数学笔试之常用的数学思想方法总结
7种初中数学常用数学思想
7种初中数学常用数学思想计算能力是一项基本的数学能力,也是综合能力的具体体现。
计算能力的培养,不仅与数学基础知识密切相关,而且与训练学生的思维、小编整理了7种初中数学常用数学思想数学最强计算技巧总结,欢迎参考借鉴。
7种初中数学常用数学思想一、整体思想整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
例1 已知a-b=3,求2a-2b-1=____。
解析:把“a-b”看成一个整体代入,2a-2b-1=2(a-b)-1=5。
二、方程思想方程思想是指在确定变量后,找到它们之间的关系,将实际问题转化成方程或不等式,通过建立方程模型来解决实际问题。
例2 一个凸多边形的内角和是外角和的2倍,它是____边形。
解析:由于任意多边形的外角和都是360°,而n边形的内角和是(n-2) 180°。
设这个多边形是n边形,根据题意,得:(n-2)180°=2×360°,解得n=6。
三、函数思想函数的思想是用运动和变化的眼光,分析和研究数学中的数量关系,从而建立函数模型,如一次函数、反比例函数、二次函数等,解决实际问题。
例3 某市出租车收费标准:不超过3千米计费为10.0元,3千米后按2.4元/千米计费。
(1)当路程表显示7千米时,应付费多少元?(2)写出车费 y (元)与路程 x (千米)之间的函数表达式。
(3)小明乘出租车从家到人才市场,付费34元,求小明的车程。
解析:(1)当路程为7千米时,费用为10+(7-3)×2.4=19.6元。
(2)当x≤3时,y=10;当x≥3时,y=10+(x-3)×2.4,即y=2.4x+2.8。
(3)当y=34时,有2.4x+2.8=34,即x=13。
答:小明的车程为13千米。
四、转化思想转化思想是指把我们遇到的问题由陌生知识转化为已学知识,化繁为简,化未知为已知,从而解决实际问题。
常用数学思想归类总结
常用数学思想归类总结数学作为一门学科,涵盖了广泛的思想和方法。
在数学的发展过程中,数学家们提出了许多重要的思想,这些思想成为解决问题、推理和证明的基础。
在本文中,我将归纳总结一些常用的数学思想,并解释它们的应用以及重要性。
一、归纳法归纳法是一种证明数学命题的常用方法。
它通过证明基本情况成立,并假设对于某个自然数 n 成立,然后利用这个假设证明n+1 也成立。
归纳法不仅常用于证明自然数之间的关系,也可以用来证明其他一些性质和推断。
例如,我们可以使用归纳法来证明等差数列的求和公式或者斐波那契数列的性质。
二、反证法反证法是一种独特的证明方法,它假设待证明的命题为假,然后通过推导出矛盾的结论来得出结论为真的结论。
反证法常用于证明一些命题的唯一性或者存在性。
例如,我们可以使用反证法来证明无理数的存在性,即假设不存在无理数,然后通过推导出矛盾的结论来证明无理数的存在。
三、递归思想递归思想是一种将一个问题分解为一个或多个相同类型的子问题,并通过解决子问题来解决整个问题的思想。
递归思想在数学中的应用非常广泛,它常被用于定义数列、集合和函数等。
例如,斐波那契数列的定义就是一个递归定义,即前两项之和等于下一项。
递归思想也常用于解决组合数学和图论等领域的问题。
四、对称性对称性是指对象在某种变换下保持不变的性质。
在数学中,对称性经常被用于简化问题的求解过程。
例如,对称关系可以帮助我们推导出解方程的一些性质,对称图形可以帮助我们简化图形的分析过程。
对称性在代数、几何和数论等领域都有广泛的应用。
五、等价关系等价关系是指具有自反性、对称性和传递性的关系。
在数学中,等价关系可以帮助我们将一些对象划分为不同的等价类,从而简化分析和求解问题的过程。
等价关系常用于集合、模运算和拓扑等领域的问题。
例如,同余关系在模运算中起着重要的作用,它将整数划分为不同的同余类。
六、极限思想极限思想是一种将无穷过程视为有限过程的思维方式。
在数学中,极限思想经常被用于定义和研究一些重要的概念,例如极限、连续性和导数等。
常见的数学思想方法
常见的数学思想方法在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。
常见的数学思想方法:分类与整合解题时,我们常常遇到这样一种情况,解到某一步之后,不能再以统一方法,统一的式子继续进行了,因为这时被研究的问题包含了多种情况,这就必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。
有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。
高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题需要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。
特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q≠1两种情况,对数函数的单调性就分为a>1,0高考对分类与整合的思想的考查往往集中在含有参数的解析式,包括函数问题,数列问题和解析几何问题等。
此外,排列组合的问题,概率统计的问题也考查分类与整合的思想。
随着新课程高考在全国的实施,在新增内容中考查分类与整合的思想,窃以为,是今后几年高考命题的重点之一。
常见的数学思想方法:函数与方程著名数学家克莱因说“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。
一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。
函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。
所谓方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。
常用的数学思想和方法
不怕难题不得分,就怕每题扣点分!常用的数学思想和方法一.数学思想:1.数形结合的思想;2.分类与整合的思想;3.函数与方程的思想;4.转化与化归的思想;5.特殊与一般的思想;6.有限与无限的思想;7.或然与必然的思想;8.正难则反的思想.二.数学基本方法:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换、正难则反、设而不求、设而求之.【解题时:方法多,思路广,运算准,化简快.】三.数学逻辑方法:分析与综合、归纳与演绎、比较与类比、具体与抽象等.【也称数学思维方法.】四.选择题的方法:四个选项有极大的参考价值!千万不要小题大做!①求解对照法(直接法);②逆推代入法(淘汰法);③数形结合法(不要得意忘形);④特值检验法(定值问题);⑤特征分析法(针对选项);⑥合理存在性法(针对选项);⑦逻辑分析法(充要条件);⑧近似估算法(可能性).五.填空题的方法:①直接法;②特例法(定值问题);③数形结合法;④等价转化法.六.熟练掌握数学语言的三种形式:自然语言、符号语言、图形语言的相互转化.七.计算与化简:这是一个值得十分注意的问题!平时的训练中,要多思考如何快速准确的计算和熟练的化简!八.学会自学!课堂上不可能把所有的题型都讲到!所以要多看例题,多思考!看之前一定要想自己会怎么做!怎么看:一看解题思路【看完后要归纳步骤、总结方法】,二看规范表达【尽量学会使用数学语言、符号】.学会总结归类:①从数学思想上归类;②从知识应用上归类;③从解题方法上归类;④从题型类型上归类.【特别提醒】1.一道题有没有简便解法,关键就在于你能不能发现其中的一些条件的特殊性,并能加以灵活运用!(灵机一动)【转化、联想、换元等,另外,解题时有时对一些细节的处理也很关键,会起到峰回路转、柳暗花明的作用.】2.解函数、解析几何、立体几何的客观题,应特别注意数形结合思想的运用!但在解答题中,不能纯粹只凭借图象来解答问题;图象只起到帮助找到解题思路的作用【图象尽量画准,甚至在有时给出图象时也需要自己重新准确画一遍】;解题过程还是要进行严谨的理论推导【用数学语言表达】,不能纯粹以图象代替推理、证明.3.转化数量关系时,若是写不等式,则要注意是否可以取“=”.特别是求取值范围时,端点一定要准确处理.4.平常做解答题应该做完整:解题过程的表达是否流畅、简洁.否则到考试时,还需为如何组织语言表达去思考而耽误时间.这是平时训练值得注意的【条理分明、言简意赅、字迹工整】!表达也是思维的一部分!5.在解答题中,某些局部问题解答过程的书写的详略,取决于整个解题书写过程的长短:长则略写,可用易证、易知等字眼;短则详写.如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明.6.在设置有几问的解答题中,后面问题的解决有时候依赖于如何灵活运用前面已解决的问题的结论.有些解答题某一问貌似与前面无关,实则暗【明】示你必须把它与前面联系起来,才能解决问题.7.平常要多积累解题经验和解题技巧.熟记一些数学规律和数学小结论对解题也是很有帮助的.8.数学总分上不上得去,很大程度上取决于选择题、填空题得分高不高.而选择题、填空题更注重对基础知识,基本数学思想、方法和技能的全面考察.因此,要熟练掌握解选择题、填空题的特有方法:在解选择题或填空题时,优秀的解题方法更显得重要.建议每天做一份选择、填空题,花大力气提高解选择、填空题的准确率和速度.【注意:选择题的四个选项中有且只有一个是正确的,是一个需要特别重视的已知条件.】9.可以在专门的笔记本上,收集作业、考试中的错题,学习中遇到的经典题,便于日后考前复习巩固.⒑作业本上的错题、试卷上的错题一定要及时更正!做错了不可怕,可怕的是做错了不去纠正!我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸。
