t x xx==∆=-=-=-24dx t dt =-,令0dxdt=,得2t =。
即2t =时x 取极值而返回。
所以: 022*********|||||||||15||21|5t t t t S S S x x x x x x ----=====+=+=-+-=-+-=5. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 [ D ](A )大小为/2v ,方向与B 端运动方向相同;(B )大小为/2v ,方向与A 端运动方向相同; (C )大小为/2v , 方向沿杆身方向;(D )大小为/(2cos )v θ ,方向与水平方向成θ角。
大学物理1质点运动学例题
24 ? 3600
卫星的圆轨道半径 R ? 5.6? 6.37? 106 ? 6.37? 106 ? 42.0? 106 (m)
卫星的速率 v ? R? ? 42.0? 106 ? 7.27? 10?5 ? 3.05? 103 (mgs?1)
? ? v ? r ( 2 ) ? r( 0 ) ? 1
2
2
??2? 2i ? (18 ? 2 ? 22 ) j ?? ? 18 j
? 2i ? 4 j
(4)质点在2s时的速度为
v ? dr ? 2i ? 4tj ? 2i ? 4 ? 2 j ? 2i ? 8 j dt
v ? 22 ? 82 ? 68 ? 2 17( m?s?1 )
此质点的角速度与运动时间的平方成正比即kt为待定常数已知质点在末的线速度为32由题意得一汽车在半径r200的圆弧形公路上行驶其运动学方程为s20t已知质点运动方程为si质点运动速度为速率为路程有已知质点的运动方程为btsincos将一根光滑的钢丝弯成一个竖直平面内的曲线质点可沿钢丝向下滑动
例1 一质点作匀速圆周运动,半径为 r ,角速度为 ? 。
? ? 路程有 ds ? v dt ? 2 1? t 2dt ? s2 ds ? t2 2 1? t 2dt
s1
t1
? ? ? ? 1? t2dt ? t 1? t2 ? 1 ln t ? 1? t2 ? c
2
2
? s2 ? s1 ? ? s ? 3 10 ?
2 ? ln 3 ? 10 ? 9.98 m 1? 2
说明 质点运动学的基本问题之一,是确定质点运动学方程。为
正确写出质点运动学方程,先要选定参考系、坐标系,明
大学物理学第四版1质点运动学习题答案
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d r v dt= ,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。
解:(1)由24(32)r t i t j =++ ,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)从0=t 到1=t s 的位移为:j i j j i r r r243)54()0()1(+=-+=-=∆(3)由d r v dt= ,有速度:82v t i j =+0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d rv dt = ,有:22v t i j =+ ,d v a dt= ,有:2a i = ;(2)而v v =,有速率:1222[(2)2]v t =+=∴t dv a dt==,利用222t n a a a =+有:n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为h ,求螺钉从天花板落到底板上所需的时间。
大学物理练习题及详细解答—质点运动学
运动量1-1质点在xOy 平面内的运动方程为 x =3t ,y =2t 2+3。
求:(1)t =2s 时质点的位矢、速度和加速度;(2)从t =1s到t =2s 这段时刻内,质点位移的大小和方向;(3)1~0s 和2~1s 两时刻段,质点的平均速度;(4)写出轨道方程。
解:(1) j t i t r )32(32++=,j t i tr v 43d d +==,j t r a 4d d 22==s 2=t 时,j i r116+=,j i v 83+=,j a 4=(2) j i j i j i r r r 63)53()116(12+=+-+=-=∆,456322=+=∆r,与x 轴正向的夹角 ︒==4.6336arctan θ(3) j i j j i t r r v 2313)53(1011+=-+=∆-=,j i j i t r r v 631632122+=+=∆-= (4) 3x t =,39233222+=+⎪⎭⎫⎝⎛=x x y 1-2一质点在xOy 平面内运动,初始时刻位于x =1m ,y =2m 处,它的速度为v x=10t , v y= t 2。
试求2秒时质点的位置矢量和加速度矢量。
