高中数学优秀教学设计11--弧度制的教学设计
弧度制教学设计【优秀4篇】
弧度制教学设计【优秀4篇】高一数学必修四教案篇一一、教学目标掌握用向量方法建立两角差的余弦公式。
通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础。
二、教学重、难点1.教学重点:通过探索得到两角差的余弦公式;2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等。
三、学法与教学用具1.学法:启发式教学2.教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来。
)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与xx之间的关系,由此得到,认识两角差余弦公式的结构。
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的'知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处。
思考:再利用两角差的余弦公式得出(三)例题讲解例1、利用和、差角余弦公式求、的值。
解:分析:把、构造成两个特殊角的和、差。
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用。
例2、已知,是第三象限角,求的值。
解:因为,由此得又因为是第三象限角,所以所以点评:注意角、的象限,也就是符号问题。
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式。
弧度制教案及教学设计
弧度制教案及教学设计一、教学目标1.知识目标(1)了解弧度的定义及计算方法。
(2)掌握角度与弧度的转换方法。
(3)熟练运用弧度制进行角度计算。
2.技能目标(1)能正确地将角度转换为弧度。
(2)能够运用弧度制进行角度计算。
(3)能够解决与弧度相关的问题。
3.情感目标(1)培养学生的数学思维,提高学生的数学解决问题的能力。
(2)让学生体验到数学知识的应用,增强对数学的兴趣。
二、教学重点与难点1.教学重点(1)弧度的定义及计算方法。
(2)角度与弧度的转换方法。
(3)运用弧度制进行角度计算。
2.教学难点(1)角度与弧度的转换方法。
(2)实际问题中的弧度计算。
三、教学过程设计1.情境引入(1)引导学生观察钟表上的时针、分针、秒针的运动。
(2)引导学生发现钟表上的角度变化与弧度的关系。
(3)导入问题:若钟表的时针向前走10分钟,分针向前走150度,秒针向前走300度,问它们所走的弧度分别是多少?2.知识讲解(1)通过实际钟表运动的情境,引入角度的概念。
(2)讲解角度的转换:1圆周角=2π弧度,1度=π/180弧度。
(3)讲解弧度的计算公式:弧长=弧度×半径。
3.分组探究(1)将学生分为小组,每个小组分配一部分问题:如若钟表的秒针向前走300度,它所走的弧度是多少?(2)让学生利用所学知识进行探究,并展示结果。
4.知识总结(1)让学生就弧度的定义、计算方法和角度、弧度的转化方法进行总结归纳。
(2)板书总结的要点,并提示学生记下并复习。
5.拓展应用(1)将学生分为小组,给定不同的实际问题,要求学生将角度转换为弧度,并计算相关的长度。
(2)小组展示结果,并进行讨论和解答。
6.总结反思(1)师生共同总结本节课所学的知识内容。
(2)评价学生的掌握程度,并对下节课的学习进行引导和安排。
四、教学反思在教学过程中,通过情境引入,让学生主动参与角度与弧度的探究,培养了学生的数学思维,增强了他们的学习兴趣。
在小组探究环节,让学生通过讨论、合作解决问题,激发了他们的学习动力,并增强了沟通能力和团队合作能力。
高中必修四数学弧度制教案
高中必修四数学弧度制教案教学内容:弧度制的概念和应用
教学目标:
1. 理解弧度制的概念,掌握弧度和角度的相互转换关系;
2. 能够应用弧度制解决与圆相关的问题;
3. 能够灵活运用弧度制解决实际问题。
教学重点:
1. 弧度和角度的互相转换;
2. 弧度制在三角函数中的应用;
3. 弧度和圆角之间的关系。
教学难点:
1. 弧度和角度的互相转换;
2. 如何应用弧度制解决实际问题。
教学准备:
1. 一块黑板或白板;
2. 教室中心的圆;
3. 教学PPT或相关教学资源。
教学步骤:
第一步:导入(5分钟)
1. 引入圆的概念,介绍角度的度量单位;
2. 引导学生思考:是否有其他方法来度量圆的角度?