数学思想方法总结归纳
数学思想方法总结归纳数学思想方法总结归纳数学思想方法是指在数学问题的研究和解决过程中所采用的具体思维方式和方法论。
数学思想方法的运用对于提高数学学科的发展和创新至关重要。
下面将从逻辑推理、抽象思维、归纳推理、演绎推理、直觉思维、反证法和辨证思维等几个方面总结和归纳数学思想方法。
逻辑推理是数学思想方法中的基础。
数学是一门严密的学科,逻辑思维是数学思考的基本要求。
在数学研究和证明过程中,逻辑推理能够帮助人们正确地推导出结论。
逻辑推理包括假设、关联、推出和证明等步骤。
通过逻辑推理,可以提高数学问题的解决效率,并且能够避免错误的推论。
抽象思维是数学思想方法中的重要环节。
数学中的概念和概念的运算都是通过抽象思维实现的。
通过抽象思维,数学家能够将具体问题归纳为抽象的符号和表达形式,从而更好地理解和解决数学问题。
抽象思维能够帮助人们摆脱具体情境,以更大范围的角度去研究问题,从而推动数学学科的发展和创新。
归纳推理是数学思想方法中的一种重要思维方式。
通过观察和经验总结,人们可以从具体的事例中归纳出普遍的规律和定理,并将其应用于解决更一般的数学问题。
归纳推理在数学中的应用广泛,它帮助人们发现新的数学规律,并为证明和解决数学问题提供重要线索。
演绎推理是数学思想方法中的一种重要推理方式。
演绎推理是从已知条件出发,逐步推出结论。
通过演绎推理,人们可以从已有的理论和公理中推导出新的结论,这对于数学学科的理论建设和证明非常关键。
演绎推理要求逻辑严谨,能够准确地推导出结论,并且具有普遍适用性。
直觉思维是数学思想方法中的一种非常重要的思维方式。
直觉思维是指通过直觉和直观的观察来解决问题。
数学家通过对问题的直观感受和观察,能够快速地找到问题的关键,并提出合理的解决思路。
直觉思维具有灵活性和创造性,能够帮助人们在数学研究中快速发现新的数学规律和思考方向。
反证法是数学思想方法中的一种重要思维方式。
反证法是通过假设否定命题的真实性,然后由此推出矛盾结论,从而证明原命题是正确的。
数学中的思想方法
数学中的思想方法数学是一门基础学科,它不仅是一种工具,更是一种思维方式和思想方法。
数学中的思想方法是指数学家们在解决数学问题时所采用的一种系统的、抽象的、逻辑的思维方式。
这些思想方法不仅可以帮助我们理解和解决数学问题,还可以应用于其他领域,如自然科学、社会科学、工程技术和金融经济等。
下面将介绍一些数学中常用的思想方法。
一、化归思想化归思想是指在解决一个复杂问题时,将其转化为一个或多个较为简单的问题,通过对这些简单问题的解决,最终解决原始问题。
化归思想的核心是将复杂问题转化为简单问题,通过逐步转化,使得问题变得更容易解决。
例如,在解多元一次方程组时,我们可以将其转化为解一元一次方程的问题;在求解多面体的体积时,我们可以将其转化为求解长方体的体积的问题。
二、数形结合思想数形结合思想是指在解决数学问题时,将数量关系和空间形式结合起来,通过图形和数值的相互转换,使得问题变得更容易解决。
数形结合思想的核心是将抽象的数量关系转化为具体的空间形式,通过图形和数值的结合,使得问题更加形象化和直观化。
例如,在解平面解析几何问题时,我们常常将点坐标转化为几何图形中的点;在解立体解析几何问题时,我们常常将空间结构转化为平面图形进行求解。
三、分类讨论思想分类讨论思想是指在解决数学问题时,将问题按照不同的分类标准划分成不同的类别,对每一类问题进行分别讨论和解决。
分类讨论思想的核心是将一个复杂的问题划分成多个较为简单的问题,通过对每一类问题的分别解决,最终解决原始问题。
例如,在解排列组合问题时,我们常常需要按照不同的分类标准对问题进行分类讨论;在解函数问题时,我们常常需要按照不同的分类标准对函数的性质进行分类讨论。
四、函数与方程思想函数与方程思想是指在解决数学问题时,将问题转化为函数或方程的形式,通过对函数或方程的分析和求解,最终解决原始问题。
函数与方程思想的核心是将问题转化为函数或方程的形式,通过对函数或方程的分析和求解,使得问题更加清晰和明确。
数学中的思想方法
数学中的思想方法
数学中的思想方法包括:
1. 分析思维:对问题进行分解,找出其中的关键因素,并分析它们之间的关系。
2. 抽象思维:将具体的问题抽象化,转换成数学模型或符号,以便进行推理和计算。
3. 归纳思维:通过观察和总结已有的规律和模式,得出普遍性的结论。
4. 推理思维:基于已知的事实和定理,推导出新的结论。
5. 反证法:通过假设问题的对立面,推导出矛盾的结论,从而证明原命题的正确性。
6. 直觉思维:凭借一种“直觉”或“感觉”来找到解决问题的思路和方法。
7. 创造性思维:发散思维,尝试不同的方法和视角,寻找新的解决方案。
8. 形象思维:通过图形、图表等形象化的方式来理解和解决问题。
9. 比较思维:将不同的问题或对象进行比较,找出它们的共同点和差异,从而
得到更深入的理解。
10. 逆向思维:从问题的解决结果出发,反推回问题的条件和前提。
这些思维方法在数学中起到重要作用,帮助人们理解和解决各种数学问题。
同时,这些思维方法也可以应用到其他领域,培养人们的逻辑思维、创新思维和问题解决能力。
常用的数学思想和方法
常用的数学思想和方法: 常用的数学思想和方法:1.配方法、待定系数法、换元法:配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法.配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可以找到已知与未知之间的联系,促成问题的解决.待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数.换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化.例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ).(A )32(B )14(C )5(D )6分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11, 4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是配方法.故: )(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25∴ 5222=++z y x ,应选C .例2.设F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则ΔF 1PF 2的面积是( ).(A )1 (B )25 (C )2 (D )5分析及解:欲求||||212121PF PF S F PF ⋅=∆ (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2221=+PF PF(2),又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即16||||2||||||||||212221221=⋅-+=-PF PF PF PF PF PF ,故2421)16|||(|21||||222121=⨯=-+=⋅PF PF PF PF ∴ 1||||212121=⋅=∆PF PF S F PF , ∴ 选(A ).注:配方法实现了“平方和”与“和的平方”的相互转化. 例3.设双曲线的中心是坐标原点,准线平行于x 轴,离心率为25,已知点P (0,5)到该双曲线上的点的最近距离是2,求双曲线方程.分析及解:由题意可设双曲线方程为12222=-bx a y ,∵25=e ,∴a =2b ,因此所求双曲线方程可写成:2224a x y =- (1),故只需求出a 可求解.设双曲线上点Q 的坐标为(x ,y ),则|PQ |=22)5(-+y x (2),∵点Q (x ,y )在双曲线上,∴(x ,y )满足(1)式,代入(2)得|PQ |=222)5(44-+-y a y (3),此时|PQ |2表示为变量y 的二次函数,利用配方法求出其最小值即可求解.由(3)式有45)4(45||222a y PQ -+-=(y ≥a 或y ≤-a ).二次曲线的对称轴为y =4,而函数的定义域y ≥a 或y ≤-a ,因此,需对a ≤4与a >4分类讨论.(1)当a ≤4时,如图(1)可知函数在y =4处取得最小值,∴令4452=-a ,得a 2=4 ∴所求双曲线方程为1422=-x y . (2)当a >4时,如图(2)可知函数在y =a 处取得最小值,∴令445)4(4522=-+-a a ,得a 2=49, ∴所求双曲线方程为14944922=-x y . 注:此题是利用待定系数法求解双曲线方程的,其中利用配方法求解二次函数的最值问题,由于二次函数的定义域与参数a 有关,因此需对字母a 的取值分类讨论,从而得到两个解,同学们在解答数习题时应学会综合运用数学思想方法解题.