解:t t x v x 10d d ==,⎰⎰=t x t t x 01d 10d ,152+=t x 。
2d d t t y v y ==,⎰⎰=t y t t y 022d d ,2313+=t yj t i t r )231()15(32+++=, j t i t v 210+=, j t i tva 210d d +==s 2=t 时, j i r31421+=, j i a 410+=1-3一质点具有恒定加速度j i a46+=,在t =0时,其速度为零,位置矢量i r 100=,求(1)任意时刻质点的速度和位置矢量;(2)质点的轨道方程。
解:质点作匀加速运动(1) j t i t t a v v 460+=+=, j t i t t j i i t a t v r r2222002)310()46(211021++=++=++=(2) 22t y =,22y t =,2310y x +=,)10(32-=∴x y1-4路灯距地面高度为H ,行人身高为h ,若人以匀速V 背向路灯行走,人头顶影子的移动速度v 为多少? 解:设x 轴方向水平向左,影子到灯杆距离为x ,人到灯杆距离为x 'x x x H h '-=,x h H H x '-=,V hH Ht x h H H t x v -='-==d d d d直线运动1-5一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =3+6x 2,若质点在原点处的速度为零,试求其在任意位置处的速度。
大学物理学第1章
第1章 质点运动学习 题一 选择题1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率sv t∆=∆,而平均速度t∆∆rv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ](A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为大于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-⎰⎰,得到20112kt v v =+,故答案选B 。
第1章质点运动学作业
第1章 质点运动学 作 业班级: 学号: 姓名: 成绩:一、选择题1、某质点作直线运动的运动学方程为3356x t t =-+ (SI),则该质点作 [ ](A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向; (D) 变加速直线运动,加速度沿x 轴负方向.2、一运动质点在某瞬时位于矢径(),r x y的端点处,其速度大小为 [ ](A) dr dt (B) dr dt (C) d r dt (D)3、质点作半径为R 的变速率圆周运动时的加速度大小(v 表示任一时刻质点的速率)[ ](A) dv dt(B) 2v R (C) 2dv v dt R + (D)12422dv v dt R ⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦4、某物体的运动规律为2dvkv t dt=-,式中的k 为大于零的常量。
当0t =时,初速为0v ,则速度v 与时间t 的函数关系是 [ ](A) 2012v kt v =+; (B) 2012v kt v =-+; (C) 20112kt v v =+; (D) 20112kt v v =-+.5、在高台上分别沿45°仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时的速度 [ ](A) 大小不同,方向不同; (B) 大小相同,方向不同; (C) 大小相同,方向相同; (D) 大小不同,方向相同。
6、下列说法中,哪一个是正确的? [ ](A) 一质点在某时刻的瞬时速度是2m/s ,说明它在此后1秒内一定要经过2 m 的路程; (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大; (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零; (D) 物体加速度越大,则速度越大。
7、下列说法哪一条正确? [ ](A) 加速度恒定不变时,物体运动方向也不变; (B) 平均速率等于平均速度的大小;(C) 不管加速度如何,平均速率表达式总可以写成()1212v v v =+(1v 和2v 分别为初、末速率);(D) 运动物体速率不变时,速度可以变化。
大学物理习题