第二步:讲解弧度制的概念(15分钟)
1. 介绍弧度的概念,解释为何需要引入弧度制;
2. 讲解弧度与角度的转换公式;
3. 通过示例讲解弧度制在三角函数中的应用。
第三步:练习与讨论(20分钟)
1. 给学生几个练习题让他们转换弧度和角度;
2. 学生相互讨论解题思路,老师进行点评和指导。
第四步:实际应用(15分钟)
1. 老师设计一个实际问题,并引导学生用弧度制解决;
2. 学生展示解题思路和方法,老师进行指导和讨论。
第五步:总结与作业布置(5分钟)
1. 总结本节课的内容,强调弧度制的重要性;
2. 布置作业:完成课后习题,并思考如何应用弧度制解决更多问题。
教学反思:
1. 教师要注意引导学生理解弧度制的概念和方法,帮助他们建立相关知识的联系;
2. 鼓励学生在实际问题中灵活运用弧度制,提高解决问题的能力。
数学教案高中弧度制
数学教案高中弧度制
教学目标:
1. 了解弧度制的定义和基本概念;
2. 掌握弧度和角度的换算方法;
3. 熟练运用弧度制解决相关数学问题。
教学重点:
1. 弧度制的定义和基本概念;
2. 弧度和角度的换算;
3. 弧度制的运用。
教学难点:
1. 弧度和角度的换算方法;
2. 弧度制与角度制的转换;
3. 弧度制在解决问题中的应用。
教学准备:
1. 教案、教材、课件;
2. 黑板、彩色粉笔、橡皮;
3. 学生练习册。
教学过程:
一、导入(5分钟)
教师介绍弧度制的概念,引导学生思考角度和弧度之间的关系。
二、讲解(15分钟)
1. 弧度的定义和性质;
2. 弧度和角度的换算方法;
3. 弧度制在三角函数中的应用。
三、示范(10分钟)
教师通过例题演示如何将角度转换为弧度,以及如何运用弧度制解决三角函数问题。
四、练习(15分钟)
学生进行练习,巩固弧度制的相关知识。
五、梳理(5分钟)
教师梳理本节课的重点和难点,给予学生反馈。
六、作业(5分钟)
布置相关作业,要求学生独立完成,以巩固弧度制的知识。
教学延伸:
教师可以通过讲解弧长公式、扇形面积计算等内容,进一步拓展学生对弧度制的理解和运用。
教学反思:
本节课教学难点在于学生对弧度和角度的换算容易混淆,需要通过实例演示和练习巩固。
教师在教学过程中应引导学生思考,激发他们对数学知识的兴趣和探索欲望。
《弧度制》示范课教学设计【高中数学】
《弧度制》教学设计1.根据函数概念中强调函数必须是实数集到实数集的对应,体会弧度制引入的背景及必要性,明白同一个量可以用不同的单位制来度量.2.在半径不同但圆心角相同的的扇形中,利用初中所学的扇形的弧长公式能够发现弧长与半径之比不变,从而体会用该比值作为弧度制定义的合理性,加深弧度制概念的理解.在此过程中,学生可以感悟数学抽象的层次性及逻辑推理的严谨性.3.体会弧度制是度量角的一种方式,并能利用180°=π rad进行弧度制与角度制的互化,利用单位圆中弧长等于半径的圆心角,直观感受用长度度量1弧度的大小,能证明并灵活运用一些关于扇形的公式,同时能理解角与实数之间的一一对应关系.教学重点:在了解弧度制引入的背景下,理解弧度制的概念,能进行角度制与弧度制的互化.教学难点:弧度制概念的理解.Geogebra、计算器、PPT课件.用Geogebra作动画来反映扇形的弧长、半径、圆心角之间的关系;在角度制与弧度制换算时,计算器可以解决近似值问题.(一)创设情境问题1:我们知道:篮球明星姚明的身高是2.26米,但在NBA官方数据中却是7.5英尺,为什么?你还知道哪些量有不同的度量制?举例说明.预设的师生活动:学生针对老师提出的问题进行思考与回答.预设答案:因为用了不同的单位.再如,度量重量可以用千克、斤、磅等不同的单位制,度量体积可以用立方米、升等不同的单位制.设计意图:通过生活中的发现,度量长度可以用米、尺、码等不同的单位制,让学生体会度量一样东西可以有多种度量制.(二)新知探究1.弧度制问题2:度量角除了角度制,还有什么单位制呢? 追问1:如图1,射线OA 绕端点O 旋转到OB 形成角α.在旋转过程中,射线OA 上的点P (不同于点O )的轨迹是一条圆弧,这条圆弧对应于圆心角α.设α=n °,OP =r ,点P 所形成的圆弧1PP 的长为l .回忆初中所学知识,弧长l 如何用圆心角α来表示?预设的师生活动:学生经过观察、讨论得出结论. 预设答案:180πrn l =. 追问2:如图2,在射线OA 上任取一点Q (不同于点O 和P ),OQ =r 1.在旋转过程中,点Q 所形成的的圆弧1QQ 的长为l 1,那么l 1与r 1的比值是多少?你能得出什么结论?