钢在冷却时的转变共22页
钢在冷却时的转变
珠光体 P ,3800×
过冷奥氏体高温转变产物的形成温度和性能
组织名称 表示符号 形成温度范围 /℃ 硬度 片间距 /nm 能分辨片层的 放大倍数
珠光体 索氏体 屈氏体
P S T
A1~650 650~600 600~550
170~200H B 25~35HRC 35~40HRC
150~450 80~150 30~80
四、过冷奥氏体的连续冷却转变
Ps —— A→P 开始线 Pf —— A→P 终止线 K —— P型转变终止线
Vk —— 上临界冷却速度
MS —— A→ M 开始温度 Mf —— A→ M 终止温度
of
3.3 & Chapter 3
800 700 600 500 400 300
T/℃
A1
A
始 转变开
αk
等温转变温度/℃
图3-16
共析纲的力学性能与等温转变温度的关系
3 、马氏体转变
马氏体 (M):C在α-Fe中的过饱和固溶体。
转变特点: 1)无扩散型转变 Fe 和 C 原子都不进行扩散,M是体心正方的C过饱和的F,固 溶强化显著。 2)降温形成 连续冷却完成。 3)瞬时性 M 的形成速度很快, 温度越低,则转变量越多。 4)转变的不完全性 M 转变总要残留少量 A,A中的C%越多,则 MS、Mf越低,残余 A含量越多。AR的量主要取决于MS和MF点的位置。
5) M形成时体积膨胀 造成很大内应力。
马氏体的组织类型
C% < 0.2% 时,为板条M(低碳M)。
板条M, 平行的细板条束组成
C% > 1.0 % 时,为针状M 。
Fe-1.8C,冷至-100℃ Fe-1.8C,冷至-60℃ 针状M(凸透镜状)
第六章第三节钢在冷却时的转变_工程材料
§6-3 钢在冷却时的转变一、过冷奥氏体等温冷却转变曲线1、过冷奥氏体等温冷却转变曲线建立以共析钢为例:取尺寸相同的T8钢试样,A化后,迅速冷却到A1以下不同温度保温,进行等温转变,测出转变的开始点与转变结束点。
将开始点与结束点分别连接起来,就得到奥氏体等温转变曲线。
该曲线称为TTT图(Time Temperature TransformationDiagram)或C曲线。
2、孕育期:转变开始线与纵坐标轴之间的距离。
孕育期越短,过冷奥氏体越不稳定,转变越快。
孕育期最短处称为鼻温3、影响C曲线的因素A的成分越均匀,晶粒越粗,其稳定性越高,C曲线右移;A含碳量越高,稳定性越高,C曲线右移,共析钢C曲线最靠右;合金元素,除Co外所有合金元素均使C曲线右移,并使C曲线改变形状。
二、共析钢过冷奥氏体的转变产物及性能、珠光体型转变(P)转变温度:A1~鼻温(550℃)之间(高温转变)转变规律:是通过碳、铁的扩散完成转变。
铁原子重新排列由fcc bcc,碳从铁中扩散出,形成转变产物:珠光体型组织铁素体和渗碳体的机械混合物产物形态:渗碳体呈层片状分布在铁素体基体上,转变温度越低,层间距越小。
珠光体型组织按层间距大小分为珠光体(P)、索氏体(S)和屈氏体(T)珠光体3800×索氏体8000×屈氏体8000×2、贝氏体型转变(B)转变温度:鼻温(550℃)~Ms之间(中温转变)转变规律:半扩散型转变,铁原子不扩散,只能做微小的位置调整,由fcc→bcc。
碳原子有一定扩散能力,部分碳原子从铁中扩散出来,形成碳化物。