第1部分 质点运动学一、选择题1.一物体在位置1的矢径是,速度是1v. 如图所示.经∆t 时间后到达位置2,其矢径是, 速度是2v.则在∆t 时间内的平均速度是[ ](A) )(2112v v - (B) )(2112v v+(C) t r r ∆-12 (D) tr r ∆+122.一物体在位置1的速度是1v, 加速度是.如图所示.经∆t 时间后到达位置2,其速度是2v, 加速度是.则在∆t 时间内的平均加速度是[ ](A))(112v v -∆t (B) )(112v v+∆t(C))(2112a a - (D) )(2112a a+ 3.作匀速圆周运动的物体[ ](A) 速度不变 (B) 加速度不变 (C) 切向加速度等于零 (D) 法向加速度等于零4.一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b 为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动 (C) 抛物曲线运动 (D) 一般曲线运动 5.某人以-1s m 4⋅的速度从A 运动至B , 再以-1s m 6⋅的速度沿原路从B 回到A ,则来回全程的平均速度大小为[ ](A) -1sm 5⋅ (B) -1s m 8.4⋅ (C) -1s m 5.5⋅ (D) 06.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)[ ](A) dvdt(B) 2v R (C) 2dv v dt R + (D) 421/22[()()]dv v dt R + 7.一质点沿X 轴的运动规律是542+-=t t x (SI),前三秒内它的[ ] (A )位移和路程都是3m ; (B )位移和路程都是-3m ;(C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
8.一质点在XOY 平面内运动,设某时刻质点的位置矢量j t i t r )219(22-+=,则t = 1s 时该质点的速度为[ ](A)j i V 42-= (B) j i V172-=(C) j i V +=2 (D) j i V -=29.某质点的运动方程为)(6533SI t t x +-=,则该质点作[ ](A) 匀加速直线运动,加速度沿X 轴正方向 (B) 变加速直线运动,加速度沿X 轴负方向 (C) 变加速直线运动,加速度沿X 轴正方向 (D)匀加速直线运动,加速度沿X 轴负方向10.质点以速度)/(42s m t V +=作直线运动,以质点运动直线为Ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动学方程为[ ](A) t x 2= (B) 242t t x += (C) 12343-+=t t x (D) 12343++=t t x 11.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表示中[ ](1)a dtV d = (2)V dt rd = (3)V dtds= (4)τa dt dV = (A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的; (C) 只有(2)是对的 ; (D) 只有(3)是对的.12.质点沿半径为R 的圆周作匀速运动,每t 秒转一圈,在2t 时间间隔中,其平均速度和平均速率的大小分别为[ ](A)t R π2; t R π (B) 0;0 (C) 0; t R π2 (D) tRπ2 ; 013.一质点作曲线运动, 任一时刻的矢径为, 速度为v, 则在时间内[ ](A) v v ∆=∆(B) 平均速度为(C) r r ∆=∆ (D) 平均速度为tr∆∆14.一质点在平面上运动,已知质点位置矢量的表示式为()()j t i t t r22623++=,则该质点作[ ]()A 匀速直线运动 ()B 变速直线运动 ()C 抛物线运动 ()D 一般曲线运动二、填空题1.已知质点的运动方程为t x 3=,22t y =则质点在第2s 内的位移r ∆=______________。
大学物理课后习题解答
所以
l—15 一粒子沿抛物线轨道 运动,且知 。试求粒子在 m处的速度和加速度。
[解] 由粒子的轨道方程
对时间t求导数 (1)
再对时间t求导数并考虑到 是恒量 (2)
把 m代入式(1)得
1—7 湖中一小船,岸边的人用跨过高处的定滑轮的绳子拉船靠岸(如图所示)。当收绳速度为v时,试问:(1)船的运动速度u比v大还是小?(2)若v=常量。船能否作匀速运动?如果不能,其加速度为何值?
[解] (1) 由教材上图知
两边对t求导数,并注意到h为常数,得
[解] (1) 质点的加速度 a=dv/dt=4t
又 v=dx/dt 所以 dx=vdt
对上式两边积分,得
由题知 (m)
所以 c= - 457.3m
因而质点的运动方程为:
(2)
(3) 质点沿X轴作变加速直线运动,初速度为8m/s,初位置为-457.3m.