例4.设f (x )是一次函数,且其在定义域内是增函数,又124)]([11-=--x x ff ,试求f (x )的表达式. 分析及解:因为此函数的模式已知,故此题需用待定系数法求出函数表达式. 设一次函数y =f (x )=ax +b (a >0),可知 )(1)(1b x a x f -=-,∴124)(11])(1[1)]([2211-=+-=--=--x b ab ax a b b x a a x f f .比较系数可知:⎪⎪⎩⎪⎪⎨⎧=+>=)2(12)(1)1()0(4122b ab a a a 且解此方程组,得 21=a ,b =2, ∴所求f (x )=221+x .例5.如图,已知在矩形ABCD 中,C (4,4),点A 在曲线922=+y x (x >0,y >0)上移动,且AB ,BC 两边始终分别平行于x 轴,y 轴,求使矩形ABCD 的面积为最小时点A 的坐标.分析及解:设A (x ,y ),如图所示,则=ABCD S (4-x )(4-y )(1)此时S 表示为变量x ,y 的函数,如何将S 表示为一个变量x (或y )的函数呢?有的同学想到由已知得x 2+y 2=9,如何利用此条件?是从等式中解出x (或y ),再代入(1)式,因为表达式有开方,显然此方法不好.如果我们将(1)式继续变形,会得到S =16-4(x +y )+xy (2)这时我们可联想到x 2+y 2与x +y 、xy 间的关系,即(x +y )2=9+2xy .因此,只需设t =x +y ,则xy =292-t ,代入(2)式得S =16-4t +27)4(212922+-=-t t (3)S 表示为变量t 的二次函数,∵0<x <3,0<y <3, ∴3<t <23,∴当t =4时,S ABCD 的最小值为27.此时⎪⎩⎪⎨⎧==+,27,4xy y x )222,222()222,222(-++-或的坐标为得A 注:换元前后新旧变量的取值范围是不同的,这样才能防止出现不必要的错误.例6.已知ΔABC 的三个内角A 、B 、C 满足:A +C =2B ,BC A cos 2cos 1cos 1-=+,求2cosCA -的值. 分析及解:依条件可知B =60°,A +C =120°,再由换元思想,令α=-2CA ,则 ⎩⎨⎧=-︒=+.2,120αC A C A 可知A =60°+α,C =60°-α,这种换元是一种“对称”的代换,它将为解题带来方便.∵)60cos(1)60cos(1cos 1cos 1αα-︒++︒=+C A =43cos cos 2-αα由已知2260cos 243cos cos 2-=︒-=-αα整理得:023cos 2cos 242=-+αα ∴0)3cos 22)(2cos 2(=+-αα ∵03cos 22≠+α ∴02cos 2=-α,即22cos =α, 因此222cos =-C A .(能力训练题1.方程x 2+y 2-4kx -2y -k =0表示圆的充要条件是( ).(A )141<<k (B )41<k 或k >1 (C )k ∈R (D )k =41或k =12.在直角坐标系内有两点A (-1,m ),B (-1,3),点A 在抛物线x 2=2py 上,F 为抛物线的焦点,若|AB |+|AF |=27,则m 的值为( ). (A )21-(B )21 (C )1(D )不能确定3.已知)0(lg )(3>=x x x f ,则f (4)的值是( ). (A )2lg 2(B )2lg 31(C )2lg 32(D )4lg 324.关于x 的方程0349|2||2|=-⋅-----a x x (a R ∈)有实根的充要条件为( ). (A )a ≥-4(B )-4≤a <0(C )-3≤a <0(D )以上都不对5.设函数m x x x x y ++⋅+=22cos 6cos sin 3sin 5能表示成y =Asin (ωx +ϕ)的形式(0≤θ<π),则实数m 的值为____________.6.3)2||1|(|-+x x 的展开式中的常数项_________. 7.设方程x 2+2kx +4=0的两实根为x 1,x 2,若212221)()(x xx x +≥3,求k 的取值范围. 8.已知椭圆)0(12222>>=+b a by a x 的一个顶点A 的坐标为(0,-1),且右焦点F 到直线x -y +22=0的距离为3,试问能否找到一条斜率为k (k ≠0)的直线,使l 与已知椭圆交于不同两点M ,N 且满足|AM |=|AN |.9.双曲线以原点为中心,坐标轴为对称轴,且与圆1722=+y x 交于点A (4,-1),如果圆在点A 的切线与双曲线的渐近线平行,求双曲线的方程.10.已知a >0,且a ≠1,解关于x 的不等式:2|2log ||2log|<---x x a a.11.设关于x 的函数13612222+-+-+=a a x a x y (1)求函数y 的最大值M (a );(2)是否存在正常数b (b ≠1),使a ∈(1,+∞)时,)(log a M y b =的最大值是34-. 12.若关于x 的方程012lg 21lg 8)1(lg 22223322=-+-+-+a a a a a a x x 有模为1的虚根,求实数a 的值及方程的根.13.点P (x ,y )在椭圆1422=+y x 上移动时,求函数u =x 2+2xy +4y 2+x +2y 的最大值.14.过坐标原点的直线l 与椭圆126)3(22=+-y x 相交于A ,B 两点,若以AB 为直径的圆恰好通过椭圆的左焦点F ,求直线l 的倾斜角.15.设集合A ={R x a x x x ∈=+-+,024|1}(1)若A 中有且只有一个元素,求实数a 的取值集合B ;(2)当a ∈B 时,不等式x 2-5x -6<a (x -4)恒成立,求x 的取值范围.点拨与解答1.C∵由02422=---+k y kx y x 化简得014)1()2(222>++=-+-k k y k x ,∴k ∈R .2.B根据抛物线定义及|AB |+|AF |=27,得2723=+p ,∴p =1,于是x 2=2y ,故可解得m =21.3.C设t =x 3,则t x 3=,∴t t f lg 31)(=,∴2lg 324lg 31)4(==f .4.C设|2|3--=x t ,则0<t ≤1,所求问题转化为方程042=--a t t 在(0,1]内有实根,由t 2-4t -a =0,得4)2(422--=-=t t t a∵0<t ≤1,∴-3≤a <0.注:这里将a 视为变量t 的二次函数,求值域得解.5.m =-211.m xx x y +++⋅+=22cos 1cos sin 35=m x x +++2cos 212sin 23211 =m x +++211)62sin(π与)sin(θω+=x A y 比较,知m =-211.6.视2)||1||(2||1||x x x x -=-+为一个整体,则原式=6)||1||(x x -, 由T r +1=r r r x x C )||1()||(66--=r rr x C 266)||()1(--,6-2r =0,r =3,∴T 4=-20为常数项.7.∵2]2)([2)()()(22122121221212221--+=-+=+x x x x x x x x x x x x ≥3,以k x x 221-=+,421=x x 代入整理得(k 2-2)2≥5,又∵Δ=4k 2-16≥0,∴⎪⎩⎪⎨⎧≥-≥-045|2|22k k解得k ∈(-52,+-∞]∪[52+,+∞). 8.由题意知A (0,-1),b =1,设右焦点F (c ,0),则32|22|=+c ,得c =2.∴a 2=3,∴椭圆方程为1322=+y x. 设存在直线l :y =kx +m (k ≠0),显然m ≠0,代入椭圆方程得:0)1(36)31(222=-+++m kmx x k (*)则MN 的中点P (2231,313k mk km ++-), 由于|AM |=|AN |,故点A 在MN 的垂直平分线上,∴1-=⋅MN AP k k ,即 1031313122-=⋅-+-++k k km km, 即 )0(313)131(22≠+=⋅++k kkmk k m , 解得 )31(212k m +=.由(*)的判别式Δ=36k 2m 2-12(1+3k 2)(m 2-1)=9(1+3k 2)(1-k 2)>0, 解得 -1<k <1 (k ≠0)∴存在满足条件的直线l ,斜率为-1<k <0或0<k <1.9.圆在点A 的切线方程为4x -y -17=0,∴双曲线的一条渐近线为4x -y =0,可设双曲线方程为1622y x -=λ,将A (4,-1)代入双曲线方程得λ=16255. ∴双曲线方程为12552551622=-y x . 10.原不等式可化为2|2log ||1log |2<---x x a a 令 t =x a log ,则原不等式化为2|t -1|-|t -2|<2,利用零点分段法解此不等式可得-2<t <2,∴-2<2log <x a , 当a >1时, 22a x a<<-;当0<a <1时, 22-<<a x a . 11.