转变产物:贝氏体型组织,渗碳体分布在过饱和的铁素体基体上的两相混合物。
上贝氏体(B上):550℃~350℃之间形成形态:呈羽毛状, 小片状的渗碳体分布在成排的铁素体片之间。
光学显微照片1300×电子显微照片5000×上贝氏体性能:铁素体片较宽,塑性变形抗力较低;渗碳体分布在铁素体片之间,容易引起脆断,因此强度和韧性都较差。
钢在冷却时的组织转变的连续冷却转变过程
钢在冷却时的组织转变的连续冷却转变过程
钢在冷却时的组织转变是一个非常重要的过程,它决定了钢的力学性
能和使用寿命。
这个过程可以被分为三个阶段:
第一阶段:初次冷却
在初次冷却阶段,钢的组织会发生初步的变化。
当温度降到钢的临界
温度以下时,钢中的所有组织都会开始转变。
这个过程是不可逆的,
一旦开始就不能停止。
第二阶段:持续冷却
在持续冷却阶段,钢的组织会进一步变化。
随着温度的降低,钢中的
残留奥氏体会逐渐转变为贝氏体。
这个过程会在几个小时内完成,然
后钢的组织就会保持不变,直到它被重新加热。
第三阶段:再次加热
在再次加热阶段,钢的组织会重新发生变化。
当温度达到一定程度时,钢中的组织开始再次转变,从贝氏体转变为奥氏体。
这个过程同样是
不可逆的。
以上就是钢在冷却时的组织转变的连续冷却转变过程。
需要注意的是,在这个过程中,钢的组织变化是不可逆的,因此加热和冷却的过程必
须严格控制。
如果温度过高或过低,会导致钢的力学性能和使用寿命
都受到影响。
第三章 钢冷却时的转变
奥氏体化是钢的热处理重要的第一步。
在此基础上,在后续的冷却过程中可以通过控制过冷奥氏体分解,从而获得不同的组织。
钢从奥氏体状态的冷却过程是热处理的关键工序。
在热处理生产中,钢制奥氏体化后通常有两种冷却方式:等温冷却方式和连续冷却方式。
过冷奥氏体——在临界点以下存在且不稳定的、将要发生转变的奥氏体。
第三章钢在冷却时的转变(过冷奥氏体分解)冷却条件的不同,过冷奥氏体可通过不同机制进行转变而获得完全不同的组织。
三种转变:珠光体、贝氏体、马氏体转变(1)珠光体转变:以缓慢速度冷却时,发生分解的过冷度很小,过冷奥氏体在高温下有足够的时间进行扩散分解,转变为近于平衡的珠光体型的组织。
扩散型相变这种冷却速度相当于炉冷或空冷的冷却方式,热处理生产上成为退火或正火。
(2)贝氏体转变——当冷却速度很快时,可以把奥氏体过冷至较低温度,此时碳原子尚可进行扩散,但铁原子不能进行扩散,奥氏体只能转变为贝氏体。
半扩散型相变(3)马氏体转变——当采用更快的冷却速度时,奥氏体迅速过冷至不能进行扩散分解的低温M S点以下,此时只能得到马氏体。
非扩散型相变。
这种冷却方式相当于水冷方式,生产上叫淬火。
过冷奥氏体分解同样是一个点阵重构和碳的扩散过程,也是一个形核和长大的过程。
§3.1 过冷奥氏体等温转变图§3.2 过冷奥氏体连续冷却转变图及应用§3.1 过冷奥氏体等温转变图一、过冷奥氏体等温转变图的建立将奥氏体迅速冷至临界温度以下的一定温度,并在此温度下进行等温,在等温过程中所发生的相变称为过冷奥氏体等温转变。
测定过冷奥氏体等温转变图的方法有金相法、膨胀法、磁性法、热分析法等。
将若干共析碳钢小试样加热到奥氏体状态,保温一定时间后迅速冷却到A1点以下不同温度,例如700℃、650℃、600℃等,随后在各温度下保温,每经过一定时间取出一个试样立即淬入盐水中,使未转变的奥氏体转变为马氏体。
