备课参考北师大版八年级数学上册2-二次根式教学设计29

合集下载

【备课参考】北师大版八年级数学上册:2-7 二次根式 教学设计

【备课参考】北师大版八年级数学上册:2-7 二次根式 教学设计

八年级数学 7 二次根式第1课时二次根式的概念和性质教学目标【知识与技能】1.了解二次根式及最简二次根式的概念.2.会化简二次根式.3.理解并掌握二次根式的性质.【过程与方法】经历观察、分析、讨论、归纳二次根式及最简二次根式的过程,发展学生的归纳概括能力和语言表达能力.【情感、态度与价值观】积极参与数学活动,感受数学活动充满了探索性和创造性,体会到数学学习的乐趣.教学重难点【重点】理解并掌握二次根式及最简二次根式的概念,化简二次根式.【难点】化简二次根式.教学过程一、知识回顾,引入新课师:同学们还记得平方根的概念吗?生:记得.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根.师:什么叫做算术平方根呢?生:正数的正的平方根以及零的平方根,统称算术平方根.师:很好!非负数a的算术平方根用(a≥0)表示.一般地,例如(a≥0)的式子,我们叫做二次根式.这就是今天这节课我们要学习的内容.二、讲授新课师:请同学们观察下列代数式,你能发现它们有什么共同特征吗?,,,,(其中b=24,c=25).生:它们都含有开方运算,并且被开方数都是非负数.师:很好!一般地,例如(a≥0)的式子,叫做二次根式,a叫做被开方数.那么二次根式具有什么性质呢?下面我们一起来探究一下.请同学们完成以下填空:= ,×= ;= ,×= ;= ,×= ;= ,÷= .学生独立完成填空,然后集体订正.并根据上面的猜想,估计下列式子是否相等,再借助计算器验证.= ,÷= .师:请同学们比较左右两边的等式,你发现了什么?你能用字母表示你发现的规律吗?学生分组讨论交流,然后由小组代表发言,教师予以补充完善.师:通过刚才的探究,我们可以发现积的算术平方根的性质和商的算术平方根性质.即:(1)积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积(各因式必须是非负数),即=·(a≥0,b≥0);(2)商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.(被除式必须是非负数,除式必须是正数),即=(a≥0,b>0).师:知道了二次根式的这些性质,下面我们来看几个例题,加深理解.三、例题讲解【例1】化简:(1);(2);(3).【答案】(1)=×=9×8=72;(2)=×=5;(3)==.例1的化简结果5,中,被开方数中都不含分母,也不含能开得尽方的因数.一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.【例2】化简:(1);(2);(3) .【答案】(1)==×=5;(2)===;(3)==.判断最简二次根式的方法:通常将不含分母的被开方数分解因数或因式后,不含能开得尽方的因数或因式,即为最简二次根式.【例3】先化简,再求出下面算式的近似值(精确到0.01).(1);(2);(3).(合理应用二次根式的性质,可以帮助我们简化实数的运算.)【答案】(1)===·=12≈20.78;(2)===≈1.01;(3)===×=10-2×=0.01×≈0.02.四、巩固练习1.化简:;(2);(3);(4)【答案】(1)165(2)4(3)(4)2.化简:-【答案】原式=-=.3.若b>0,x<0,化简:-.【答案】原式=-=-=-=.五、课堂小结师:通过这节课的学习,同学们有什么收获?能与大家分享一下吗?学生发言,教师予以点评.第2课时二次根式的运算(1)教学目标【知识与技能】1.了解二次根式的运算法则是由二次根式的性质得到的.2.会进行简单的二次根式乘除以及加减运算.3.会进行二次根式的四则混合运算.【过程与方法】让学生进一步了解数学知识之间是相互联系的.【情感、态度与价值观】培养学生努力探索事物之间内在联系的学习习惯.教学重难点【重点】二次根式的乘除以及加减运算.【难点】熟练地进行二次根式的四则混合运算.教学过程一、复习归纳1.二次根式的性质:(1)()2=a(a≥0)(2)= (3=·)(a≥0,b≥0)(4)=(a≥0,b>0)2.想一想:你能计算吗?(1)×;(2)×;(3)×.师:先计算每组数中的左边的式子,再计算右边的式子.它们相等吗?你发现了什么?学生先独立完成,然后分组讨论交流,再集体订正.3.提出问题.(1)两列火车分别运煤2x吨和3x吨,问这两列火车共运煤多少吨?(2)两列火车分别运煤2x吨和3y吨,问这两列火车共运煤多少吨?这是以前学过的多项式加减法,同类项可以合并,想一想在计算二次根式加减法的时候能运用此类方法吗?请尝试计算以下几题.(1)3+4;(2)+;(3)++4.二、讲授新课1.在学生进行练习后进行总结.①二次根式的乘除运算法则.=·(a≥0,b≥0)=(a≥0,b>0)即将二次根式的性质等式左右两边对换,就得到二次根式的乘法法则和除法法则.②二次根式的加减运算法则.师:与合并同类项类似,我们可以把相同二次根式的项合并.下列计算结果哪些正确,哪些不正确?+=;a+=a;-=;a+b=(a+b);-=-=0.学生回答,教师予以订正.③二次根式的四则混合运算.二次根式即可以进行乘除运算,也可以进行加减运算.以前学习的实数的运算法则、运算律仍然适用.说说下列算式的运算顺序,并计算出结果.(+)·(+)·56×+×2.例题学习.【例1】计算.(1)×;(2);(3).(归纳二次根式的乘除运算的一般步骤:(1)运用法则,化归为根号内的实数运算;(2)完成根号内乘除运算;(3)化简二次根式.)【答案】(1)×===;(2)==;(3)====.【例2】计算:(1)3×2;(2)×-5;(3)(+1)2;(4)(+3)(-3);(5)-×;(6)【答案】(1)3×2=3×2×=6;(2)×-5=-5=-5=6-5=1;(3)(+1)2=()2+2+1=5+2+1=6+2;(4)(+3)(-3)=()2-32=13-9=4;(5)(-)×=×-×=-=6-1=5;(6)=+=+=2+3=5.【例3】计算:(1)+;(2)-;(3)(+)×.【答案】(1)+3=+=×+=4+=5;(2)-=-=-=;(3)(+)×=+=+=2+3=5.三、课堂小结师:本节课我们学习了哪些知识?还有什么疑惑的地方吗?师生共同总结.第3课时二次根式的运算(2)教学目标【知识与技能】1.巩固对二次根式的四则混合运算的掌握.2.进一步学会应用整式的运算法则进行二次根式的运算.【过程与方法】引导学生从特殊到一般,用总结归纳的方法以及类比的方法解决数学问题.【情感、态度与价值观】体验并掌握迁移、转化等数学思想与方法.教学重难点【重点】进一步应用二次根式的运算法则进行二次根式的四则混合运算.【难点】熟练进行二次根式的四则混合运算.教学过程一、引入新课师:通过上节课的学习,同学们已经掌握了二次根式的相关运算法则,这节课我们进一步来学习二次根式的加减乘除混合运算.二、例题讲解【例1】先化简,再求出近似值(精确到0.01).--(二次根式加减运算的一般步骤是:先化简,再合并.)【答案】原式=--=2--=(2--)=≈1.73.【例2】计算.(1)-3×;(2)(-3)·;(3)(-)÷.(说明:(1)二次根式混合运算的运算次序是:先乘除,后加减;(2)整式运算的运算法则和运算律对二次根式同样适用;(3)二次根式的运算结果能化简的必须化简.)【答案】(1)原式=3-6=-3;(2)原式=·-3·=-3=-9;(3)原式=÷-÷=-=4-3=1.【例3】计算:(1)-;(2)-8+;(3)(-)÷;(4)+-.【答案】(1)-=-=-=;(2)-+=-+=3-2+=;(3)(-)÷=÷-÷=-=-=-=2-=;(4)+-=+-=+-3=-+.在上面第(4)题中,很容易看出,化成最简二次根式后与,化简后的被开方数不可能相同,因此,结果中可以保留,不必将它化成最简二次根式.三、课堂小结师:本堂课我们学到了什么新知识?学生发言,教师予以补充.。