(1)显然 1-x 2≥0,∴-1≤x ≤1, 令x =θsin ,]2,2[ππθ-∈,则 y =136cos 2sin22+-++a a a θθ=-1462)(cos 22+-+-a a a θ,∵0≤θcos ≤1,1462+-a a (a <0) ∴ M (a )= 14622+-a a (0≤a ≤1) 1342+-a a (a >1) (2)当a ∈(1,+∞)时,M (a )=a 2-4a +13, 当a =2时,M (a )有最小值9,∴要使)(log a M y b =在a ∈(1,+∞)上有最大值必须b ∈(0,1),若b 存在,则349log -=b ,求得 )1,0(93∈=b ,故有93=b 满足要求. 12.原方程可化为021lg 21lg 21lg 3222222=---+-+aa a a a a x x , 令t =aa 21lg 2-,则t ∈R ,方程为 03222=-++t t tx x (*) ∵方程有虚根,∴Δ=082<+t t ,即-8<t <0. ∵方程(*)的虚根x 1,x 2是共轭复数且12221=-=tt x x ,即022=--t t ,解得 t =-1或t =2 (舍去). 由此得方程的虚根为 )73(41i x ±=, 再由 121lg 2-=-aa ,解得 101011±=a .13.∵点P (x ,y )在椭圆1422=+y x 上移动, ∴可设⎩⎨⎧==θθsin cos 2y x于是y x y xy x u 24222++++= =θθθθθθsin 2cos 2sin 4cos sin 4cos422++++=]1sin cos )sin [(cos 22++++θθθθ 令t =+θθsin cos , ∵)4sin(2cos sin πθθθ+=+,∴|t |≤2.于是u =23)21(2)1(222++=++t t t ,(|t |≤2).当t =2,即1)4sin(=+πθ时,u 有最大值.∴θ=2k π+4π(k ∈Z )时,226max +=u . 14.设A (x 1,y 1),B (x 2,y 2)直线l 的方程为y =kx ,将它代入椭圆方程整理得 036)31(22=+-+x x k (*) 由韦达定理,221316k x x +=+(1),221313k x x +=(2) 又F (1,0)且AF ⊥BF , ∴1-=⋅BF AF k k ,即1112211-=-⋅-x yx y , 将11kx y =,22kx y =代入上式整理得 1)1(21212-+=⋅+x x x x k , 将(1)式,(2)式代入,解得 312=k . 故直线l 的倾斜角为6π或65π.注:本题设交点坐标为参数,“设而不求”,以这些参数为桥梁建立斜率为k 的方程求解. 15.(1)令t =2x ,则t >0且方程0241=+-+a x x化为t 2-2t +a =0 (*),A 中有且只有一个元素等价于方程(*)有且只有一个正根,再令f (t )=t 2-2t +a , 则Δ=0 或⎩⎨⎧≤>∆0)0(0f即a =1或a ≤0,从而B =(-∞,0]∪{1}. (2)当a =1时,113-<x <3+11, 当a ≤0,令g (a )=a (x -4)-(x 2-5x -6),则当a ≤0时不等式 )4(652-<+-x a x x 恒成立,即当a ≤0时,g (a )>0恒成立,故 x x g <-⇒⎩⎨⎧≤->1040)0(≤4.综上讨论,x 的取值范围是(113-,4].。
数学四大思想八大方法
数学四大思想八大方法数学是一门古老而又深邃的学科,它的发展离不开一系列重要的思想和方法。
在数学的发展史上,有四大思想和八大方法被认为是至关重要的。
本文将围绕这一主题展开讨论,希望能够为读者们带来一些启发和思考。
首先,我们来谈谈数学的四大思想。
这四大思想分别是数学归纳法、递归思想、抽象思维和逻辑推理。
数学归纳法是数学中常用的一种证明方法,通过证明一个基本情况成立,并假设n=k时成立,推导出n=k+1时也成立,从而得出结论。
递归思想则是将一个问题分解成若干个同类的子问题,通过解决子问题来解决原问题。
抽象思维是数学家们常用的一种思考方式,通过抽象出一般规律来解决具体问题。
逻辑推理则是数学证明中不可或缺的一环,通过合理的推理来得出结论。
接下来,我们来讨论数学的八大方法。
这八大方法分别是数学归纳法、递归法、反证法、构造法、逼近法、分类讨论法、数学建模法和数学实验法。
数学归纳法和递归法在四大思想中已经有所涉及,这里不再赘述。
反证法是通过假设命题的否定,推导出矛盾,从而证明原命题成立。
构造法是通过构造出满足条件的对象来解决问题。
逼近法是通过逐步逼近一个数值,得到一个足够精确的结果。
分类讨论法是将问题分成若干类别进行讨论,从而得出结论。
数学建模法是将实际问题抽象成数学模型,通过模型来解决问题。
数学实验法则是通过实验的方法来研究数学问题。
综上所述,数学的四大思想和八大方法贯穿于整个数学发展的历程中,它们不仅是数学家们解决问题的重要工具,也是培养数学思维和逻辑思维的重要途径。
希望通过本文的介绍,读者们能够对数学的思想和方法有更深入的了解,从而在学习和研究数学的过程中能够更加得心应手。
常用的数学思想和方法
常用的数学思想和方法数学是一门既具有理论性又具有实践性的学科。
它以逻辑严密的推理和抽象的思维方式,研究数量、结构、变化等概念及其相互关系。
数学思想和方法在现实生活和各个行业中都发挥着重要的作用。
本文将介绍一些常用的数学思想和方法,探讨它们的应用和意义。
一、代数思想和方法代数是研究数与数之间的关系、数量关系和代数运算的数学分支。
代数思想和方法的应用广泛,包括求解方程、建立数学模型等。
代数能够帮助我们描述和解决各种关系问题,从而提供解决实际问题的工具。
1.方程求解方程是数学中重要的概念,它描述了数之间的等式关系。
在实际生活中,我们常常会遇到各种各样的问题需要求解方程。
通过代数思想和方法,我们可以将问题转化为数学方程,通过解方程得到问题的解答。
例如,在经济学中,我们可以通过求解方程组来确定生产成本和销售价格之间的关系,从而为企业的决策提供依据。
2.数学模型的建立数学模型是将实际问题抽象为数学问题的一种方法。
代数思想和方法可以帮助我们建立数学模型,通过数学建模来解决实际问题。
例如,在物流管理中,我们可以使用线性规划模型来确定运输路线、调度资源等,以达到最优化的效果。
二、几何思想和方法几何是研究空间形状、大小、位置关系及其度量的数学分支。
几何思想和方法在日常生活中应用广泛,不仅用于建筑、设计等领域,还用于解决实际问题和提升空间思维能力。
1.图形的描述和比较几何思想和方法可以帮助我们描述和比较不同图形的形状、大小和特征。
通过几何的概念和性质,我们可以准确地描述和比较各种图形,从而更好地理解现实世界中的事物。
2.空间位置关系的研究几何思想和方法可以帮助我们研究空间中的位置关系。
例如,在地理学中,我们可以通过几何思想和方法来研究地球的形状、大小以及不同地区之间的位置关系,从而帮助我们理解地理现象和解决相关问题。
三、概率与统计思想和方法概率与统计是研究不确定性、随机性和数据的收集与分析的数学分支。
概率与统计思想和方法在各个领域都有着广泛的应用,如金融、经济、医学等。
十大数学思想方法
十大数学思想方法数学是一门既宏大又精巧的学科,它的发展离不开各种思想方法的推动。
本文将介绍十大数学思想方法,包括归纳法、演绎法、反证法、类比法、综合法、递归法、直觉法、猜想法、近似法和分析法。
归纳法是数学推理中常用的一种思想方法。
通过观察个别现象,总结其共同的特征,并从中归纳出一般规律。
例如,从求和公式的若干个特例中,我们可以猜测并通过归纳法证明求和公式的一般形式。
演绎法是数学推理的另一种重要思想方法。
它通过已知的定理和命题,运用逻辑关系来推导出结论。
在证明几何定理时,我们常常使用演绎法,从已知的条件出发,通过一系列的推理步骤得到所需的结论。
反证法是一种常见且有效的数学思想方法。
它假设所要证明的结论不成立,然后通过推理和论证,得出矛盾的结论,从而证明原命题的正确性。
反证法在数学证明中应用广泛,它常常能够简化证明的过程,提高证明的效率。
类比法是数学思考中的一种重要方法。
通过将已知问题与类似的问题进行比较和类比,我们可以从已解决的问题中获得启示,进而解决当前的问题。
类比法在数学建模和问题求解中有着广泛的应用。
综合法是一种将不同的方法和思想综合运用的思维方式。
它通过综合不同的理论和方法,得到一个更全面、更深入的结论。
综合法在数学研究中起着重要的作用,帮助我们理解和解决复杂的问题。
递归法是一种通过不断递推和迭代的方法来解决问题的思想方法。
通过将大问题分解为小问题,并通过递归推导,最终得到整体的解决方案。
递归法在计算机科学和离散数学中得到广泛应用,尤其在算法设计和数据结构方面起到关键作用。
直觉法是数学思考中的一种重要方法。
它基于个人的直观感受和经验,通过直观的理解和直觉的推测来解决问题。
虽然直觉法不能代替严密的逻辑推理,但它常常是启发数学家发展新理论和解决难题的源泉。
猜想法是一种通过猜测和假设来推动数学研究的思想方法。
当面对一个未解的问题时,我们可以通过猜想和假设来寻找一种可能的解决方案,然后通过证明或反证来验证我们的猜想。
高中数学常见思想方法总结