其中马氏体为白色,分解产物为黑色。
钢在加热和冷却时的组织转变
A-P转变 终了线
图2.4 共析碳钢连续冷却转变曲线
马氏体临界 冷却速度
钢的热处理
1.2 钢在冷却时的组织转变
2. 过冷奥氏体的连续冷却转变
过共析碳钢的连续冷却转变C曲线与共析碳钢相比,除了多出一 条先共析渗碳体的析出线以外,其他基本相似
亚共析碳钢的连续冷却转变C曲线与共析碳钢却大不相同,它除 了多出一条先共析铁素体析出线以外,还出现了贝氏体转变区
机械制造基础
机械制造基础
钢的热处理
❖ 钢在加热和冷却时的组织转变
1.1 钢在加热时的组织转变 1.2 钢在冷却时的组织转变
钢的热处理
图2.1 钢加热和冷却时各临界点的实际位置
钢的热处理
1.1 钢在加热时的组织转变
钢加热到Accm点以上时会发生珠光体向奥氏体转变 热处理的主要目标就是为了得到奥氏体 严格控制奥氏体的晶粒度是热处理生产中一个重要的问题
钢的热处理
1.1 钢在加热时的组织转变
控制奥氏体晶粒大小的方法:
加热温度 保温时间 加热速度
钢的热处理
1.2 钢在冷却时的组织转变
冷却过程是热处理的关键工序,其冷却转变温度决定了冷却后 的组织和性能
实际生产中采用的冷却方法有:
连续冷却(如炉冷、空冷、水冷等)图b 等温冷却(如等温淬火)图a
图2.2 两种冷却方式示意图
钢的热处理 1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变
图2.3 共析碳钢过冷奥氏体等温转变曲线C曲线
钢的热处理
1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变珠体转变 贝氏体转变 马氏体转变
钢的热处理
1.2 钢在冷却时的组织转变
钢的冷却转变
三、过冷奥氏体连续冷却转变曲线
IT图的主要反映了过冷A等温转变的规 律,主要用于研究相变机理、 组织形态等。在一般热处理生产中,多 为连续冷却,所以难以直接应用,CCT图 (连续转变图,Continuous-CoolingTransformation)能比较接近实际热处 理冷却条件,应用更方便有效。
3、影响过冷A等温转变图形状的因素
①临界点位置不同;② P、B转变的C曲线位置不同;③ Ms 不同。这些的主要影响因素有合金元素的影响、A晶粒尺寸 的影响。 (一)合金元素的影响
1. 碳的影响
●亚共析碳钢:C%↑,C曲线向右移;
●过共析C钢:C%↑,C曲线向左移;
●共析钢:使过冷A最稳定,即其C曲线处于最右的位置。
45钢CCT图(奥氏体化温度880℃)
Cr12钢CCT图(奥氏体化温度1050℃)
过共析钢的过冷奥氏体连续冷却转变曲线
亚共析钢的过冷奥氏体连续冷却转变曲线
2)过冷A在不同温度范围内的转变产物各不相同 P相变区、B相变区和M相变区。以T8钢为例,同温度的 转变产物如图所示:
①P转变区域(高温转变) 从A1~550℃范围内,A等温分解为片状F+片状 Fe3C的机械混合物,成为片状组织。但随着T↓,片状
越细,按片层的粗细分别珠光体型组织划分为三类:
珠光体(P)、索氏体(S)、 屈氏体(T)
3)选择淬火介质
当CCT鼻子处孕育期为2S时,φ 25零件水淬可淬硬; 当CCT鼻子处孕育期为5~10S时,φ 25零件油淬可淬硬;