预设的师生活动:学生经过观察、讨论得出结论. 预设答案:180π11nr l =;圆心角α所对的弧长与半径的比值,与半径的大小无关,只与α的大小有关,也就是说,这个比值随α的确定而唯一确定.因此可以用弧长和半径的比值表示圆心角.设计意图:通过复习初中所学知识可知,使学生得到弧长与半径的比只与角的大小有关,推广到一般也成立,因此我们可以利用这个比值来度量角,引出新概念,使学生明白新概念的由来和定义的合理性.追问3:结合上面的探索过程,你能试着说一说什么是1弧度角吗?预设的师生活动:学生用自己的语言表述清楚即可,教师在学生表述的基础上进行完善. 预设答案:我们规定:长度等于半径的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度.设计意图:引导学生得出定义,体会定义产生的背景、原由及过程.追问4:(1)我们把半径为1的圆叫做单位圆.既然角的大小与半径无关,那么在单位圆中如何确定1 rad 的角呢?(2)在半径为r 的圆中,弧长为l 的弧所对的圆心角α的弧度数是多少? (3)角有正、负、零角之分,它的弧度数呢?图1图2预设的师生活动:学生思考后回答.预设答案:得出单位圆中长度为1的弧所对的圆心角就是1 rad (如图3);在半径为r 的圆中rl=α;类比角度制,α的正负由角α的终边的旋转方向决定.设计意图:深化理解弧度的定义.在单位圆中,直观感受1 rad 的角的大小,体会1 rad 角的几何表示;进一步能在一般圆中求得角的弧度数,使学生通过图形获取对新概念的直观印象,培养学生数形结合的能力.追问5:请你说说弧度制与角度制有哪些不同? 预设的师生活动:学生展开讨论之后总结提炼.预设答案:第一,弧度制以线段长度来度量角,角度制是“以角量角”; 第二,弧度制是十进制,角度制是六十进制;第三,1弧度是等于半径长的弧所对的圆心角的大小,而1°的角是周角的3601; 第四,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值,等等.设计意图:概念辨析,深化理解. 2.角度制与弧度制的换算问题3 既然角度制、弧度制都是角的度量制,那么,它们之间如何换算?你认为在换算的过程中最为关键的是什么?预设的师生活动:学生思考后回答,得出答案.预设答案:这两种角度度量制之间的关系是:360°=2π rad .其中,最为基础也是最为关键的是180°=π rad ,即1°=180π rad ,1 rad =°180π⎪⎭⎫ ⎝⎛≈57.30°. 设计意图:通过思考,让学生掌握弧度和角度换算的方法.体会同一个数学对象用不同方式表示时,它们之间的内在联系.认识这种联系性是数学研究的重要内容之一.例1 按照下列要求,把67°30′化成弧度: (1)精确值; (2)精确到0.001的近似值. 预设的师生活动:学生自行完成并回答问题.预设答案:(1)因为67°30′=°2135⎪⎭⎫ ⎝⎛,所以67°30′=2135×⎪⎭⎫ ⎝⎛180π rad =83π rad .(2)利用计算器有图31.178097245.因此,67°30′≈1.178rad.设计意图:在换算中学会根据要求的精度不同,选择不同的计算方式.例2将3.14 rad换算成角度(用度数表示,精确到0.001).预设的师生活动:使用计算器完成.预设答案:利用计算器有179.9087477.因此,3.14rad≈179.909°.设计意图:学会利用计算器完成这种繁杂的计算问题.追问:(1)67°30′能直接化成弧度吗?你是怎么做的?应该注意什么问题?(2)相互交流一下,如何使用计算机完成弧度制与角度制的换算?预设的师生活动:学生独立完成角度制与弧度制的换算的精确值,之后交流展示用计算机完成弧度制与角度制换算的近似值.设计意图:通过简单应用,熟悉弧度制、熟悉弧度制与角度制的换算.学生可能出现的问题:第一,进行角度制与弧度制的换算不够熟练;第二,角度转化弧度时需要把含分或秒的角度统一为度的单位;第三,计算机完成弧度制与角度制换算的近似值时,操作需要一个熟悉的过程.练习填写特殊角的角度数与弧度数的对应表(课本174页).预设的师生活动:快问快答,进行训练.预设答案:设计意图:这些角是今后常用的特殊角,不仅要求学生会换算,而且要让学生记住这些特殊角的度数与弧度数的对应值.另外,熟练角度和弧度的换算,进一步加深对180°=π rad 的理解和掌握.同时进一步体会角的概念推广后,无论用角度制还是弧度制,都能在角的集合与实数集R 之间建立一一对应关系.