高中常见数学思想方法我们通常认为数学思想就是人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想.而且数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,在我们解决问题、进行数学思维时,也总是自觉或不自觉地运用数学思想方法.所以我们总结了以下几种常见的数学方法并附带例题加以说明,让学生对数学思想方法有更深刻的认识.方法一函数与方程的思想方法函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的.高考数学命题近年来经历了以“知识立意”到以“问题立意”再发展为以“能力立意”的过程,试图体现突出能力与学习潜能的考查,使知识考查服务于能力考查;试图突出数学的思想方法的层次,即数学思想方法、逻辑学中的方法和具体的数学方法.函数与方程的思想方法作为基本的数学思想方法之一,在知识的互相联系、互相沟通中起到了纽带作用.因此,函数与方程的思想方法一直为近几年的高考重点,大小试题中均有体现.用函数与方程的思想方法解题时,要领悟其实质,充分考虑其可行性,不可生搬硬套.【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><.(1)求公差d 的取值范围;(2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由.【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题.【解】(1) 由3a =12a d +=12,得到1a =12-2d ,所以12S =121a +66d =12(12-2d )+66d =144+42d >0,13S =131a +78d =13(12-2d )+78d =156+52d <0.解得:2437d -<<-. (2)解法一:(函数的思想)n S =21115(1)(12)222na n n d dn d n ++=+- =22124124552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦ 因为0d <,故212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小时,n S 最大. 由2437d -<<-得12465 6.52n d ⎛⎫<--< ⎪⎝⎭,故正整数n =6时212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小,所以6S 最大.解法二:(方程的思想)由0d <可知12313a a a a >>>> .因此,若在112n ≤≤中存在自然数n ,使得0n a >,10n a +<,则n S 就是1S ,2S , ,n S 中的最大值. 121300S S >⎧⎨<⎩⇒1150260d a d a d ⎧+>->⎪⎨⎪+<⎩⇒6700a a >⎧⎨<⎩,故在1S 、2S 、…、12S 中6S 的值最大.【点评】 数列的通项公式及前n 项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析,即用函数方法来解决数列问题;也可以利用方程的思想,利用不等式关系,将问题进行算式化,从而简洁明快.由此可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性.【例1】 在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB 与椭圆分别交于点M ),(11y x ,),(22y x N ,其中m>0,0,021<>y y(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解】 (1)由题意知)0,2(F ,)0,3(A ,设),(y x P ,则4)3()2(2222=---+-y x y x化简整理得29=x . (2)把21=x ,312=x 代人椭圆方程分别求出)35,2(M ,)920,31(N 直线)3(31:+=x y AM ① 直线)3(65:--=x y BN ② ①、②联立得107,3T ⎛⎫ ⎪⎝⎭. (3)),9(m T , 直线)3(12:+=x m y TA ,与椭圆联立得)8040,80)80(3(222++--m m m M 直线)3(6:-=x m y TB ,与椭圆联立得)2020,20)20(3(222+-+-m m m N A BO F直线2222222224020203(20)8020:3(80)3(20)20208020m m m MN y x m m m m m m +⎛⎫-+++=- ⎪--++⎝⎭--++, 化简得222220103(20)204020m y x m m m ⎛⎫-+=-- ⎪+-+⎝⎭令0y =,解得1x =,即直线MN 过x 轴上定点(1,0).【点评】 本题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.而且,本题在解决问题时,无论求点的坐标,还是求点P 的轨迹方程,都灵活运用了方程的思想,特别是在证明过程中更是很好地利用方程的有关知识,使问题画繁为简,华难为易.方法二 数形结合的思想方法数形结合,是中学数学最重要的思想方法之一.著名数学家华罗庚先生说:“数与形,本是相倚依,焉能分作两边飞;数无形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘,几何代数流一体,永远联系切莫分离.”这精辟地阐述了数形结合的重要性,它不仅是一个重要的数学思想,而且是一种重要的解题方法,因而数形结合的能力必然是历年高考的一个重点.所谓数形结合的思想方法,就是由数学问题所呈现的条件和结论,通过研究数式问题的几何意义,或者研究几何问题的代数意义,设法沟通数学问题在数量关系和空间形式的内在联系,使隐含条件明朗化,复杂问题简单化,抽像问题具体化,开拓题的新思路,以便最终找到解决问题的带有数形信息转换特征的数学方法.正确利用数形结合,应注意三个原则:(1)等价性原则数形信息的转换应该是等价的、充要的.要注意由于图形的直观性,往往可以成为严格推证的启导,但有时不能完整表现数的一般性,考虑问题可能不完备.(2)双向性原则数形结合的含意是双向的,即考虑问题既注意代数问题几何化,也注意几何问题代数化,而不仅仅指前者.(3)简单性原则有了解题思路,思考用几何方法,还是代数方法,还是两者兼而用之,要取决于解题的简单性原则,而不能形而上学地让几何问题代数化,代数问题几何化成为一种机械模式.运用数形结合的思想方法解题的途径主要有三条:第一,以形助数:把一些数式的几何意义明朗化,构造出解题的几何模型,突显问题的直观性,使解题思路变得形像而通畅;第二,以数助形:利用几何图形或图像图表中隐含的数式特征,构造出解题的代数模型(必要时建立坐标系),突显问题的本质,另辟解题的捷径;第三,数形互助:根据问题的需要,将以形助数和以数助形二方面结合运用.数形结合的应用是广泛的,数与形的结合点主要集中在以下几个方面:1.研究函数的性质(单调性、奇偶性、周期性、对称性、值域与最值等),可从函数图像的直观性得到鲜明的启示.2.利用数轴与坐标系(包括直角坐标系、极坐标系),使数与点对应,使函数与图像、方程与曲线结合,使代数与几何联结.这样,可利用坐标或向量的运算,探索几何图形的相关性质;利用函数图像与方程曲线的直观性,探索函数或方程的性质.3.从统计图表、图像中,收集分析出“数”的信息,由破译的数量关系建立代数模型,探索相关的结论.这类数形信息的转换能力是近年高考的新亮点.4.三角函数与单位圆、三角函数曲线的联系.5.复平面与复数、向量的沟通.6.利用类比法、换元法(如三角换元)、构造法、坐标法等构造代数问题的几何模型、几何问题的代数模型,开辟解题的新思路.【例1】 (12年上海模拟)若函数()()y f x x R =∈满足(2)()f x f x -=,且[1,1]x ∈-时,2()1f x x =-,函数lg(1),11(),00,01x x g x x xx ->⎧⎪⎪=-<⎨⎪≤≤⎪⎩,则函数()()()h x f x g x =-在区间[5,6]-内的零点个数为_________. 【答案】 9【解】 由题意,直接求解会很麻烦,且不易得到正确的答案,所以该题中求()()()h x f x g x =-的零点,可以转化为求()f x 与()g x 两函数图像的交点.则画出()f x 与()g x 的图像,由于()f x 在[1,1]x ∈-上为2()1f x x =-,且为周期函数,周期为2,而()g x 是分段函数,注意其图像共分为三部分,如图,可等共有9个交点,其中有一个易错点,即其中1个交点为(1,0)很容易被遗漏.【点评】 要求()()()h x f x h x =-在区间[5,6]-内的零点的个数,可转化为求()f x 与()h x 交点的个数,可以作出图形,观察图形易得交点的个数.本题体现了数形结合的思想,正是运用数形结合的思想方法解题的途径中的以形助数.【例2】 函数y =f (x )的图像为圆心在原点的两段圆弧,试解不等式f (x )>f (-x )十x .