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计一. 教材分析《二次根式》是北师大版八年级数学上册第2.7节的内容,本节主要介绍二次根式的概念、性质和运算。

二次根式是中学数学中的重要内容,它不仅出现在代数、几何等领域,还是学习高中数学的基础。

本节内容为学生提供了理解二次根式的基础知识,为后续学习二次根式的运算和应用打下基础。

二. 学情分析八年级的学生已经学习了实数、有理数、无理数等基础知识,对数学概念和运算有一定的理解。

但二次根式作为一种新的数学对象,其概念和性质与已有知识有很大的不同,需要学生进行一定的适应和理解。

同时,学生需要掌握二次根式的运算方法,这需要他们在课堂上进行充分的练习和思考。

三. 教学目标1.理解二次根式的概念和性质;2.掌握二次根式的运算方法;3.能够应用二次根式解决实际问题。

四. 教学重难点1.二次根式的概念和性质;2.二次根式的运算方法;3.二次根式在实际问题中的应用。

五. 教学方法采用讲授法、案例教学法、练习法、小组合作学习法等。

通过具体的例子和练习,让学生理解和掌握二次根式的概念、性质和运算方法。

六. 教学准备1.PPT课件;2.练习题;3.小组讨论工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,例如:“一个正方形的对角线长为8cm,求正方形的面积。

”让学生思考如何解决这个问题,引出二次根式的概念。

2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT课件展示二次根式的图形和性质,让学生理解和掌握二次根式的基本概念和性质。

3.操练(10分钟)让学生进行二次根式的运算练习,提供一些练习题,让学生独立完成,然后进行讲解和解析。

4.巩固(10分钟)通过一些综合性的练习题,让学生应用二次根式的概念和运算方法,巩固所学知识。

5.拓展(5分钟)讲解二次根式在实际问题中的应用,提供一些实际问题,让学生思考如何运用二次根式解决这些问题。

6.小结(5分钟)对本节课的内容进行小结,让学生回顾和巩固所学知识。

北师大版八年级数学上册2.7《二次根式》教案

北师大版八年级数学上册2.7《二次根式》教案
(3)熟练运用二次根式的运算规则:乘除法则、加减法则等,这是进行二次根式运算的核心。
举例:讲解(√2 + √3)(√2 - √3)的运算过程,强调平方差公式的运用。
2.教学难点
(1)二次根式的性质理解:特别是乘除法则和加减法则,学生容易混淆,需要通过实例反复讲解和练习。
举例:解释为何√a * √b = √(ab),以及合并同类项时如何识别同类二次根式。
在讲授二次根式的应用时,我发现学生对于如何将实际问题转化为数学模型的这个过程比较生疏。以后,我打算引入更多贴近生活的案例,让学生感受到数学知识在实际中的应用,从而提高他们解决问题的能力。
此外,小组讨论的环节也让我有所启发。学生在交流中能够互相启发,碰撞出思维的火花。但我也注意到,有些学生在讨论中较为被动,今后我需要更加关注这部分学生,鼓励他们积极参与,表达自己的观点。
3.数学抽象:理解二次根式的概念及其性质,发展学生的数学抽象思维,提高对数学符号和表达式的理解和运用能力。
4.数学运算:掌握二次根式的化简与运算方法,培养学生的数学运算能力,使其准确快速地进行数学计算。
5.数据分析:在解决实际问题时,能运用二次根式进行数据分析,培养学生的数据敏感性和分析能力,为科学决策提供依据。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的概念、性质、化简方法和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如√a的表达式,其中a是非负实数。它是解决非完全平方数开平方运算的重要工具,广泛应用于数学和实际生活中。