[解] 设登月舱的速率为v,周期为T,则
即 (1)
即 (2)
解式(1)(2)组成的方程组得
1—20 如图所示,一卷机扬自静止开始作匀加速运动,绞索上一点起初在A处经3s到达鼓轮的B处,然后作圆周运动。已知AB=0.45m,鼓轮半径R=0.5m,求该点经过点C时,其速度和加速度的大小和方向。
所以,t=1s时, ,
t=2s时, ,
(4)当质点的位置矢量和速度矢量垂直时,有
即
整理,得
解得 (舍去)
(5)任一时刻t质点离原点的距离
[解] 由
对上式两边积分
即
故速度v与y的函数关系为
1—14 一艘正以速率 匀速行驶的舰艇,在发动机关闭之后匀减速行驶。其加速度的大小与速度的平方成正比,即 , k为正常数。试求舰艇在关闭发动机后行驶了x距离时速度的大小。
《大学物理》习题训练与详细解答一(质点运动学练习一、二)
2 3 2 3 x x0 t 10 t 3 3
6.如图2所示,质点p在水平面内沿一半径为R =2m的圆轨道转动,转动的角速度ω与时间的关系 2 示为 kt (k为常数)。 已知t=2s时,质点P的速度值为32m/s. 试求 t=1s时,质点P的速度与加速度的大小
w v k 2 2 4 t Rt
(A)(1)、(4)是正确的 (C) (2) 是正确的 (B) (2)、(4)是正确的 (D) (3)是正确的
3.一质点沿x轴作直线运动,它的运动方程为 x=3+5t+6t2-t3 (SI) 则 5m/s (1) 质点在t=0时刻的速度V0=________; (2)加速度为零时,该质点的速度v=________. 17m/s
dv dv 2 kv t 2 ktdt dt v v t 1 1 2 ( ) ( kt ) v0 0 v 2
.
3.一质点作直线运动,其坐标x与时间t的函数曲线如图 3 秒瞬时速度为零;在第 1所示,则该质点在第______ 3 6 ______ 秒至第______ 秒间速度与加速度同方向。
大学物理Ⅳ-习题课1
练习一 质点运动学(一)
1.一质点在平面上作一般曲线运动,其瞬时速度为 , 瞬时速率为v,某一段时间内的平均速度为v ,平均速 率为v ,它们之间的关系必定有 [ ] D (A) | v | = v, | v | = v (B) | v | ≠v, | v | = v (C) | v | ≠v,
r 平均速度: v , t s 平均速率: v , t dr 瞬时速度: v , dt d r ds 瞬时速率: v dt dt
v
|v≠ | v
(D)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理AI 》作业运动的描述班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题1.一质点沿x 轴作直线运动,其v ~ t 曲线如图所示。
若t =0时质点位于坐标原点,则t = s 时,质点在x 轴上的位置为 [ ] (A) 0 (B) 5 m(C) 2 m (D) -2 m (E) -5 m 解:因质点沿x 轴作直线运动,速度tx v d d =, ⎰⎰==∆2121d d t t x x t v x x所以在v ~ t 图中,曲线所包围的面积在数值上等于对应时间间隔内质点位移的大小。
横轴以上面积为正,表示位移为正;横轴以下面积为负,表示位移为负。
由上分析可得t = s 时, 位移 ()()()m 21212125.2121=⨯+-⨯+==∆x x 选C2.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是[ ] (A) 匀加速运动 (B) 匀减速运动 (C) 变加速运动 (D) 变减速运动 (E) 匀速直线运动解:以水面和湖岸交点为坐标原点建立坐标系如图所示,且设定滑轮到湖面高度为h ,则小船在任一位置绳长为 22x h l +=题意匀速率收绳有022d d d d v t x xh x t l =+-= 故小船在任一位置速率为 xx h v t x 220d d +-= 小船在任一位置加速度为 32220222d d xx h v t x a +-==,因加速度随小船位置变化,且与速度方向相同,故小船作变加速运动。
选C 3.一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处,其速度大小为 [ ](A) t r d d(B) tr d d ϖ(C) tr d d ϖ(D)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x )-解:由速度定义t rv d d ϖϖ= 及其直角坐标系表示j t y i t x j v i v v y x ϖϖϖϖϖd d d d +=+=可得速度大小为22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v ϖ选D4.一质点在平面上作一般曲线运动,其瞬时速度为v ϖ,瞬时速率为v ,某一段时间内的平均速度为v ϖ,平均速率为v ,它们之间的关系必定有 [ ](A) v v v v ==ϖϖ,(B) v v v v =≠ϖϖ,(C) v v v v ≠=ϖϖ, (D) v v v v ≠≠ϖϖ,解:根据定义,瞬时速度为t r v d d ϖϖ=,瞬时速率为ts v d d =,由于s r d d =ϖ,所以v v =ϖ。