【解】 解法一:(以数助形) 由题意及图像,有⎪⎩⎪⎨⎧<≤---≤<-=011101)(22x x x x x f ,(1)当0<x ≤1时, f (x )>f (-x )+x 得21x ->-2)(1x --+x , 解得0<x <552; (2)当-1≤x <0时, 得-21x ->2)(1x --+x , 解得-1≤x <-552, ∴ 原不等式的解集为[-1, -552)∪(0, 552). 解法二:(数形互助) 由图象知f (x )为奇函数,∴ 原不等式为f (x )>2x ,而方程f (x )= 2x 的解为x =±552,据图像可知原不等式解集为[-1, -552)∪(0, 552). 【点评】 本题以形看数(解式,奇偶性),以数解形(曲线交点A 、B ),最后以形解数(不等式),这才是真正意义上的数形结合,扬长避短.方法三 分类讨论的思想方法分类讨论的思想方法是中学数学的基本思想方法,同时也是一种化整为零、各个击破、整合结论的解题策略.在分析和解决数学问题中,运用分类讨论思想可以将问题的条件与结论的因果关系、局部与整体的逻辑关系揭示得一清二楚、十分准确.在解决对像为可变的数量关系和空间图形形式的数学问题中有着广泛和重要的作用.有关分类讨论思想的数学问题贯穿于高中数学的各个部分,形式多样、综合性强,对于培养学生思维的缜密性、条理性、深刻性有着十分重要的作用.因此,分类讨论一直是高考命题的热点之一,也是每年必考的重要数学思想方法之一.1.通常引起分类讨论的原因,大致可归纳为如下几点:(1)涉及的数学概念是分类定义的;(2)涉及运算的数学定义、公式或运算性质、法则是分类给出的;(3)涉及题中所给的限制条件或研究对像的性质而引起的;(4)涉及数学问题中参变量的不同取值导致不同结果而引起的;(5)涉及的几何图形的形状、位置的变化而引起的;(6)一些较复杂或非常规的数学问题,需要采用分类讨论的解题策略解决的.2.分类讨论的步骤一般可分为以下几步:(1)确定讨论的对像及其范围;(2)确定分类讨论的标准,正确进行分类;(3)逐类讨论,分级进行;(4)归纳整合,作出结论.其中最重要的一条是“不漏不重”.学生必须对相关知识点或涉及的概念、定义、定理相当清楚,对于一些结论成立的条件掌握牢固,这样才能在解题时思路清晰,才能知道何时必须进行分类讨论,而何时无须讨论,从而可以知道怎样进行分类讨论.在分类过程中要注意按照一个统一的标准,这样才能做到不重复不遗漏,考虑问题要周到缜密,特别是对于一些特殊情况要考虑慎重,养成严谨的学习态度和思想作风.【例1】(12年上海二模)点),(y x Q 是函数122-=x y 图像上的任意一点,点(0,5)P ,则P 、Q 两点之间距离的最小值是______________.【答案】 11【解】 ①当2102x -<时,222221,(5)(6)92x y PQ x y y =-=+-=--. 63y -=±时,即y =9或y =3,PQ 取最小值0,但222x y =-都为负数,∴不成立; ②当2102x -≥时,212x y =-,2222(5)(4)11PQ x y y =+-=-+.当y =4时,PQ 取最小值为11.综上所述,P 、Q 两点之间距离的最小值为11.【点评】 由于题中给出的是绝对值函数,需要利用分类讨论的思想去掉绝对值,然后再求解.体现了数学概念是分类定义的而引起的分类讨论.【例2】设等比数列{}n a 的公比为q ,前n 项和0(1,2,3,)n S n >= ,求q 的取值范围.【分析】在应用等比数列前n 项和的公式时,由于公式的要求,分q =1和q ≠1两种情况.【解】 {}n a 是等比数列,且前n 项和0(1,2,3,)n S n >= ,110a S ∴=>,且0q ≠当1q =时,10n S na =>;当1q ≠时,1(1)01n n a q S q -=>-,即10(1,2,3,)1nq n q->=- . 上式等价于1010n q q ⎧->⎨->⎩ ①或1010n q q ⎧-<⎨-<⎩ ②,由①得1q >,由②得11q -<<,∴q 的取值范围为()()1,00,-+∞ .【点评】本题正是分类讨论中运算的数学定义、公式或运算性质、法则是分类给出的体现.【例3】 设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S A ⊆且S B ≠∅ 的集合S 的个数是 ( )A.57B.56C.49D.8【答案】 B【解】由题意得S 中必含有4,5,6中至少一个元素,而元素1,2,3可以任意含有,则可按S 中所含元素个数分类:(1) 当S 中只含有4,5,6中的一个元素时,有13C 种,而1,2,3可构成集合32个,故S 有13323824C ⋅=⨯=(个);(2) 当S 中只含有4,5,6中的两个元素时,有23C 种,而1,2,3可构成集合32个,故S 有23323824C ⋅=⨯=(个);(3) 当S 中只含有4,5,6中的三个元素时,有33C 种,而1,2,3可构成集合32个,故S 有33328C ⋅=(个). 故集合S 的可能个数为24+24+8=56.【点评】本题正是由于题中所给的限制条件或研究对像的性质而引起的分类讨论.【例4】已知实数0a ≠,函数()2,1,2, 1.x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为________.【答案】 34-【解】首先讨论1a -,1a +与1的关系.当0a >时,11a -<,11a +<,所以()()1121f a a a a -=---=--;()12(1)32f a a a a +=++=+.因为()()11f a f a -=+,所以132a a --=+,所以34a =-; 当0a <时,11a ->,11a +>,所以()()1212f a a a a -=-+=-;()1(1)231f a a a a +=-+-=--.因为()()11f a f a -=+,所以231a a -=--,所以32a =-(舍去). 综上,满足条件的34a =-. 【点评】本题的解题关键在于讨论1a -,1a +与1的关系,正是体现了数学问题中参变量的不同取值导致不同结果而引起的分类讨论.【例5】如图所示,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE x =,过E 作OB 的垂线l l ,记△AOB 在直线l 左边部分的面积为S ,则函数()S f x =的图象是 ( )【答案】 D【解】当02x <≤时, ()2111224f x x x x =⋅⋅=,是开口向上的抛物线,且()21f =; 当23x <≤时, ()()()21112123133222f x x x x x =⨯⨯+--+=-+-,是开口向下,以33,2⎛⎫ ⎪⎝⎭为顶点的抛物线; 当3x >,()f x 是确定的常数,图象为直线.【点评】本题正是图形运动造成,不同时段,面积有所不同,正是体现了几何图形的形状、位置的变化而引起的分类讨论问题.方法四 概括归纳的思想方法概括是在思维中将同一种类型的对像共同的本质属性集中起来,结合为一般类型的属性.归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性.一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等.在上海主要体现在“归纳——猜想——证明”中,是发现数学规律,并用数学归纳法证明的完整过程.在近几年的高考中,都有这种找规律的题,考生不易得分,需要考生加强这方面的训练.【例1】 (12年上海模拟)在证明恒等式2222*1123(1)(21)()6n n n n n N ++++=++∈ 时,可利用组合数表示2n ,即22112(*)n n n C C n N +=-∈推得.类似的,在推导恒等式23333*(1)123()2n n n n N +⎡⎤++++=∈⎢⎥⎣⎦时,也可以利用组合数表示3n 推得.则3n =____________.【答案】 6C 3n +1+C 1n【解】 由题意得:n 2=2C 2n +1-C 1n =n (n +1)-n =n 2+n -n ,则由类比推理可得,∴n3=n 3-n +n =n (n +1)(n -1)+n =6C 3n +1+C 1n .【点评】 此题利用了类比推理以及归纳、猜想思想,从已知条件中得到规律,用到问题中去,从而得到结论.【例2】在数列{n a }中,1a =13 ,且前n 项的算术平均数等于第n 项的2n -1倍(n ∈N*).(1)写出此数列的前5项;(2)归纳猜想{n a }的通项公式,并用数学归纳法证明.【分析】(1)利用数列{n a }前n 项的算术平均数等于第n 项的2n -1倍,推出关系式,通过n =2,3,4,5求出此数列的前5项;(2)通过(1)归纳出数列{n a }的通项公式,然后用数学归纳法证明.第一步验证n =1成立;第二步,假设n =k 猜想成立,然后证明n =1k +时猜想也成立.【解】 (1)由已知1a =13,123n a a a a n++++ =(2n -1)n a ,分别取n =2,3,4,5,得2111153515a a ===⨯,()312111145735a a a =+==⨯, ()4123111277963a a a a =++==⨯,()512341114491199a a a a a =+++==⨯, 所以数列的前5项是:113a =,2115a =,3135a =,4163a = ,5199a = . (2)由(1)中的分析可以猜想1(21)(21)n a n n =-+(n ∈N*).