北师大版八年级数学上册:2.7二次根式优秀教学案例

北师大版八年级数学上册:2.7二次根式优秀教学案例
3.丰富的课堂活动和练习题目,提高学生的实践操作能力:我设计了丰富的课堂活动和练习题目,让学生在实践中掌握二次根式的运算方法。通过实际操作和练习,学生能够更好地理解和运用二次根式,提高他们的实践操作能力。
4.多元化的评价方式,关注学生的全面发展:在评价学生的学习成果时,我采用了多元化的评价方式,关注学生的全面发展。不仅关注学生的知识掌握程度,还关注他们的思维能力、问题解决能力等多个方面。这样的评价方式能够给予学生全面的反馈,帮助他们认识到自己的进步和成长。
(二)过程与方法
1.通过生活实例引入二次根式的概念,使学生在具体的情境中感受数学与生活的紧密联系。
2.采用启发式教学,引导学生主动探究二次根式的性质和运算方法,培养他们的数学思维能力。
3.设计丰富的课堂活动和练习题目,让学生在实践中掌握二次根式的运算方法,提高他们的实践操作能力。
在教学过程中,我会注重启发学生思考,引导学生主动探究。例如,在讲解二次根式的性质时,我会提出一些问题,引导学生进行思考和讨论,从而帮助他们发现二次根式的性质。在教授二次根式的运算方法时,我会设计一些实际操作题目,让学生在实践中掌握运算方法。
四、教学内容与过程
(一)导入新课
1.利用生活实例导入新课,激发学生的兴趣和好奇心。例如,通过展示一个实际问题,如测量一个物体的高度或计算一个物体的体积,引导学生思考如何使用二次根式来解决这个问题。
2.设计一个有趣的数学问题或游戏,引导学生思考二次根式的概念和性质。例如,设计一个数学谜题,要求学生通过解答谜题来发现二次根式的性质。
3.结合实际问题,展示二次根式在实际中的应用,引导学生理解二次根式的意义和价值。例如,通过给出一些实际问题,让学生思考如何运用二次根式来解决问题,从而培养他们的应用意识。

八年级数学上册2.7二次根式第2课时二次根式的运算教学设计 (新版北师大版)

八年级数学上册2.7二次根式第2课时二次根式的运算教学设计 (新版北师大版)

八年级数学上册2.7二次根式第2课时二次根式的运算教学设计(新版北师大版)一. 教材分析二次根式的运算是在学生已经掌握了二次根式的性质和运算法则的基础上进行教学的。

这一节的内容主要包括二次根式的加减乘除运算,以及如何化简二次根式。

通过这一节的学习,学生能够进一步理解和掌握二次根式的运算规则,提高解决实际问题的能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式有一定的了解。

但是在实际操作中,部分学生可能会对二次根式的化简和运算规则理解不深,导致在解决问题时出现困难。

因此,在教学过程中,需要针对学生的实际情况进行讲解,引导学生理解和掌握二次根式的运算规则。

三. 教学目标1.知识与技能目标:学生能够理解和掌握二次根式的加减乘除运算规则,能够熟练地进行二次根式的运算。

2.过程与方法目标:通过实例分析和练习,学生能够掌握二次根式的化简方法,提高解决实际问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生能够积极主动地参与数学学习。

四. 教学重难点1.重点:二次根式的加减乘除运算规则。

2.难点:二次根式的化简方法。

五. 教学方法采用讲解法、引导法、练习法进行教学。

通过实例分析,引导学生理解和掌握二次根式的运算规则,通过练习,巩固所学知识,提高学生的实际操作能力。

六. 教学准备1.教学课件:制作二次根式运算的教学课件,用于辅助教学。

2.练习题:准备一些有关二次根式运算的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次根式的运算。

例如:一个正方形的对角线长为8cm,求这个正方形的面积。

2.呈现(10分钟)讲解二次根式的加减乘除运算规则,并通过实例进行分析。

3.操练(10分钟)让学生进行二次根式的运算练习,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)通过一些变式练习,巩固学生对二次根式运算规则的理解。

5.拓展(5分钟)讲解二次根式的化简方法,并进行一些化简练习。

北师大版初中数学初二上册二次根式教案

北师大版初中数学初二上册二次根式教案

北师大版初中数学初二上册二次根式教案
一、学习目标
知识与技术:学会鉴别二次根式和最简二次根式。

历程与要领:探索二次根式的性质,学会利用二次根式的性质将二次根式化简 成最简二次根式。

情绪态度与代价观:明白从特殊到一般的纪律,大胆猜测,激发学习数学的兴趣。

二、导学历程:
(一)明晰概念:(2分钟)
二次根式的特性:(1) 。

(2) 。

二次根式的定义: 叫做二次根式, 叫做被开方数。

(二)探究合作交流:(3分钟)
下面我们来研究二次根式有哪些性质?查看下列四组算式,议决算术平方根的运算,比较每组的谋略终于,你发觉了什么?
(1)94⨯= ,94⨯= ;
(2)2516⨯= ,2516⨯= ;
(3) 94= ,9
4= ; (4)2516= ,25
16= . 1.要是用b a 和表示上述式子中的两个被开方数,那么前两组算式的纪律可以用字母b a 和怎么表达?后两组算式的纪律怎样表达?
(三)小试牛刀:(8分钟)
例1 化简(1)6481⨯ (2)625⨯ (3)1649 (4) 95 鉴别下列各式是否是最简二次根式,不是请化简。