例3 利用弧度制证明下列关于扇形的公式: (1)l =αR ;(2)S =21αR 2;(3)S =21lR . 其中R 是圆的半径,α(0<α<π)为圆心角,l 是扇形的弧长,S 是扇形的面积. 预设的师生活动:学生学生利用弧度制证明关于扇形的公式,教师进行点评及板书. 预设答案:(1)由公式|α|=rl可得l =αR . 下面证明(2)(3).由于半径为R ,圆心角为n °的扇形的弧长公式和面积公式分别是l =180πRn ,S =360π2R n ,将n °转换为弧度,得α=180πn ,于是S =21αR 2.将l =αR 代入上式,即得S =21lR .设计意图:体会弧度制下的扇形弧长、面积公式的简洁美,这是引入弧度制的一个理由. (三)归纳小结问题4 通过本节课的学习,你学会用弧度制度量角了吗?追问:你觉得这样定义弧度制合理吗?在度量角的时候你觉得需要注意哪些问题?你现在觉得用弧度制度量角有什么好处?为什么会出现这种情况?你能画一个知识结构图来反映本节课的研究内容与路径吗?预设的师生活动:学生自主总结,并作出回答.预设答案:圆心角α所对的弧长与半径的比值随α的确定而唯一确定,因此,利用圆的弧长与半径的关系度量圆心角的是合理的;在度量角的时候需要注意:联系两种度量制的桥梁是360°=2 rad ;要注意防止出现角的两种度量制混用的现象,等等;用弧度制度量角的好处:弧度制下的扇形弧长、面积公式非常简单,这是引入弧度制带来的一个便利.实际上,角度制下角的度量制是六十进制,与长度、面积的度量进位制不一样,于是在公式中要有“换算因子”180π.而弧度制下角度与长度、面积一样,都是十进制,就可以去掉这个“换算因子”了.设计意图:帮助学生梳理所学知识,并让学生清楚引入弧度制的必要性,以及这样定义的合理性,逐步提升学生逻辑推理的核心素养.(四)布置作业: 教科书习题. (五)目标检测设计 1.把下列角度化成弧度:(1)22°30′; (2)-210°; (3)1 200°. 2.把下列弧度化成角度: (1)12π; (2)-3π4; (3)10π3. 3.已知半径为120 mm 的圆上,有一条弧的长是144 mm ,求该弧所对的圆心角(正角)的弧度数.预设答案: 1.(1)8π;(2)―6π7;(3)3π20.2.(1)15°;(2)-240°;(3)54°. 3.弧度数为1.2. 设计意图:巩固所学知识.。
高中数学 112(弧度制)教案人教版必修4 教案
1.1.2弧度制一、教学目标:1.知识目标:(1)1弧度的角的定义;(2)弧度制的定义;(3)弧度与角度的换算;(4)角的集合与实数集R之间建立的一一对应关系;(5)弧度制下的弧长公式、扇形面积公式。
2.能力目标:(1)理解弧度的意义,能正确地进行角度与弧度的换算,熟记特殊角的弧度数;(2)了解角的集合与实数集R之间可以建立起一一对应关系;(3)掌握弧度制下的弧长公式,扇形的面积公式;(4)会利用弧度解决某些实际问题。
3.情感目标:(1)使学生认识到角度制、弧度制都是度量角的制度,二者虽然单位不同,但是互相联系的、辩证统一的,进一步加强对辩证统一思想的理解;(2)使学生通过总结引入弧度制的好处,学会归纳、整理并认识到任何新知识的学习都会为我们解决实际问题带来方便,从而激发学生的学习兴趣。
二、教学重点、难点:重点:弧度的意义,弧度与角度的换算方法;难点:理解弧度制与角度制的区别。
三、教学方法:通过几何画板多媒体课件的演示,给学生以直观的形象,使学生进一步理解弧度作为角的度量单位的可靠性和可行性。
从特殊到一般,是人类认识事物的一般规律,让学生从某一个简单的、特殊的情况开始着手,更利于教学的开展和学生思维的拓展,共同找出弧度与角度换算的方法。
通过设置问题启发引导学生观察、分析、归纳,使学生在独立思考的基础上更好地进行合作交流。
四、教学过程:=定定义:长度等于半径长的圆弧所对的圆心角叫做1的角,弧度记作rad。
这种以弧度为单位来度量角的制度叫做弧度制。
角,又是角,同一个非零角180π= rad换算公式:rad=180⎛⎝180nπ⋅.特殊角的角度数与弧度数的对应表角的集合与实数集立起一种一一对应关系。
.把角度值n的一个“算法”:)给变量n近似值赋值;如果角度值秒”形式给出,为以“度”为单位的计算180π︒赋给变量a;计算na,赋值给变量,半径AB的长米)。
利用弧度制推导扇形2,1lr其是扇形的弧长,是扇形的半径。
弧度制 教学设计
弧度制教学设计教学设计:弧度制一、教学目标:1. 理解弧度制的概念和意义。
2. 掌握弧度制和度数制之间的相互转换方法。
3. 能够运用弧度制进行角度的测量和计算。