平均速度t r v ∆∆=ϖϖ,平均速率ts v ∆∆=,由于一般情况下s r ∆≠∆ϖ,所以v v ≠ϖ。
选C5.一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km 。
甲、乙两人需要从码头A 到码头B ,再立即由B 返回。
甲划船前去,船相对河水的速度为4 km/h ;而乙沿岸步行,步行速度也为4 km/h 。
如河水流速为 2 km/h ,方向从A 到B ,则 [ ] (A) 甲比乙晚10分钟回到A (B) 甲和乙同时回到A(C) 甲比乙早10分钟回到A (D) 甲比乙早2分钟回到A解:由相对速度公式有甲回到A 处所需时间为从码头A 到码头B 所需时间241+加上从码头B 回到码头A 所需时间241- 即 )h (32241241=-++=甲t同理有乙回到A 处所需时间为 )h (214141=+=甲t甲乙所用时间差为(min)10)h (612132==+=-=∆乙甲t t t由此知甲比乙要多用10分钟回到A 处选A6.一飞机相对空气的速度大小为1h km 200-⋅,风速为1h km 56-⋅,方向从西向东。
地面雷达测得飞机速度大小为1h km 192-⋅,方向是[ ] (A) 南偏西° (B) 北偏东° (C) 向正南或向正北 (D) 西偏北°(E) 东偏南°解:风速的大小和方向已知,飞机相对于空气的速度和飞机对地的速度只知大小,不知方向。
由相对速度公式地空气空气机地机→→→+=v v v ϖϖϖ如图所示。
又由22220019256=+,所以地机地空气→→⊥v v ϖϖ,飞机应向正南或正北方向飞行。
选C机→v ϖ地地空气→ϖ二、填空题 1.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示。
则该质点在第 秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向。
解:由图知坐标x 与时间t 的关系曲线是抛物线,其方程为)6(95--=t t x ,由速度定义t x v d d =有:)62(95--=t v ,故第3秒瞬时速度为零。
0-3秒速度沿x 正方向,3-6秒速度沿x 负方向。
由加速度定义22d d t x a =有:910-=a ,沿x 正方向,故在第3秒至第6秒间速度与加速度同方向。
2.在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度2Cta =(其中C 为常量),则其速度与时间的关系为=v _________________________,运动学方程为=x __________________。
解: 本题属于运动学第二类类问题,由2d d Ct tva ==得⎰⎰=t v v t Ct v 02d d 0有速度与时间的关系3031Ct v v += 再由3031d d Ct v t x v +==得⎰⎰+=t x x t Ct v x 030)d 31(d 0有运动学方程400121Ct t v x x ++=3.一质点在y o 平面内运动,运动方程为t x 2=和2219t y -= (SI),则在第2秒内质点的平均速度大小v ρ= , 2秒末的瞬时速度大小=2v 。
解: 在第2秒内,质点位移的x 、y 分量分别为本()m 2122212=⨯-⨯=-=∆x x x()()()m 6121922192212-=⨯--⨯-=-=∆y y y平均速度大小为())s m (32.66212)()(12222-⋅=-+=-∆+∆=∆∆=y x t r v ϖρ5由22,4d d ,2d d y x y x v v v t ty v t x v +=-====s 2=t 时,())s (m 25.8821222-⋅=-+=v4.一质点从静止(t = 0)出发,沿半径为R = 3 m 的圆周运动,切向加速度大小保持不变,为-2s m 3⋅=τa ,在t 时刻,其总加速度a ϖ恰与半径成45°角,此时t = 。