当CCT鼻子处孕育期为>100S时,φ 25零件空气中即可淬硬;
(三) IT 曲线与CT曲线的比较
1.用途
IT:仅能粗略地、定性地估计在连续冷却时的转变情况。
钢在冷却时的转变
图4-5 珠光体的显微组织
3
奥氏体转变为珠光体的过程也是形核和长大的过程,如图4-6所示。当奥氏体过冷到A1 以下时,首先在奥氏体晶界上产生渗碳体晶核,通过原子扩散,渗碳体依靠其周围奥氏体 不断地供应碳原子而长大。同时,由于渗碳体周围奥氏体含碳量不断降低,从而为铁素体 形核创造了条件,使这部分奥氏体转变为铁素体。由于铁素体溶碳能力低(<0.0218%C), 所以又将过剩的碳排挤到相邻的奥氏体中,使相邻奥氏体含碳量增高,这又为产生新的渗 碳体创造了条件。如此反复进行,奥氏体最终全部转变为铁素体和渗碳体片层相间的珠光 体组织。
5
1.2 贝氏体转变及其组织
过冷奥氏体在550℃~Ms的转变称为中温 转变,其转变产物为贝氏体,所以又称贝氏 体转变。贝氏体用符号B表示,它是渗碳体分 布在碳过饱和的铁素体基体上的两相混合物, 硬度也比珠光体型的高。奥氏体向贝氏体的 转变属半扩散型相变,铁原子基本不扩散而 碳原子有一定扩散能力。
6
9
生产上,中、高碳钢常利用 等温淬火获得以下贝氏体为主的 组织,使钢件具有较高的强韧性, 同时由于下贝氏体比容比马氏体 小,可减少变形开裂。
10
1.3 马氏体转变及其组织
当奥氏体以极大的冷却速度过冷到Ms以下时, 即发生马氏体转变。与珠光体转变和贝氏体转变不 同,马氏体转变是在连续冷却的过程中进行的,由 于过冷度极大,碳原子已无法扩散,过冷奥氏体以 非扩散的形式发生铁的晶格转变,即由面心立方晶 格的γ-Fe“切变”为体心立方的α-Fe中,形成了碳 在α-Fe中的过饱和间隙固溶体,称之为马氏体,用 符号M表示。马氏体的成分与过冷奥氏体相同。
1 上贝氏体组织形态
上贝氏体在550~350℃温度范围内形成,在低碳钢中形成温度要高些。在光学显微镜下 呈羽毛状,即成束的自晶界向晶粒内生长的铁素体条,如图4-7(a)所示。在电子显微镜下, 可以看到铁素体和渗碳体两个相,渗碳体(亮白色)以不连续的、短杆状形状分布于许多平 行而密集的过饱和铁素体条(暗黑色)之间,如图4-8(a)所示。在铁素体条内分布有位错 亚结构,位错密度随形成温度的降低而增大。
7-第七讲-钢在冷却时的转变
9
(2)转变开始线与纵座标轴之间的距离称为 孕育期。孕育期愈长,过冷奥氏体愈稳定,转 变期也愈长。孕育期最短处,过冷舆氏体最不 稳定,转变最快,这里称为C曲线的“鼻尖”。
对于碳钢来说,“鼻尖”处的温度一般为550C
左右。
(3)过冷奥氏体在不同温度下的产物不同。
薛小怀 副教授
10
影响C曲线的因素
时分解的形核率,使奥氏体稳定性增加,C曲线
右移。
薛小怀 副教授
14
15
(1)碳含量的影响:
一般情况下,亚共析钢C曲线随碳增加右移,
过共析钢的C曲线随碳含量增加左移。共析钢中
过冷A最稳定。
薛小怀 副教授
11
与共析钢的C曲线相比,亚共析钢和过共析 钢的C曲线上部,还各多一条先共析相的析出 线。因为在过冷奥氏体转变为珠光体之前,在 亚共析钢中要先析出铁素体,在过共析钢中要
2
根据奥氏体冷却方式的不同将冷却过程分为 等温转变(曲线1)和连续冷却转变(曲线2)。
薛小怀 副教授
3
过冷奥氏体的等温转变曲线