二、教学内容:1. 弧度制的概念和定义。
2. 弧度制和度数制的关系与转换。
3. 弧度制的运用:角度的测量和计算。
三、教学过程:第一步:导入1. 引入角度的概念,并简要介绍角度的度数制。
2. 提问:角度的度数制有哪些不足之处?是否存在一种更好的角度表示方法?第二步:引入弧度制1. 简要介绍弧度制的概念和定义:弧度是一个角所对应的弧长与半径之比,用符号rad表示。
2. 引导学生思考两种不同角的情况下,弧度和度数的关系:同一个角的弧度和度数相等,即1弧度等于180/π度。
第三步:弧度制和度数制的相互转换1. 介绍弧度制和度数制的相互转换方法:- 角度(度数)转为弧度:弧度= 角度×π/180。
- 弧度转为角度(度数):角度= 弧度×180/π。
2. 给出一些简单角度转换的例题,让学生进行实际计算演练。
第四步:弧度制的运用1. 引导学生思考如何使用弧度制进行角度的测量。
2. 引导学生通过实例理解弧度制在三角函数中的应用,如正弦、余弦和正切等。
3. 给出一些相关应用的例题,让学生进行实际计算演练。
第五步:弧度制的拓展1. 引导学生思考如何在实际问题中应用弧度制进行角度的计算和测量。
2. 提供几个相关的应用问题,让学生进行讨论和解决。
四、教学方法:1. 情景模拟法:通过引入实际情境和实例,帮助学生理解弧度制的概念和意义。
2. 讨论交流法:通过提问和讨论,激发学生的思维,学生能够积极参与,加深对知识点的理解。
3. 探究式学习法:通过提供一些实例和问题,引导学生主动探索,培养学生的问题解决能力。
五、教学资源:1. 教具:黑板、白板、投影仪等。
2. 板书内容:弧度制的概念和定义、弧度制和度数制的转换公式。
3. 练习题集:包括角度转换和弧度制的应用题。
弧度制教学设计全国一等奖
弧度制教学设计全国一等奖教学目标1.理解弧度的概念,能够将角度转换为弧度。
2.掌握弧度与角度的相互转换方法。
3.运用弧度制进行简单的角度计算和问题求解。
教学准备1.教师准备:黑板、白板、彩色粉笔/白板笔、直尺、量角器等。
2.学生准备:笔和纸。
教学过程导入(5分钟)1.教师通过提问或展示图片引导学生回顾角度的概念,并复习如何用角度来度量和表示角。
2.提出一个问题:我们在实际问题中还可以使用什么单位来度量和表示角?探究(15分钟)1.教师引导学生观察一个圆的半径和弧长之间的关系。
让学生通过测量和观察发现,当弧长等于半径时,对应的角度是多少?2.教师解释弧度的概念,并告诉学生,当弧长等于半径时,这个角所对应的弧度数是1弧度。
3.学生利用直尺和量角器练习测量和绘制1弧度的角。
拓展(20分钟)1.教师出示一些常见角度的度数,如30°、45°、60°等,引导学生将这些角度转换为弧度。
2.学生通过计算和观察,发现1°对应多少弧度。
教师解释1°对应π/180弧度,引导学生推导其他角度对应的弧度。
3.学生进行练习,将给定的角度转换为弧度,并相互交流和讨论答案。
实践(15分钟)1.教师出示一些实际问题,要求学生运用弧度制进行角度计算和问题求解。
如:一个圆的半径为5cm,求其对应的圆心角的弧度数。
2.学生在纸上解答问题,并与同桌分享自己的解题思路和答案。
3.学生上台展示自己的解题过程和结果,并接受教师和同学的评价和提问。
总结(5分钟)1.教师引导学生总结本节课学习的内容,复习弧度制的概念和相互转换方法。
2.学生进行自我评价,反思自己在学习过程中的收获和不足之处。
课堂小结通过本节课的学习,学生理解了弧度的概念,并能够将角度转换为弧度。
他们掌握了弧度与角度的相互转换方法,能够运用弧度制进行简单的角度计算和问题求解。
在后续的学习中,我们将进一步拓展弧度制的应用,培养学生的数学思维和问题解决能力。
高中数学必修四《弧度制》名师教学设计
《弧度制》教学设计一、【内容解读与教学定位】《弧度制》是高中数学苏教版数学必修4中§1.1.2的课程内容,其引入了一种新的角的度量方法弧度制,承接于《任意角的概念》,为扩充后的角度提供了一个更为方便的表示方法,同时也为后面的三角函数的知识打下基础,具有重要的战略意义。
同时建立了角的集合和实数集的一一对应关系,发展学生数学抽象和直观想象素养,学会用数学思维分析问题,发展逻辑推理和数学运算素养。
二、【学生学情分析】1、学生的知识储备是角度制,刚刚学完角度的扩充,对于角度的范围有了新的认识,并且对于角度制有很好的理解和记忆,那我们现在要引入弧度制,那么就需要让学生理解为什么要引入弧度制,非常的必要,不然从感情上学生就不会接受弧度制,因为这是一个外来者,首要必须解决“为什么”的问题。