(1)12 (2)7 (3)51 (4) 16
3 例2化简: (1)32 (2)72
(四)当堂检测:(5分钟)
1.下列各式中,属于二次根式的是(
) A -3 B 32
C 2a (a <0)
D a 2+1 2.下列式子为最简二次根式的是(
) A 3 B 4
C 8
D 12 3.化简: (1).202 (2).
48 (五)讲堂小结(4分钟)
1.谈谈本节课你有哪些收获。

(最新)北师大版八年级数学上册《二次根式》精品教案

(最新)北师大版八年级数学上册《二次根式》精品教案
(2))两个无理数相加、相减、相乘、相除,结果一定还是有理数吗?说明理由
教师教学反思:知识简单,学生掌握很好。
1.关注类比,提出重点.本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系.
2.对运算技能要求恰当定位.根据新课标精神,对学生的评价不能过分要求技巧,应关注学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否依据算理正确地进行计算,能否确认结果的合理性等等.因此,注意对运算技能要求作恰当的定位,特别是在开始运算的第一课时,不要提高要求.
等号的左右两边互换就等到二次根式的乘法法则和除法法则:
例3计算:
(1) ;(2) ;(3) 。
三、知识ห้องสมุดไป่ตู้固(应用)
例4计算:
(1)3 (2) ;
(3) ; (4) ;
(5) ; (6) 。
例5 计算:
(1) ; (2) ; (3) 。
课堂练习1:
1.化简:(1) ;(2) ;(3) ;
(4) .(5)
四、拓展延伸(提高)
﹡课堂练习2:
化简:(1) ; (2) ; (3) ;
(4) ; (5) ; (6) .
五、收获盘点(升华)
总结与反思:
通过本节课的学习,我收获了:
通过本节课的学习,我需要注意的有:
六、当堂检测(达标)
1.计算:
(1) ; (2) ; (3)
(4) (5) (6)
(7) (8)
2.(1)两个有理数相加、相减、相乘、相除,结果一定还是有理数吗?说明理由
学习过程
备注
一、新课导入(感知)
问题1 :复习算术平方根的概念,

2022年北师大版八年级上册《二次根式》精品教案

2022年北师大版八年级上册《二次根式》精品教案

7 二次根式第1课时二次根式【知识与技能】1.理解二次根式和最简二次根式的概念,能把一个二次根式化成最简二次根式.2.正确运用公式:.【过程与方法】1.经历观察、比拟、总结二次根式根本性质的过程,开展学生的归纳概括能力.2.通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力.【情感态度】经历观察、比拟、总结和应用等数学活动,感受数学活动充满了探索性和创造性,表达发现的快乐,并提高应用的意识.【教学重点】二次根式的概念和性质,最简二次根式的概念与化简.【教学难点】二次根式的化简.一、创设情境,导入新课观察以下代数式:这些式子都是我们在前面已经学习过的,它们有什么共同特征呢?【教学说明】通过学生观察、总结归纳这些式子的特点为给二次根式下定义做好准备.【归纳结论】它们都含有开方运算,并且被开方数都是非负数.一般地,形如a〔a≥0〕的式子叫做二次根式,a叫做被开方数.二次根式有些什么性质呢?让我们一起去研究吧!二、思考探究,获取新知二次根式的概念与化简做一做:〔1〕计算以下各式,你能得到什么猜测?〔2〕根据上面的猜测,估计下面每组两个式子是否相等,借助计算器验证,并与同伴进行交流.【教学说明】学生亲自计算,通过观察、猜测,借助计算器验证得出结论,这比教师讲无数遍的效果要好得多,同时也为后面归纳二次根式的根本性质作了很好的引导.【归纳结论】即积的算术平方根,等于各个因式算术平方根的积,商的算术平方根,等于被除数的算术平方铲除以除数的算术平方根.注意:a、b的取值范围不能忽略.【教学说明】利用二次根式的性质,学生对于例1比拟容易理解,教师对于例2可以适当点拨.【归纳结论】一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.注意:化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.三、运用新知,深化理解1.以下式子是二次根式的有〔〕个.2.以下二次根式中,是最简二次根式的是〔〕3.化简:4.一个直角三角形的斜边长为20,一条直角边长为15,求另一条直角边长.【教学说明】学生独立完成,可以加深对新学知识的理解和掌握二次根式的有关概念和性质的运用的掌握情况.便于及时纠正错误,得以强化提高.四、师生互动,课堂小结1.师生共同回忆二次根式、最简二次根式的概念以及二次根式的性质等知识.2.本节课你有哪些收获?还有什么困惑?与同学们交流.【教学说明】通过对新学知识点的回忆,总结得出,及时解答学生存在的疑难问题,有利于共同提高.1.习题2.9第1、2、3题.2.完成练习册中本课时相应练习.这节课的主要内容就是根据二次根式的两个性质进行化简.学生对于比拟直观一些的二次根式的化简很熟练,但对于略微复杂一点的二次根式的化简还不能够到达灵活自如,有待在今后的学习中加大训练力度.6.3 从统计图分析数据的集中趋势一、学生知识状况分析学生的知识技能根底:学生在前面的数学学习中,已掌握了条形统计图、扇形统计图等统计图的画法,并能从条形统计图、扇形统计图等统计图表中获取信息,解决一些相关问题。

北师版八年级上册数学教案-二次根式的加减

北师版八年级上册数学教案-二次根式的加减

二次根式的加减【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并.例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习整式的加减法合并同类项,引入二次根式的概念及二次根式的合并方法,对法则的教学与整式的加减比较学习,在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.。