共析钢加热到均匀奥氏体状态后,如果冷却 到A1线以下在热力学上是不稳定的,在一定条件 下要发生分解。 在A1以下存在且不稳定的、将要发生转变的 奥氏体称为过冷奥氏体。过冷奥氏体的等温转变, 就是将奥氏体迅速冷却到低于A1的某一温度,并 保温足够时间。使奥氏体在该温度下完成其组织 转变的过程。
工程材料与焊接基础 第七讲
钢在冷却时的转变
钢在冷却时的转变
在钢的热处理中,冷却是一道非常关键的 工序。因为在加热、保温时得到的奥氏体,当 以不同的冷却条件冷却下来时,会得到性能差 异很大的各种组织。 只要选择恰当的冷却方式,便可以获得预
期的组织和性能。因此,了解钢在冷却时组织
钢在冷却时的组织转变
第17讲 钢在冷却时的组织转变
一、两类冷却方式 二、过冷奥氏体的等温冷却转变 三、过冷奥氏体的连续冷却转变
第17讲 钢在冷却时的组织转变 内容导入:
将45钢试样加热至840℃保温相同时间后,分别 以不同方式冷却,测定的力学性能如下表所示:
第17讲 钢在冷却时的组织转变
二、过冷奥氏体的等温转变 1、过冷奥氏体 :
把过冷至临界温度以下、在热力学上不稳定、即将发生转变的奥 氏体,称为过冷奥氏体。
分析:
保温
加 热
A1 (稳定的)奥氏体 过冷奥氏体
温度
时间
第17讲 钢在冷却时的组织转变
2.过冷奥氏体等温转变曲线(C曲线) 曲线形似英文字母“C”故称“C曲线”, 又称TTT曲线。
52~60
57~62
冷却方式不同,性能不同。
冷却是热处理的关键工序。
第17讲 钢在冷却时的组织转变
一、两类冷却方式:
温度
保温 加
临界温度
热
连
等 温 冷
续冷 却
却
时间
➢ 等温冷却(理论研究)
将A快速冷至临界温度以下某一温度,使A在该温度下转变成其他组
织,然后再冷却至室温。
➢ 连续冷却(生产实际)
A在逐渐降温至室温的过程中转变成其他组织。
第17讲 钢在冷却时的组织转变
思考 题
✓ 1、过冷奥氏体等温转变可分为哪三大类? ✓ 2、思考C曲线和CCT曲线的对应用的指导意义。
谢谢大家!
残余奥氏体:
→M转变结束后,总有部分奥氏体未转变而残留下来,这部分奥 氏体称为残余奥氏体,记作A、 或 R 。
5-2钢冷却时的组织转变
温度 (℃ ) 800
共析碳钢 TTT 曲线建立过程示意图
Mn、Si、Ni、Cu等非碳化物形成元素,仅仅使C曲线→, 但不改变C曲线形状;
除Co和Al之外,其余Ae使Ms点↘。
1 过冷γ的等温冷却转变图
(4)影响C曲线的因素
③ T和 t :
γ化的T↗和保温t↗,碳化物充分溶解并成分均匀化,晶 粒粗大, γ越稳定,C曲线→。
2 过冷γ的连续冷却转变图-CCT图
③M转变区——Ms以下
M的组织形态和性能: M的组织形态取决于C%,当C%>1%时,全部得到片状M; 当C%<0.2%时,得到板条状M; 当0.2%<C%<1%时,得到混合M。
片状M主要在高碳钢和高碳合金钢中出现,故又叫高碳M。
片状M的立体形貌为透镜状,二维形貌呈竹叶状或针状, 故又叫针状M。
1 过冷γ的等温冷却转变图
1 过冷γ的等温冷却转变图
(3)过冷γ转变产物的组织形态与性能
②β转变区——550℃-Ms之间
在该温度区间保温,过冷γ转变成β,该转变叫做中温转 变,得到Fe3C和含C过饱和F的机械混合物,即β体。 片间距随着△T的↗而↘。 β转变属于半扩散型转变,C原子扩散而Fe原子不扩散。