2、学生普遍缺乏创造性思维,希望他们理解弧度制不是与生俱来的,是被人创造出来的,让他们自己去探索弧度制的发现过程,可以更好得理解弧度制的概念,也就是弧度制“是什么”。
3、学生对于新事物的接受,理解和熟练需要时间,所以这里需要帮助他们解决弧度与角度的转化问题,也就是“如何化”,以及弧度制“怎么用”的问题。
三、【学习目标与教学重、难点】1、知识目标:(1)“为什么”——为什么要引入弧度制,理解引入弧度制的必要性;(2)“是什么”——弧度是什么,理解弧度的定义;(3)“如何化”——如何进行弧度与角度的转化,掌握弧度与角度之间的相互转化;(4)“怎么用”——如何使用弧度制,学会使用弧度制下的新的弧长与扇形面积公式解题。
2、能力目标:让学生经历一个新事物从思考到提出的过程和其意义,培养学生的创新意识,只有创新才是进步的源动力。
【教学重点】:.理解弧度“是什么”;学会弧度与角度之间“如何化”;学会新的弧度制来计算弦长和面积“怎么用”。
【教学难点】:.理解“为什么”要引入弧度制;理解弧度“是什么”。
四、【教学策略分析】本节课围绕在学情分析中的4个问题来进行策略分析:1、“为什么”(为什么要引入弧度制?)学生对于角度制的熟悉程度是非常之深,熟悉的事物总是会有感情,对于新的弧度制一定会有一些排斥。
高中数学必修四《弧度制》教学设计
苏教版必修4第一章三角函数1.1任意角和弧度制第二课时弧度制江苏省盐城中学何莹《弧度制》教学设计深入挖掘数学学科的核心价值,树立以发展学生数学学科核心素养为导向的教学意识,将数学学科核心素养的培养贯穿于教学活动的全过程——这是我教学设计的根本宗旨.本节课教学的重点就是弧度制概念.一.教学内容解析弧度制在本章的位置:本节知识结构:《弧度制》是必修4第一章第一节第二课时的内容,教学重点是弧度制的概念.本节内容起着承上启下的作用,在弧度制下,任意角的集合和实数集建立起一一对应的关系,为三角函数奠定基础.二.教学目标设置首先,理解1弧度的角及弧度制的定义;掌握角度和弧度的换算公式;了解角的集合和实数集之间一一对应的关系;理解并掌握弧度制下的弧长公式、扇形面积公式,会利用弧度制解决某些简单的实际问题.其次,以本节数学知识作为载体,为渗透类比的思想、转化化归的思想及数形结合的思想,还有提高学生数学抽象,逻辑推理,直观想像,数学运算和数据分析能力都提供了很好的契机.另外,探究新概念时,树立敢于质疑,善于思考,严谨求实的科学精神;从进制的不统一,认知的冲突引入新的度量制的必要性;从度量的角度引导学生探究从测量长度去度量角,并让学生感受到角的大小仅仅只与弧长和半径的比有关,与半径大小无关,理解弧度制的合理性;推导弧长公式,扇形的面积公式和角与实数的对应,认识到弧度制的优越性;同时,培养学生自主学习习惯,增强同学间相互交流的意识,取长补短,形成良好课堂学习氛围,达到学生主动、全面、健康发展.三.学生学情分析学生已有知识储备上,其一学生熟知角度制,其二学生能体会不同的单位制会给解决问题带来方便,其三学生已经学习了任意角的概念,这是本节课的知识基础.能力上,学生经过高中半个学期的数学思维训练,已经具有一定的学习能力和探索意识,本节课要学习和探究的内容都在学生的最近发展区内.弧度制的概念教学是重点也是难点,在概念的教学中引导学生分析概念生成的必要性、合理性、优越性.四.教学方法分析本节课采用问题驱动式教学,学生探究与教师讲授相结合,结合多媒体辅助教学,提出问题引发学生探究性思维活动,使学生在思考、讨论、交流中经历每个知识点的产生和发展过程.五.教学过程设计分为以下四个教学环节:(一) 创设情境1.角的研究,回顾角度制.设计意图:有人提出,60进制的角度制给运算带来不便,考虑给出新的度量角的单位制度.给出弧度制引入的必要性. 2.角的大小的测量思考1:角的概念推广后,我们如何去测量一个角?问1:测量一个角的大小,除量角器外还能用的工具是什么?问2:能用直尺(有刻度)测量一个角吗?用直尺测量角———用一条线段长来刻画(表示)一个角.设计意图:从测量的角度去引发学生的思考:最简单有效的工具是直尺,用直尺只能量线段的长,如何构造一条线段去刻画角的大小?(二)新课导入----弧度制的建构思考2:用来表示角的大小的这条线段怎样去构造? 问1:它的两个端点如何选择?问2:这条线段的两个端点都在角的一条边上选显然是不行的,一定是在两条边上各取一点,怎样选呢?(以60角为例)问3:在两条边上,距角的顶点等距离的地方选两点.设计意图:让学生进行一系列尝试,找到初步符合要求的线段.