北师大版数学八年级上册2.7.2二次根式的运算优秀教学案例

北师大版数学八年级上册2.7.2二次根式的运算优秀教学案例
北师大版数学八年级上册2.7.2二次根式的运算优秀教学案例
一、案例背景
北师大版数学八年级上册2.7.2二次根式的运算,是学生在掌握了二次根式的性质和化简方法之后,进一步学习二次根式的四则运算。此节内容是学生进一步深化对数学知识的理解,提高解决问题的能力的重要环节。在实际教学中,我发现很多学生在面对复杂的二次根式运算时,往往因为对基础知识掌握不牢固,对运算法则理解不透彻,而导致解题困难。因此,我设计了一份优秀教学案例,旨在帮助学生深入理解二次根式的运算规则,提高他们的数学素养和解决问题的能力。
2.问题导向的教学策略:教师引导学生提出问题,并组织学生进行讨论,使得学生在思考和解决问题的过程中主动探索二次根式的运算规律。这种问题导向的教学策略不仅培养了学生的求知欲,还提升了学生的思维能力和沟通能力。
3.小组合作的组织形式:教师将学生分成小组,让他们在小组内互相交流、分享心得,并在讨论中加深对知识的理解。这种小组合作的学习方式不仅培养了学生的团队合作精神,还提高了学生的学习效果。
3.通过对二次根式运算的学习,使学生认识到数学在实际生活中的重要性,提高学生运用数学知识解决实际问题的能力。
4.培养学生严谨治学的态度,养成认真审题、仔细运算的良好习惯。
三、教学策略
(一)情景创设
1.结合生活实际,创设有趣的情境,如计算家具的体积、计算比赛的距离等,让学生在解决问题的过程中自然地接触到二次根式的运算。
二、教学ቤተ መጻሕፍቲ ባይዱ标
(一)知识与技能
1.理解二次根式的加减乘除运算法则,能够熟练进行二次根式的四则运算。
2.掌握二次根式化简的方法,能够将复杂的二次根式化简为简单的形式。
3.能够运用二次根式的运算解决实际问题,提高运用数学知识解决问题的能力。

北师大版八年级数学上册《二次根式》精品教案

北师大版八年级数学上册《二次根式》精品教案

《二次根式》精品教案●教学目标:知识与技能目标:1.理解二次根式的概念和性质,2.最简二次根式的概念3.会根据二次根式的性质进行二次根式的化简过程与方法目标:1.通过加深对概念的理解,提高对二次根式的性质和运算的认识。

2.利用二次根式的化简解决简单的数学问题,通过独立思考,能选择合理的方法解决问题。

情感态度与价值观目标:1.通过对实际问题的分析,使学生进一步体会二次根式的性质及运算,培养学生利用数学解决问题的能力。

●重点:1.掌握二次根式的概念和性质,理解它们解的含义;2.能利用二次根式的乘除法的法则进行二次根式的运算。

●难点:1.最简二次根式的概念2.把根号内含字母的二次根式的化简。

●教学流程:一、课前回顾1、 11的算术平方根是2、面积为a(a3、直角三角形的两直角边分别是1和2二、情境引入探究1:b=24,c=25)上述式子有什么共同特征?共同特征:都含有开方运算,并且被开方数都是非负数。

1.二次根式的概念一般地,形如(a ≥0)式子叫做二次根式. a 叫做被开方数. *一个式子是二次根式应满足几个条件?第二,被开方数a 是正数或0.(条件:a ≥0 ) 练习11、判断下列式子,哪些是二次根式,哪些不是二次根式.1x ,1x y+x ≥0),(x ≥0,y ≥0)(x ≥0),x ≥0,y ≥0),1x ,1x y+,2、当x 解:由x -1≥0 ,得x ≥13、a ≥0解:a ≥00 (双重非负性) 探究21、二次根式性质(1)计算下列式子,猜想你能得到什么结论?94⨯= 6 ,94⨯= 6 ; 2516⨯= 20 ,2516⨯= 20 ;94=23 ,94= 23 ; 2516=45 ,2516= 45 . 结论:94⨯=94⨯; 2516⨯=2516⨯94=942516 =2516 (2)用计算器计算:76⨯= 6.480,76⨯=_6.480__;76=0.9255,76=0.9255 .发现:76⨯=76⨯76=76 从上面得出的结论,发现了什么规律?能用字母表示这个规律吗?b a b a •=⋅(a ≥0,b ≥0),baba =(a ≥0, b >0). 说明:公式中字母a ≥0,b ≥0(或b >0)这一条件是公式的一部分,不应忽略.注意公式里的条件噢! 探究2例1 化简(1)6481⨯;(2)625⨯;(3)95; (4解:(1)6481⨯ =9×8=72 ;(2)625⨯ ;(3)953;(4 =3×4×5=60 .探究3最简二次根式:一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式 最简二次根式的条件:(1)是二次根式; (2)被开方数中不含分母;(3)被开方数中不含能开得尽方的因数或因式.化简时,通常要求最终结果中分母不含根号,而且各个二次根式是最简二次根式。

《二次根式》第2课时示范课教学设计【数学八年级上册北师大】

《二次根式》第2课时示范课教学设计【数学八年级上册北师大】

《二次根式》教学设计
第2课时
一、教学目标
1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
2.会用二次根式的四则运算法则进行简单运算.
3.用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围内正确计算,培养类比学习的能力.
4.增强学生的符号、应用意识,培养学生合作交流、合情推理、表达能力。

二、教学重难点
重点:掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
难点:会用二次根式的四则运算法则进行简单运算.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
a a
(a≥0,b>0)
=
b b
思考长方形的面积是20,它的长是5,宽是多少?
教师追问:该怎么计算呢?
教师提示:这一节我们根据之前学过的二次根式的性质来解决二次根式的四则运算问题吧.
a b=a b(a≥0
a
(a≥0,b>0)
=
b
加法、减法法则:
先化为最简二次根式.
35
思维导图的形式呈现本节课的主要内容:。