1 过冷γ的等温冷却转变图
(3)过冷γ转变产物的组织形态与性能
①P转变区——A1-550℃之间
在该温度范围内,原子能充分扩散,随着T的↘,相变驱 动力↗,孕育期逐渐↘,转变速度↗。 A1-650℃—生成较粗片状的P组织,普通光镜下可分辨;
钢的热处理钢在加热和冷却时组织转变课件
钢在冷却时的组织转变
珠光体的形成
总结词
珠光体是钢在冷却过程中形成的一种组织,由铁素体和渗碳体的层片状交替排 列构成。
详细描述
当钢在冷却时,奥氏体中的碳原子开始扩散并偏聚在铁素体和渗碳体的界面处, 形成富碳的铁素体和贫碳的渗碳体。随着温度的降低,这些富碳的铁素体和贫 碳的渗碳体会逐渐形成层片状结构,最终形成珠光体。
马氏体的转变
总结词
马氏体是钢在冷却过程中形成的一种组织,其特点是具有较 高的硬度和强度。
详细描述
当钢在冷却时,如果冷却速度足够快,奥氏体中的碳原子来 不及扩散,就会形成一种过饱和的固溶体,即马氏体。马氏 体的硬度高、强度大,因此在制造高强度、耐磨性好的刀具、 模具等产品时具有重要的应用。
贝氏体的转变
奥氏体的形成是一个扩 散过程,需要一定的时 间和温度。
04
奥氏体的形成与钢的成 分、加热速度和温度等 因素有关。
奥氏体晶粒的长大
01
02
03
04
随着温度的升高,奥氏体晶粒 逐渐长大。
晶粒的大小对钢的性能有重要 影响,晶粒越细,钢的强度和
韧性越好。
加热温度和时间是影响奥氏体 晶粒大小的主要因素。
为了获得细小的奥氏体晶粒, 通常采用快速加热和短时间保
回火
总结词
回火是一种将淬火后的金属重新加热至低温 并保持一段时间的过程,主要用于消除淬火 过程中产生的内应力、提高金属的韧性和塑 性。
详细描述
回火的主要目的是通过低温加热使金属内部 组织结构发生转变,消除淬火过程中产生的 内应力,提高金属的韧性和塑性。回火工艺 通常包括将淬火后的金属加热到低温回火温
开裂
是指热处理过程中,由于内应力过大 或组织转变不均匀,导致钢的表面出 现裂纹。开裂可以通过优化热处理工 艺、控制冷却速度和改善材料成分来 减少。
第二节 钢在冷却时的组织转变(1)
第二节 钢在冷却时 的组织转变
交流与讨论
热处理时加热的目的是什么? 亚共析钢、共析钢和过共析钢 奥氏体化分别时加热到什么临界温 度?请画出图示。
热处理中冷却是热处理最关
键的操作,冷却方式不同,得到的 组织也不同,请阅读表5-1 45钢 经840℃加热后在不同条件冷却后 的力学性能。
第二节 钢在冷却时 的组织转变
课堂练习与作业
作业
习题一(2) 习题二(1 )(2) (3) 课堂练习 习题三
谢谢指导
组织名称 符号 温度范围
组织特征 硬度(HRC)
上贝氏体 B上 550℃~350℃ 羽毛状
40~45
下贝氏体 B下 350℃~Ms
黑色针叶状 45~55
小结
学习内容:
热处理的冷却方式 1、等温冷却 2、连续冷却 一、过冷奥氏体等温转变 1、珠光体转变 2、贝氏体转变
学习重点
过冷奥氏体等温冷却的组织和 性能过冷奥氏体典型连续的产物
2.过冷奥氏体等温转变 产物的组织和性能
(1)珠光体转变 在A1~550℃温度范围
组织名称 符号 温度范围
组织特征
硬度(HRC)
珠光体 P A1~650℃
粗片状
<25
索氏体 S 650℃~600℃