下面用数学归纳法证明:①当n =1时,猜想显然成立.②假设当n =k (k ≥1且k ∈N*)时猜想成立,即1(21)(21)k a k k =-+ . 那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++ , 即21231(23)k k a a a a k k a +++++=+ .所以221(2)(23)k k k k a k k a +-=+, 即1(21)(23)k k k a k a +-=+,又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+, 所以11(21)(23)k a k k +=++,即当1n k =+时,猜想也成立. 综上①和②知,对一切n ∈N*,都有1(21)(21)n a n n =-+成立. 【点评】 本题考查数列的项的求法,通项公式的猜想与数学归纳法证明方法的应用,注意证明中必须用上假设,考查计算能力,分析问题解决问题的能力.正是体现了概括归纳的思想方法.方法五 化归与等价变换的思想方法在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化成一个新问题(相对来说,对自己较熟悉的),通过对新问题的求解,达到解决原问题的目的.这一思想方法我们称之为“转换化归思想”.而转换化归思想的基本原则就是:化难为易,化生为熟,化繁为简,化未知为已知.1.利用转换化归思想解决数学问题时必须明确三个问题:(1)把什么东西进行转换化归,即化归对像;(2)化归转换到何处,即化归转换的目的;(3)如何进行转换化归,即转换化归的方法.2. 化归与转化常遵循以下几个原则.(1)目标简单化原则:将复杂的问题向简单的问题转化;(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当;(3)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.3.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.化归与等价变换的思想方法所涉及到的具体问题很多很多,如果不断努力地用这种方法去解决一些数学问题或数学范畴以外的问题时,往往会出现事半功倍的奇特效果.【例1】 设x 、y ∈R 且22326x y x +=,求22x y +的范围.【解】 方法一:等价转化法(转化为函数问题)由22623x y x -=≥0得0≤x ≤2.设22k x y =+,则22y k x =-,代入已知等式得:2620x x k -+=, 即2132k x x =-+,其对称轴为x =3. 由0≤x ≤2得k ∈[0,4].所以22x y +的范围是:0≤22x y +≤4.方法二:数形结合法(转化为解几何问题):由22326x y x +=得()221132y x -+=,即表示如图所示椭圆,其一个顶点在坐标原点.22x y +的范围就是椭圆上的点到坐标原点的距离的平方.由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点.设圆方程为22x y k +=,代入椭圆中消y 得2620x x k -+=.由判别式3680k ∆=-=得4k =,所以22x y +的范围是:2204x y ≤+≤.方法三: 三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题):由22326x y x +=得()221132y x -+=,设1cos 6sin 2x y αα-=⎧⎪⎨=⎪⎩,则 2222233112cos cos sin 12cos cos 222x y ααααα+=+++=++- []215cos 2cos 0,422αα=-++∈ 所以22x y +的范围是:2204x y ≤+≤.【点评】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力.而且各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型,正是体现了熟悉化原则,将不熟悉的知识转化为自己熟悉的知识.【例2】设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1、S n 、S n +2成等差数列,则q =___________.【答案】-2【解】q a a S 112+=,11S a =,23111S a a q a q =++∵1322S S S =+ ∴12111222a q a q a a =++(a 1≠0)∴2q =-或0q =(舍去).【点评】 由于该题为填空题,我们不防用特殊情况来求q 的值.如:213,,S S S 成等差,求q 的值.这样就避免了一般性的复杂运算.既体现简单化原则,也是特殊化方法的使用,正是转化与化归的思想方法的典型体现。
常见的数学思想方法
常见的数学思想方法
1. 归纳法:通过已知结论推导出未知结论的方法。
2. 反证法:通过假设逆命题的真假,来证明所需要的命题的真假。
3. 递推法:通过已知项和递推关系式,推导出未知项。
4. 分析法:通过分析问题的特点和条件,将其转化成易于解决的数学模型。
5. 近似法:通过简化问题,使用近似的方法求解。
6. 对称法:通过利用问题的对称性质,简化问题的求解过程。
7. 反思法:通过回顾和反思已有的知识和结果,寻找新的问题解决思路。
8. 等价转化法:通过将问题转化为等价或相似的问题,来求解原问题。
9. 极限思想:通过分析问题的极限情况,来得到问题的解或性质。
10. 约束条件法:通过分析问题的约束条件,确定问题的可行解范围。
11. 逆向思维:通过倒推或逆向思考,找到问题的解决方法。
12. 概率思想:通过概率与统计的方法,分析问题的可能性和影响因素。
数学中的思想方法
数学中的思想方法数学是一门独特的学科,具有独特的思想方法。
数学的思想方法是数学家在解决问题时所采用的思考方式和严密的逻辑推理过程。
下面我将从抽象化、逻辑性、严谨性、综合性、创造性和实用性六个方面阐述数学的思想方法。
首先,数学的思想方法之一是抽象化。
数学家经常将具体的实际问题抽象成符号、代数或几何结构,通过对符号和结构的处理,寻找问题的普遍性规律。
例如,代数方程是将实际问题抽象成符号形式,通过方程求解来得出问题的解。
其次,数学的思想方法是逻辑性。
数学家通过逻辑推理来得出结论,推导每一步都必须符合严格的逻辑规则,确保推导的正确性。
数学的推理过程严密而明确,每一步都有清晰的证明和推导。
逻辑性是数学思维的基础,也是数学的精髓所在。
第三,数学的思想方法是严谨性。
数学家在解决问题时要求严谨,在每一步推理中都符合逻辑规则和数学定义,不留任何疑点。
严谨性是数学的基本要求之一,它保证了数学的正确性和可靠性。
第四,数学的思想方法是综合性。
数学家在解决问题时需要综合运用多个数学概念和方法,将各种方法和工具结合起来进行分析和求解。
数学的综合性要求数学家具备广泛的数学知识和技能,能够从多个角度去分析和解决问题。
第五,数学的思想方法是创造性。
数学家在解决问题时需要具备创造力,创造新的概念、方法和定理。
数学建立在已有知识的基础上,但新的数学成果往往需要创造性的思维和灵感。
创造性是数学家解决复杂问题和推动数学发展的核心。
最后,数学的思想方法是实用性。
虽然数学具有一定的抽象性和理论性,但数学的应用非常广泛。
数学在物理、工程、经济、计算机等领域都有重要的应用。
数学家通过各种数学模型和方法,对实际问题进行分析和求解,提供实用的解决方案。
综上所述,数学具有独特的思想方法,包括抽象化、逻辑性、严谨性、综合性、创造性和实用性。
这些思想方法使得数学能够独立思考和解决问题,推动数学的发展和应用。
数学思维方法的训练和培养是数学教育的重要目标,也是培养学生逻辑思维和创新能力的关键。
几种重要的数学思想方法
几种重要的数学思想方法数学作为一门科学,涵盖了广泛的领域和内容。
在数学学习的过程中,掌握一些重要的数学思想和方法是非常必要的,它们有助于我们解决问题,提高思维能力和解决实际问题的能力。
下面将介绍几种重要的数学思想方法。
1.归纳法:归纳法是一种从个别到一般的论证方法。
通过观察和分析个别现象的共性,找出规律,并通过推理得出一般结论。
归纳法在数学证明中是非常常用的方法,它使问题的解决变得简单。
例如,证明所有大于1的整数都是素数的倍数,可以首先从2开始证明,然后通过归纳法得出结论。
2.递推法:递推法又称数列递推法,是通过前一项和一些关系式计算出后一项的方法。
它适用于解决数列、等差数列等各种递推问题。
递推法常用于解决实际问题,比如计算投资收益、计算人口增长等。
递推法的核心是找到数列中相邻项之间的关系式,然后从已知项出发不断递推,得到未知项。
递推法在计算和计算机算法中也有广泛应用。
3.演绎法:演绎法是从一般原理推导出特殊结论的一种逻辑思维方法。
它通过逻辑推理和演绎推理,从已知事实和前提出发,得出结论。
演绎法在几何证明和逻辑思维中占有重要地位。
例如,证明一个三角形是等腰三角形,可以根据已知的角度和边长关系,通过演绎法推导出结论。