问4:这种方法对于锐角而言可以建立起一一对应,即每一个锐角的大小都可以用对应的线段长之比刻画.对于任意角可行吗?问5:对于1200和2400的这两个角,相对应的线段长是一样的?对于00、3600等终边相同的角,它们对应的线段都一样?设计意图:在肯定部分学生尝试的合理性的同时,引导学生发现其局限性,引发认知冲突,激发学生进一步探究的欲望.思考3:用线段来刻画任意角的大小是不行的,那么用什么量才能反映任意角的大小?问1:能否利用弧线?为什么?问2:角的动态生成过程中,射线上任意一点(顶点除外)绕端点旋转都可以生成一段弧,仅仅利用弧长能否准确刻画角的大小呢? 学生猜想用弧长与半径的比来刻画角的大小 设计意图:放手让学生探究、尝试,引导学生从角的动态生成过程中观察、抽象,找到“弧线”来刻画角的大小,引导学生利用弧长与半径的比来刻画角的大小. 问3:能否给出你的猜想一个合理的解释呢? 从180n rl p =出发得到180l n r p =?由此可知,弧长与半径的比决定圆心角的大小,欧拉提出:用圆的半径作单位去度量弧.设计意图:给出弧度制的合理性,同时渗透数学史. 思考4:如何定义这种度量角的制度?问:类比角度制,能否给出1弧度角的定义,得出弧度制的相关概念. 设计意图:让学生尝试、完善用准确的数学语言描述数学概念.(三)探索新知,数学运用1.弧度制的相关概念规定:1弧度的角:长度等于半径长的弧所对的圆心角,记作1rad.用弧度作为单位来度量角的单位制叫弧度制.设计意图:明确给出1弧度角的定义.让学生直观感受1弧度角的大小,了解角度的单位不能省略,弧度的单位可以省略;初步感受弧度制下角与实数的对应.2.总结角度与弧度的互化,明确核心公式180π=,以及变形公式:10.01745180rad rad π=≈180157.3rad π=≈练习:特殊角的度数与弧度数的对应表:弧度制下,任意角的集合和实数集建立了一一对应的关系,即每个角都有唯一的实数与它对应,同时每个实数也都有唯一的一个角与它对应。
弧度制高中数学教案
弧度制高中数学教案主题:弧度制教学目标:1. 了解弧度的定义和计算方法;2. 掌握弧度和角度之间的转换关系;3. 能够运用弧度制解决实际问题。
教学重点:弧度的定义、计算方法和角度与弧度的转换关系。
教学难点:弧度制在实际问题中的应用。
教学准备:教师准备黑板、彩色粉笔、教具等。
教学过程:一、导入(5分钟)教师向学生提出一个问题:“角度制是我们常用的计量角度的单位,那么在数学中还有一种计量角度的单位叫做什么呢?”引出弧度的概念。
二、讲解弧度的定义和计算方法(15分钟)1. 弧度的定义:假设在单位圆上取一长度为r的弧所对的圆心角θ,那么这个圆心角所对的弧长就是这个圆心角的弧度数。
一个完整的圆周对应的角度是360度,对应的弧度是2π弧度。
2. 弧度的计算方法:弧度数 = 弧长 / 半径三、讲解角度与弧度的转换关系(10分钟)1. 角度与弧度的换算公式:1° = π/180 弧度2. 举例说明如何将角度转换为弧度,如何将弧度转换为角度。
四、练习与讨论(15分钟)让学生做几道练习题,巩固所学的知识,并带领学生讨论习题解法。
五、应用(10分钟)通过实际问题,引导学生运用弧度制解决实际问题,训练学生的应用能力。
六、小结(5分钟)回顾本节课所学内容,让学生总结弧度制的重点和难点。
七、作业布置(5分钟)布置相应的作业,以巩固所学内容。
拓展延伸:学生可以通过实际生活中的实际问题来练习弧度制的应用,如摆锤摆动问题、圆周运动问题等。
教学反思:通过引入弧度制这一新概念,激发学生的学习兴趣和求知欲。
同时,通过实际问题的运用,帮助学生更好地理解和掌握弧度的定义和计算方法。
人教版高中数学弧度制教案
人教版高中数学弧度制教案
教学内容:弧度制
教学目标:
1. 理解弧度制的概念及与角度制的转换关系;
2. 掌握弧度制的计算方法;
3. 能够运用弧度制解决相关问题。
教学重点:
1. 弧度制的概念及运用;
2. 弧度制和角度制的转换。
教学难点:
1. 弧度制与角度制的转换;
2. 弧度制的计算方法。
教学过程:
一、导入新知识(5分钟)
教师引导学生回顾角度制的概念及计算方法,并提出弧度制的定义。
二、讲解弧度制的概念及计算方法(15分钟)
1. 教师讲解弧度制的定义及计算方法,强调弧度制的优势和应用范围;
2. 带领学生进行弧度制与角度制的转换练习,并解释计算过程。
三、练习与讨论(20分钟)
1. 学生自主练习弧度制计算方法,并相互讨论解题思路;
2. 教师布置相关练习题,让学生在课后进行巩固练习。