解:由切向加速度定义t va d d =τ,分离变量积分⎰⎰=tvt a v 0d d τ得质点运动速率 t a v τ=法向加速度 Rt a R v a n 222τ== 由题意a ϖ与半径成45°角知:τa a n =由此式解得s)(133===t a R t5.一船以速度0v ϖ在静水湖中匀速直线航行,一乘客以初速1v ϖ在船中竖直向上抛出一石子,则站在岸上的观察者看石子运动的轨迹是_______________。
取抛出点为原点,x 轴沿0v ϖ方向,y 轴沿竖直向上方向,石子的轨迹方程是_______________________________。
解:取抛出点为原点,x 轴沿0v ϖ方向,y 轴沿竖直向上方向,以河岸为参考系,石子运动的参数方程为21021,gt t v y t v x -==,消去t ,得轨迹方程 20121⎪⎪⎭⎫⎝⎛-=v x g x v v y ,故运动轨迹为抛物线。
6.当一列火车以10 m/s 的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向30°,则雨滴相对于地面的速率是______________________;相对于列车的速率是____________________。
解:由题意可画出各速度矢量如右图所示,它们构成直角三角形且地火火雨地雨→→→+=v v v ϖϖϖ故雨滴相对于地面的速率)s /m (3.1730tg /10==→ο地雨v雨滴相对于列车的速率)s /m (2030sin /10==→ο火雨v雨→v ϖ地雨→地火→三、计算题1.一物体悬挂在弹簧上作竖直振动,其加速度为y k a -=,式中k 为常数,y 是以平衡位置为原点所测得的坐标,假定振动的物体在坐标0y 处的速度为0v ,试求:速度v 与坐标y 的函数关系式。
解:加速度 ky yv v t y y v t v a -=⋅=⋅==d d d d d d d d ,分离变量积分得()220202212121d d 0ky ky v v yky v v yy vv -=--=⎰⎰所以速度v 与坐标y 的函数关系式为()220202y y k v v -+=2.一张致密光盘(CD )音轨区域的内半径R 1=2.2 cm ,外半径为R 2=5.6 cm (如图),径向音轨密度N =650条/mm 。
在CD 唱机内,光盘每转一圈,激光头沿径向向外移动一条音轨,激光束相对光盘是以v =1.3 m/s 的恒定线速度运动的。
(1) 这张光盘的全部放音时间是多少(2) 激光束到达离盘心r =5.0 cm 处时,光盘转动的角速度和角加速度各是多少解:(1) 以r ϖ表示激光束打到音轨上的点对光盘中心的矢径,则在r d 宽度内的音轨长度为r rN d 2π。
激光束划过这样长的音轨所用的时间为vrrN t d 2d π=。
由此得光盘的全部放音时间为)(d 2d 2122 21R R N rrN t T R R -===⎰⎰νπνπ3.1)022.0056.0(10650223-⨯⨯⨯=π(m in)4.69s 1016.4 3=⨯= (2) 所求角速度为rad/s)(2605.03.1===rνω 所求角加速度为322222d d d d NrrN r t r r t πνπνννωβ-=-=-== 33205.01065023.1⨯⨯⨯-=π )(rad/s 1031.323-⨯-=3.有一宽为l 的大江,江水由北向南流去。
设江中心流速为u 0,靠两岸的流速为零。
江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比。
今有相对于水的速度为0v ϖ的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点。
解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为 y 方向,由题意可得任一点水流速202)(0⎪⎭⎫ ⎝⎛-=--=l x k u u u y x即220u l x k u u y x -⎪⎭⎫ ⎝⎛-== 将 x = 0, x = l 处0=y u , 代入上式定出比例系数204lu k =, 从而得()x l x lu u y -=204 由相对运动速度关系有船相对于岸的速度v ϖ(v x ,v y )为2/45cos 00v u v v x x =+=οy y y u v u v v +=+=2/45sin 00ο 将上二式的第一式进行积分,有 t x 20v =还有,x yv t x x y t y v y d d 2d d d d d d 0⋅=⋅==代入y v 有()x l x l u v x y v -+=⋅200042d d 2 即 ()x l x v l u x y-+=020241d d因此,此式积分之后可求得如下的轨迹(航线)方程:32020032422x v l u x lv u x y +-= 到达东岸的地点(x ,y )为⎪⎪⎭⎫ ⎝⎛-====003221v u l y y l x l x东。