4.反证法:反证法是一种证明方法,通过假设结论不成立,推导出出现不符合已知条件的结果,从而得出结论成立的证明方法。
反证法常用于数学证明中,可以解决一些复杂的问题。
例如,证明根号2是无理数,可以假设根号2是有理数,然后推导出一个矛盾的结论,证明假设不成立,从而得出根号2是无理数的结论。
6.分而治之法:分而治之法又称分治法,是一种将问题分解成若干个相互独立的子问题,然后分别解决子问题的方法。
通过将大问题分解成小问题,并在小问题上得到解决,最终合并小问题的解决方法得到大问题的解决方法。
分而治之法在数学问题的求解中起到了重要作用,它可以提高问题求解的效率和准确性。
例如,求解一个多元方程组的解可以通过将方程组分解为多个一元方程,然后分别求解每个一元方程的解,最后得到多元方程组的解。
数学四大思想方法总结归纳手抄报
数学四大思想方法总结归纳手抄报数学是一门深奥而又广泛应用的学科,在不同的历史时期,人们通过对数学问题的研究,逐渐形成了数学的四大思想方法:归纳法、演绎法、递归法和直观法。
下面将分别对这四种思想方法进行总结归纳。
第一种思想方法是归纳法。
归纳法是从个别到一般的推理方法,通过观察多个具体的实例,总结出其中的共性规律,从而得出一个普遍的结论。
它是数学研究的基础,也是解决数学问题的常用方法。
归纳法的基本思路是从已知信息中发现规律,然后推广到未知的情况。
例如,通过观察前几个斐波那契数列的数值,我们可以归纳出斐波那契数列的通项公式。
第二种思想方法是演绎法。
演绎法是从一般到个别的推理方法,也称为“推演法”。
演绎法通过已知信息的逻辑推理,得出一个特定的结论。
它是数学推理的常用方法,通过一些基本的定义、定理和公理,可以通过逻辑推演得出新的结论。
演绎法的关键在于严密的逻辑推理和推导。
例如,对于任意两个实数a和b,如果a>b,那么可以推演出a的平方大于b的平方,即a^2>b^2。
第三种思想方法是递归法。
递归法是通过递推关系来解决问题的方法。
递归法通常将一个大的问题分解为若干个相似的小问题,并通过解决小问题来逐步解决大问题。
递归法常常应用于数列、图形和树形结构等问题的求解过程中。
递归法的关键在于确定递推关系和边界条件。
例如,斐波那契数列就是通过递推关系定义的,每个数等于前两个数的和。
第四种思想方法是直观法。
直观法是通过直观的图像、几何形状或者实验观察来解决数学问题的方法。
直观法通过对问题的直观感知和观察,得出一些准确的结论。
直观法在解决几何问题和概率问题时特别有效。
例如,求解一个三角形的面积可以通过将其展开为一个矩形来求解。
总而言之,归纳法、演绎法、递归法和直观法是数学中常用的四种思想方法。
归纳法通过总结具体实例的共性规律得出一般结论,演绎法通过逻辑推演得出特定结论,递归法通过递推关系解决问题,直观法通过直观感知和观察解决问题。
数学常用的数学思想方法有哪些
数学常用的数学思想方法有哪些初中数学涉及到的思想方法很多,在此仅仅谈谈常见的八种思想方法:一、用字母表示数的思想这是基本的数学思想之一.在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b二、数形结合的思想“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。
“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。
6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。
实际上就是通过“形”来反映数据扮布情况,发展趋势等。
实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想(化归思想) 在整个初中数学中,转化(化归)思想一直贯穿其中。
转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
下列内容体现了这种思想: 1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.四、分类思想有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学笔试之常用的数学思想方法总结“数学思想方法”一词无论在数学,还是在其它学科中,都被广为使用。
中学数学课程标准(教学大纲)已将数学思想方法列为数学目标之一。
数学思想是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识中提炼的数学观点,它在认识活动中被反复运用,带有普遍指导意义,是建立数学和应用数学解决问题之间联系的指导思想。
例如,转化化归思想、极限思想、分类思想等。
数学方法是指在数学中提出问题,解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。
如,变化数学形式、笛卡尔模式、递推模式、一般化、特殊化等。
数学思想与数学方法是紧密联系的,思想指导方法,方法体现思想。
“同样的思路,当用它去解决别的问题时,就称之为方法,当评价它在数学体系中的自身价值和意义时,称之为思想。
”因此在数学中一些常用的思路或手段泛称数学思想方法。
以下将介绍几种常见的数学思想方法:
(1)假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法,假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
(2)对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕育函数思想。
(3)比较思想方法
比较思想是数学中常见的思想方法也是促进学生思维发展的手段。
在教学应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
(4)符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,
这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式等。
(5)类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式等底等高圆柱与圆锥的体积等,类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
(6)转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的,如几何的等积变换解方程的同解变换、公式的变形等,主要是将自己不会的知识转化成自己会的知识。
在计算中也常用到甲+乙=甲x1/乙。
(7)分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数:按约数的个数分质数和合数,又如三角形可以按边分也可以按角分,不同的分类标准就会有不同的分类结果,从而产生新的概念,对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
(8)数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。
另一方面复杂的形体可以用简单的数量关系表示。
在解应用题中常常借助线段图的直观帮助分析数量关系。
(9)集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方小学采用直观手段,利用图形和实物渗透集合思想。
在讲述公约数和公倍数时采用了交集的思想方法。
(10)代换思想方法
它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
(11)统计思想方法
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
(12)可逆思想方法
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。
如一辆汽车从甲地开往乙地,第一小时行了全程的1门,第二小时比第一小时多行了16千米,还有94千米,求甲乙之间的距离。
(13)化归思想方法
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。
而数学知识联系紧密,新知识往往是旧知识的引申和扩展。
让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
(14)分类讨论思想方法
在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
理解和掌握常见的数学思想方法不仅能在结构化和答辩环节为我们提供帮助,还可以在说课的考察中体现考生对与新课改理念的深度理解。
(15)数学模型思想方法
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。
培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生提高数学素养所追求的目标。
理解和掌握常见的数学思想方法不仅能丰富和提升说课的内容和深度,在答
辩和结构化等环节也能为考生提供帮助。