八年级数学上册 2.7.1 二次根式教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

八年级数学上册 2.7.1 二次根式教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

课题:二次根式教学目标:1.认识二次根式和最简二次根式的概念.积的算术平方根与商的算术平方根的性质.积的算术平方根和商的算术平方根的性质将二次根式化为最简二次根式.4.通过利用二次根式的性质进行计算,理解最简二次根式的含义.在探究中培养学生的思维能力和归纳概括的意识.教学重点与难点:重点:二次根式的概念、性质及二次根式的化简.难点:(a≥0,b≥0)=(a≥0, b>0).并用它们进行二次根式化简.教学过程:一、创设情境,导入新课活动内容:求下列各数,思考下面的两个问题:1.我校有两个正方形的花坛,一个面积为8平方米,一个面积为2平方米,大家说这两个正方形的边长是多少?2. 5的算术平方根是多少?3.一个正数的平方是,这个数多少?4.直角三角形的斜边长是c,一条直角边是b,那么另一条直角边的长为多少?问题1:它们的值有什么共同特点?问题2:它们的值是最简形式吗?处理方式:学生独立完成,然后同伴交流所提出的两个问题。

引入我们今天要学习的内容.设计意图:由生活中的数学引出新课要探究的数学问题,一是,使学生感知数学在生活中的应用,激发学生的求知欲,为下一环节奠定了良好的基础.二是加强前后知识间的联系,使学生认识到学习的必要性,从而增强学习的积极性.同时也顺利的引入了新课.二、探究学习,感悟新知活动内容1:(多媒体出示)观察下列各数并思考下面的问题:5,11,2.7,12149,))((b c b c -+(其中b=24,c=25),上述式子有什么共同特征?处理方式:以小组为单位,让学生充分讨论后回答,只要学生回答的合情合理均给予肯定和鼓励,通过式子的特点介绍二次根式的概念. 一般地,式子)0(≥a a 叫做二次根式.a 叫做被开方数.强调条件:0≥a .设计意图:学生通过观察并与小组成员的讨论这些式子的共同点,使学生能够形成二次根式的概念,初步感知二次根式的形态.同时教会学生在探究中培养学生的思维能力和归纳概括的意识,使学生学会学习.练一练:1.下列式子,哪些是二次根式,哪些不是二次根式?2.当x X 围内有意义?3.m 能取得最小整数值是(). 参考答案:, 2. 13x ≥ 3. 1处理方式:学生独立完成后进行交流讨论,使学生对二次根式有一个较深刻、全面的认识.使学生认识到:看一个式子是否为二次根式,关键看是否满足)0(≥a a 的形式.即:二次根式应满足两个条件:第一,有二次根号;第二,被开方数是非负数.设计意图:通过练习,让学生加强对二次根式定义的认识. 第1题着眼于弄清二次根式的形式,巩固二次根式有意义的条件.第2题和第3题都是用不同的形式来考察学生对二次根式有意义的理解.让学生在练习中发现乐趣,掌握知识.1x活动内容2:(多媒体出示)计算下列各题,你发现了什么规律?(1). 计算下列各式,你能得到哪些猜想?94⨯=; 94⨯=,2516⨯=2516⨯=,;处理方式:让学生完成题目后交流,发现算式的特点及规律.设计意图:引导学生发现算式的特点及规律,并产生猜想, 增强学生的求知欲.(2). 猜猜76⨯=76⨯=,也有类似的关系吗?你还能举出类似的例子吗?并用计算器验证.设计意图:引导学生验证猜想,得出规律,使学生获得成功的喜悦.并且收获了研究数学问题的探究方法.问题1:你能用字母表示这个规律吗?问题2:能用语言描述这个结论的意义吗?处理方式:小组内交流展示,重点引导学生认识算式的特点及二次根式有意义的条件.小组总结出结论a b = ( a ≥0,b ≥0),这里应强调a ,b 的取值X 围.预设:如果不能得出a ,b 的取值X 围,教师应及时引导学生根据二次根式有意义的条件去发现。

北师大版八年级数学上册:2.7《二次根式》教案

北师大版八年级数学上册:2.7《二次根式》教案

北师大版八年级数学上册:2.7《二次根式》教案一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节主要让学生了解二次根式的概念、性质和运算。

二次根式在数学中占有重要地位,是学习更高阶数学的基础。

通过学习二次根式,学生可以更好地理解数学的本质和内在联系。

二. 学情分析学生在学习本节内容前,已经掌握了实数、有理数、无理数等基础知识,具备一定的代数运算能力。

但二次根式作为一种新的数学概念,对学生来说较为抽象,需要通过实例和练习来逐步理解和掌握。

三. 教学目标1.让学生了解二次根式的概念和性质。

2.培养学生运用二次根式进行代数运算的能力。

3.提高学生分析问题、解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法,引导学生主动探索、发现和总结二次根式的性质和运算方法。

六. 教学准备1.PPT课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如物理中的速度、面积等问题,引导学生思考如何用数学知识来解决这些问题。

从而引入二次根式的概念。

2.呈现(15分钟)通过PPT展示二次根式的定义和性质,让学生初步了解二次根式。

同时,给出一些例子,让学生观察和总结二次根式的特点。

3.操练(15分钟)让学生进行一些二次根式的运算练习,巩固所学知识。

教师可引导学生运用二次根式解决实际问题,提高学生的应用能力。

4.巩固(10分钟)通过一些填空题、选择题等,检查学生对二次根式的掌握程度。

教师可适时给予解答和指导。

5.拓展(10分钟)引导学生思考二次根式在实际问题中的应用,如几何中的面积、体积等问题。

同时,可引导学生探讨二次根式与其他数学知识之间的联系,如函数、方程等。

6.小结(5分钟)教师引导学生总结本节课所学内容,让学生明确二次根式的概念、性质和运算方法。

7.家庭作业(5分钟)布置一些有关二次根式的练习题,让学生巩固所学知识。

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节内容是在学生已经掌握了实数、有理数、无理数等知识的基础上进行学习的。