细片状
25~35
托氏体 T 600℃~550℃ 极细片状
35~40
(2)贝氏体转变 在550℃~Ms温度范围
热处理的冷却方式
Байду номын сангаас1、等温冷却 2、连续冷却
一、过冷奥氏体等温转变
1.过冷奥氏体等温转变图
共析钢过冷奥氏体等温转变图
1.过冷奥氏体等温转变图
共析钢过冷奥氏体等温转变图:
钢在冷却时的转变
1/1钢在冷却时的组织转变常识钢进行热处理冷却的目的是获得所需要的组织和性能,这需要通过采用不同冷却方式来实现。
冷却方式不同转变的组织也不同,性能差异较大。
奥氏体冷却至A1以下温度时将发生组织转变(A1温度以下还存在的不稳定奥氏体通常称过冷奥氏体)。
钢的冷却方式分为等温冷却和连续冷却。
等温冷却的组织转变形式1.奥氏体的等温转变对过冷奥氏体(即:奥氏体在A1线以上是稳定相,当冷却到A1线以下还未转变的奥氏体)经过一段时间的等温保持后转变为稳定的新相。
这种转变过程就称为奥氏体的等温转变。
2.等温冷却转变钢经奥氏体化后迅速冷却至临界点Ar1或Ar3)线以下,等温保持时过冷奥氏体发生的转变。
等温冷却的组织转变产物与性能1.A1~550℃也称高温转变,获片状珠光体型(F+P)组织,按转变温度由高到低的顺序,转变产物分别为珠光体、索氏体、托氏体;片层间距由粗到细,趋势是:片层间距越小,塑性变形阻力越大,强度和硬度越高1)A1~650℃获粗片状珠光体金相组织2)650~600℃获细片状索氏体金相组织3)600~550℃获极其细片状的托氏体金相组织2.550℃~M S 也称中温转变,获贝氏体型组织(过饱和的铁素体和碳化物组成,有上贝氏体和下贝氏体之分。
)1)550~350℃获羽毛状上贝氏体金相组织2)550℃~M S获黑色针状下贝氏体金相组织(这种组织强度和韧性都较高)3.M S线温度以下连续冷却时,过冷奥氏体发生转变获得马氏体组织,马氏体内的含碳量决定着马氏体的强度和硬度,总的趋势是随着马氏体含碳量的提高,强度与硬度也随之提高;高碳马氏体硬度高、脆性大,而低碳马氏体具有良好的强度和韧性。
连续冷却的组织转变过冷奥氏体在一个温度范围内,随温度连续下降发生组织转变。
连续冷却有炉冷、空冷、油冷、水冷四种最为常用的连续冷却方式1)炉冷冷速约10℃/min,产生新相为珠光体,如退火的冷却2)空冷冷速约10℃/s,产生新相为索氏体,如正火的冷却3)油冷冷速约150℃/s,产生新相为托氏体+马氏体,如油淬4)水冷冷速约600℃/s,产生新相为残余奥氏体+马氏体,如水淬(残余奥氏体的存在降低了淬火钢的硬度和耐磨性,也会因零件在使用过程中残余奥氏体会继续转变为马氏体,从而使工件变形;一些重要精密的零件通常会通过把淬火后的工件冷却到室温以下并继续冷却到-80~-50℃来减少残余奥氏体含量的存在)。
钢在冷却时的转变
完全退火:Ac3+20~30℃,缓冷到 600℃时空冷,得到 F+P;
亚共析钢 过共析钢
球化退火:Ac1+20~30℃,消除网状 碳化物,使之成为球状; 随炉缓冷到500-600℃时出炉空冷。
去应力退火:500-650℃炉冷至200℃后空冷, 消除应力。
点击动画
二、正火
(可以作为预备热处理,为机械加工提供适宜的硬度,又能细化晶粒、消 除内应力,并为最终热处理提供合适的组织状态;也可作为最终热处理 ,为某些受力较小,性能要求不高的碳素钢结构零件提供合适的力学性 能。正火还能消除过共析钢的网状碳化物,为球化退火作好组织准备。)
“TTT曲线”在连续冷却过程中的应用
马氏体转变
[马氏体]:碳在α -Fe中的过饱和固溶体称为马氏体,用符号“M”表 示。在MS线以下过冷奥氏体发生的转变称马氏体转变,马氏体转变 通常在连续冷却时进行,是一种低温转变。 马氏体组织形貌:低碳马氏体组织通常呈板条状M;高碳马氏体组织 通常呈针叶状M。 马氏体性能:马氏体的强度和硬度主要取决于马氏体的含碳量。随着 马氏体含碳量的提高,其强度与硬度也随之提高。低碳马氏体具有良 好的强度及一定的韧性;高碳马氏体硬度高、脆性大。
第四节
钢的表面淬火与 化学热处理
钢的整体热处理
表面淬火 化学热处理
[表面热处理]:是指通过快速加热,仅对钢件表面进行热处理,以改变
表面层组织和性能的热处理工艺。
常用的表面热处理工艺为表面淬火,是强化材料表面的重要手段, 特别适合于要求表面具有较高硬度和耐磨性、心部具
有一定强度的零件(如齿轮、活塞销、曲轴、凸轮等)。
马氏体的碳含量与性能的关系
钢在冷却时的组织转变
钢在冷却时的组织转变钢在冷却时的组织转变,这个话题一听就觉得有点儿专业,但其实挺有意思的。
想象一下,把一块热乎乎的钢铁放在水里,哇,那一瞬间就像是给它来了个“冰桶挑战”。
这时候,钢的内部结构开始忙碌起来,简直是个小工厂在快速运转呢。
钢铁的成分和冷却的速度就像人类的性格一样,各有各的特点,慢慢来和快刀斩乱麻的效果完全不同。
你知道吗,钢的冷却就像是一个舞蹈。
刚开始的时候,热气腾腾的钢像个热情的舞者,随着温度的降低,它的舞姿开始发生变化。
一开始是那种流畅的感觉,冷却得慢,结晶的过程很优雅,像是优雅的芭蕾舞。
但要是冷却速度快,就变成了“急转弯”,结晶过程就会产生一些小麻烦。
就好比一位舞者突然摔了一跤,哎呀,这样可不行,得赶紧调整姿势。
这样的变化就是钢中不同组织的转变。
说到这里,不能不提到钢铁的几种常见组织。
淬火钢就像是小鸟展翅高飞,给人一种强烈的感觉,硬度特别高,抗压能力也很棒,感觉随便能拎起一座楼来。
而如果是退火钢,哎呀,那就像是刚睡醒的懒猫,软软的,温柔得很,弹性好得让人感到惊讶。
它的处理过程就像是给钢铁做了个全面的“水疗”,恢复了活力。
这些不同的组织变化决定了钢铁的性格,真是“千姿百态”啊!冷却过程中还有一些意想不到的“小秘密”。
比如说,冷却得太快,内部就容易出现“裂纹”。
这就像是泡泡糖吹得太大,啪一声,唉,不小心破了。
钢铁的结构如果不稳固,使用时就很容易出问题,真是“前怕狼,后怕虎”。
所以,控制冷却速度就像做菜,要火候掌握得当,才能煮出美味的佳肴。
再说说,这些冷却后的组织对钢的性能影响可大了。
比如说,马氏体组织就像个小强,无论怎样都很难被击倒,硬度和强度都出奇地高。
而珠光体组织呢,就像个聪明的家伙,柔韧性好,耐磨损,使用范围广,感觉就像是“百搭”的衣服,哪里都能穿。
这样的性能差异让钢铁在各种应用中都有了“定制”的可能,真是让人佩服。
除了这些物理性质,钢的冷却过程还和实际应用息息相关。
在建筑中,钢铁的强度关系到整个大厦的安全,工业设备中的钢材性能更是直接影响到生产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
Thank you