二次根式是数学中的重要概念,它不仅在日常生活中有广泛的应用,而且是学习高中数学的基础。

本节课的主要内容是让学生了解二次根式的概念,学会化简二次根式,并能够运用二次根式解决一些实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于实数、有理数、无理数等概念已经有了一定的了解。

但是,学生对于二次根式这一概念可能还比较陌生,需要通过具体例子和实际应用来理解和掌握。

此外,学生可能对于二次根式的化简和运算还有一定的困难,需要通过大量的练习和老师的引导来逐步掌握。

三. 教学目标1.让学生了解二次根式的概念,能够正确地识别和书写二次根式。

2.让学生学会化简二次根式,能够运用二次根式解决一些实际问题。

3.培养学生的逻辑思维能力和运算能力,提高学生的数学素养。

四. 教学重难点1.二次根式的概念和识别。

2.二次根式的化简和运算。

3.二次根式在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,让学生自主地学习和掌握二次根式的概念和化简方法。

2.通过具体的例子和实际应用,让学生了解二次根式在日常生活中的应用,提高学生的学习兴趣和动力。

3.采用分组讨论和合作学习的方式,让学生在交流和合作中学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的教学PPT和教学素材,包括图片、实例等。

2.准备一些实际的例子和应用问题,用于引导学生学习和巩固二次根式的知识和技能。

3.准备一些练习题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)通过展示一些实际的例子,如物体的高度、物体的速度等,让学生感受到二次根式在日常生活中的应用,激发学生的学习兴趣。

同时,引导学生思考和探索二次根式的概念和特点。

八年级数学上册-北师大版八年级上册数学 第2课时 二次根式的运算教案精选教案1

八年级数学上册-北师大版八年级上册数学   第2课时 二次根式的运算教案精选教案1

2.7 二次根式第2课时二次根式的运算【上节知识回顾】1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“”表示的代数式,这里的开方运算是最后一步运算。

如,等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“,”等虽然可以进行开方运算,但它们仍属于二次根式。

2.二次根式的主要性质(1);(2);(3);(4)积的算术平方根的性质:;(5)商的算术平方根的性质:;(6)若,则。

3.注意与的运用。

【新授】一、二次根式的乘法一、复习引入1.填空(1=______;(2=_______.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4例2 化简(1(2(3(4(5)例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4二、二次根式的除法1.写出二次根式的乘法规定及逆向等式.2.填空;(2=________;(1;(4=________.(3一般地,对二次根式的除法规定:(2(3(4例1.计算:(1(1(2(3(4例3.=,且x 为偶数,求(1+x 的值. 三、分母有理化两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式。

对于有理化因式,要注意以下四点: (1)它们必须是成对出现的两个代数式; (2)这两个代数式都是二次根式;(3)这两个代数式的积不含有二次根式;(4)一个二次根式,可以与几个不同的代数式互为有理化因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 二次根式
第1课时二次根式的概念和性质
教学目标
【知识与技能】
1.了解二次根式及最简二次根式的概念.
2.会化简二次根式.
3.理解并掌握二次根式的性质.
【过程与方法】
经历观察、分析、讨论、归纳二次根式及最简二次根式的过程,发展学生的归纳概括能力和语言表达能力.
【情感、态度与价值观】
积极参与数学活动,感受数学活动充满了探索性和创造性,体会到数学学习的乐趣.
教学重难点
【重点】
理解并掌握二次根式及最简二次根式的概念,化简二次根式.
【难点】
化简二次根式.
教学过程
一、知识回顾,引入新课
师:同学们还记得平方根的概念吗?
生:记得.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根.
师:什么叫做算术平方根呢?
生:正数的正的平方根以及零的平方根,统称算术平方根.
师:很好!非负数a的算术平方根用(a≥0)表示.一般地,例如(a≥0)的式子,我们叫做二次根式.这就是今天这节课我们要学习的内容.
二、讲授新课
师:请同学们观察下列代数式,你能发现它们有什么共同特征吗?
,,,,(其中b=24,c=25).
生:它们都含有开方运算,并且被开方数都是非负数.
师:很好!一般地,例如(a≥0)的式子,叫做二次根式,a叫做被开方数.那么二次根式具有什么性质呢?下面我们一起来探究一下.请同学们完成以下填空:
= ,×= ;
= ,×= ;
= ,×= ;
= ,÷= .
学生独立完成填空,然后集体订正.并根据上面的猜想,估计下列式子是否相等,再借助计算器验证.
= ,÷= .
师:请同学们比较左右两边的等式,你发现了什么?你能用字母表示你发现的规律吗?
学生分组讨论交流,然后由小组代表发言,教师予以补充完善.
师:通过刚才的探究,我们可以发现积的算术平方根的性质和商的算术平方根性质.即:
(1)积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积(各因式必须是非负数),即=·(a≥0,b≥0);
(2)商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.(被除式必须是非负数,除式必须是正数),即=(a≥0,b>0).
师:知道了二次根式的这些性质,下面我们来看几个例题,加深理解.
三、例题讲解
【例1】化简:
(1);(2);(3).
【答案】(1)=×=9×8=72;
(2)=×=5;
(3)==.
例1的化简结果5,中,被开方数中都不含分母,也不含能开得尽方的因数.一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.
化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.
【例2】化简:
(1);(2);(3) .
【答案】(1)==×=5;
(2)===;
(3)==.
判断最简二次根式的方法:通常将不含分母的被开方数分解因数或因式后,不含能开得尽方的因数或因式,即为最简二次根式.
【例3】先化简,再求出下面算式的近似值(精确到0.01).
(1);(2);(3).
(合理应用二次根式的性质,可以帮助我们简化实数的运算.)
【答案】(1)===·=12≈20.78;
(2)===≈1.01;
(3)===×=10-2×=0.01×≈0.02.
四、巩固练习
1.化简:
;(2);(3);(4)
【答案】(1)165(2)4(3)(4)
2.化简:-
【答案】原式=-=.
3.若b>0,x<0,化简:-.
【答案】原式=-=-=-=.
五、课堂小结
师:通过这节课的学习,同学们有什么收获?能与大家分享一下吗?
学生发言,教师予以点评.
第2课时二次根式的运算(1)教学目标
【知识与技能】
1.了解二次根式的运算法则是由二次根式的性质得到的.
2.会进行简单的二次根式乘除以及加减运算.
3.会进行二次根式的四则混合运算.
【过程与方法】
让学生进一步了解数学知识之间是相互联系的.
【情感、态度与价值观】
培养学生努力探索事物之间内在联系的学习习惯.
教学重难点
【重点】
二次根式的乘除以及加减运算.
【难点】
熟练地进行二次根式的四则混合运算.
教学过程
一、复习归纳
1.二次根式的性质:(1)()2=a(a≥0)
(2)= (3=·)(a≥0,b≥0)(4)=(a≥0,b>0)
2.想一想:你能计算吗?
(1)×;(2)×;(3)×.
师:先计算每组数中的左边的式子,再计算右边的式子.它们相等吗?你发现了什么?
学生先独立完成,然后分组讨论交流,再集体订正.
3.提出问题.
(1)两列火车分别运煤2x吨和3x吨,问这两列火车共运煤多少吨?
(2)两列火车分别运煤2x吨和3y吨,问这两列火车共运煤多少吨?
这是以前学过的多项式加减法,同类项可以合并,想一想在计算二次根式加减法的时候能运用此类方法吗?请尝试计算以下几题.
(1)3+4;(2)+;(3)++4.
二、讲授新课
1.在学生进行练习后进行总结.
①二次根式的乘除运算法则.
=·(a≥0,b≥0)
=(a≥0,b>0)
即将二次根式的性质等式左右两边对换,就得到二次根式的乘法法则和除法法则.
②二次根式的加减运算法则.
师:与合并同类项类似,我们可以把相同二次根式的项合并.
下列计算结果哪些正确,哪些不正确?
+=;a+=a;-=;
a+b=(a+b);
-=-=0.
学生回答,教师予以订正.
③二次根式的四则混合运算.
二次根式即可以进行乘除运算,也可以进行加减运算.以前学习的实数的运算法则、运算律仍然适用.说说下列算式的运算顺序,并计算出结果.
(+)·
(+)·56
×+×
2.例题学习.
【例1】计算.
(1)×;(2);(3).
(归纳二次根式的乘除运算的一般步骤:(1)运用法则,化归为根号内的实数运算;(2)完成
根号内乘除运算;(3)化简二次根式.)
【答案】(1)×===;
(2)==;
(3)====.
【例2】计算:
(1)3×2;(2)×-5;(3)(+1)2;
(4)(+3)(-3);(5)-×;
(6)
【答案】(1)3×2=3×2×=6;
(2)×-5=-5=-5=6-5=1;
(3)(+1)2=()2+2+1=5+2+1=6+2;
(4)(+3)(-3)=()2-32=13-9=4;
(5)(-)×=×-×=-=6-1=5;
(6)=+=+=2+3=5.
【例3】计算:
(1)+;(2)-;(3)(+)×.
【答案】(1)+3=+=×+=4+=5;
(2)-=-=-=;
(3)(+)×=+=+=2+3=5.
三、课堂小结
师:本节课我们学习了哪些知识?还有什么疑惑的地方吗?
师生共同总结.
第3课时二次根式的运算(2)
教学目标
【知识与技能】
1.巩固对二次根式的四则混合运算的掌握.
2.进一步学会应用整式的运算法则进行二次根式的运算.
【过程与方法】
引导学生从特殊到一般,用总结归纳的方法以及类比的方法解决数学问题.
【情感、态度与价值观】
体验并掌握迁移、转化等数学思想与方法.
教学重难点
【重点】
进一步应用二次根式的运算法则进行二次根式的四则混合运算.
【难点】
熟练进行二次根式的四则混合运算.
教学过程
一、引入新课
师:通过上节课的学习,同学们已经掌握了二次根式的相关运算法则,这节课我们进一步来学习二次根式的加减乘除混合运算.
二、例题讲解
【例1】先化简,再求出近似值(精确到0.01).
--
(二次根式加减运算的一般步骤是:先化简,再合并.)
【答案】原式=--=2--=(2--)=≈1.73.
【例2】计算.
(1)-3×;
(2)(-3)·;
(3)(-)÷.
(说明:(1)二次根式混合运算的运算次序是:先乘除,后加减;(2)整式运算的运算法则和运算律对二次根式同样适用;(3)二次根式的运算结果能化简的必须化简.)
【答案】(1)原式=3-6=-3;
(2)原式=·-3·=-3=-9;
(3)原式=÷-÷=-=4-3=1.
【例3】计算:
(1)-;(2)-8+;
(3)(-)÷;(4)+-.
【答案】(1)-=-
=-=;
(2)-+=-+
=3-2+=;
(3)(-)÷=÷-÷
=-=-=-=2-=;
(4)+-=+-=+-3=-+.
在上面第(4)题中,很容易看出,化成最简二次根式后与,化简后的被开方数不可能相同,因
此,结果中可以保留,不必将它化成最简二次根式.
三、课堂小结
师:本堂课我们学到了什么新知识?
学生发言,教师予以补充.。

相关文档
最新文档