四、检测与总结(10分钟)
1. 教师让学生进行弧度制的应用题练习,并及时纠正;
2. 学生合作讨论,总结本节课的知识点,提出问题并解决。
五、作业布置(5分钟)
布置相关作业,要求学生巩固掌握弧度制的概念和计算方法。
教学反思:
本节课主要围绕弧度制展开教学,通过讲解、练习和讨论,让学生充分理解弧度制的概念和计算方法,提高学生的数学运算能力和分析问题的能力。
在课后作业中,学生可以继续巩固弧度制的知识,提高解题的能力和速度。
高中数学弧度制的教案
高中数学弧度制的教案
教学目标:
1. 了解弧度制的定义与计算方法;
2. 掌握角度与弧度之间的转换关系;
3. 能够应用弧度制解决实际问题。
教学内容:
1. 弧度的概念及定义;
2. 角度与弧度的转换关系;
3. 弧度制在三角函数、圆周运动等方面的应用。
教学方法:
1. 讲解结合示意图和实例进行;
2. 综合性练习和实际问题分析。
教学步骤:
1. 引入:通过示意图讲解角度与弧度的区别,引出弧度制的概念;
2. 讲解:介绍弧度的定义与计算方法,以及角度与弧度的转换关系;
3. 实例演练:通过多个例题进行实例演练,帮助学生掌握弧度制的运用;
4. 应用拓展:结合三角函数、圆周运动等实际问题,让学生应用弧度制解决相关问题;
5. 总结反思:总结弧度制的重点知识,并进行反思和讨论。
教学资源:
1. 课件、教材以及相关练习题;
2. 黑板、彩色粉笔、图形工具等。
评估方式:
1. 日常课堂练习,检测学生对弧度制的掌握情况;
2. 期中期末考试,考察学生对弧度制的应用能力。
教学反馈:
1. 随堂对学生学习情况进行评价和反馈;
2. 收集学生反馈意见,及时做出调整和改进。
教学展望:
通过本节课的学习,学生将深入理解弧度制的概念,掌握角度与弧度之间的转换关系,提高数学解决实际问题的能力。
同时,为今后的学习打下坚实的数学基础。
高中数学的弧度制教案
高中数学的弧度制教案教学目标:1. 理解弧度制的概念和意义;2. 掌握角度制和弧度制的互相转换方法;3. 能够用弧度制求解三角函数相关问题。
教学重点:1. 弧度制的概念和特点;2. 角度制与弧度制的转换;3. 弧度与圆的关系;4. 三角函数中弧度的应用。
教学难点:1. 弧度制概念的理解;2. 弧度与圆的关系的理解;3. 弧度制在三角函数中的应用。
教具准备:1. 教科书、教辅资料;2. 计算器;3. 黑板、彩色粉笔;4. 圆规、指南针。
教学过程:一、导入1. 引导学生回顾角度的概念和计算,提出在不同问题中需要用到不同的角度单位;2. 提问引出弧度制的概念,让学生思考弧度和圆之间的关系。
二、讲解1. 讲解弧度制的定义和特点,介绍弧度与角度的关系;2. 分步介绍角度制与弧度制的互相转换方法;3. 解释弧度的物理意义,引导学生理解单位弧度的含义。
三、练习1. 给学生做一些简单的角度制和弧度制转换题目,巩固基本概念;2. 给学生做一些关于弧度与圆之间关系的练习题目,提高学生的计算能力。
四、拓展1. 讲解弧度在三角函数中的应用,引导学生理解弧度制的实际意义;2. 给学生练习一些应用题,让他们学会用弧度制解决实际问题。
五、总结1. 总结弧度制的重要性和实际应用价值;2. 引导学生积极应用弧度制解决三角函数相关问题。
教学反思:通过本节课的教学,学生对弧度制的认识和掌握有了进一步的提高,但在练习环节中,学生易出现对弧度概念的混淆,需要加强训练和巩固。
下次教学中将尽量多安排实际问题的练习,提高学生的实际运用能力。
高中数学《弧度制》名师教学设计
《弧度制》教学设计一、教学目标:1.理解弧度制的本质是用线段长度度量角的大小,这样的度量统一了三角函数自变量和函数值的单位;2.使学生理解弧度的定义,能正确的进行弧度与角度的换算,熟记特殊角的弧度数;3.掌握弧度制下的弧长公式,会利用弧度制解决某些简单的实际问题;4.领会弧度制定义的合理性和优越性.二、教学重点、难点:重点:理解弧度的定义,能正确的进行弧度与角度的换算.难点:理解弧度的概念.三、教学方法与教学手段:教学方法:问题驱动教学、学生探究与教师讲授相结合.教学手段:多媒体课件、学生实验.四、教学过程:1.创设情境,激趣导入日常生活中有非常多的量,例如,长度,温度,重量等等,度量不同的量要用不同的单位. 对于同一种量,也可以有不同的度量单位. 例如在测量长度时,我们可以用米,也可以用千米,但是在不同的场合我们要选择合适的单位,否则会让人感觉很不舒服.复习:1、角度制:用度作为单位来度量角的单位制.︒1: 将一个圆周角分成360等份,每一份叫做1度的角.'601=︒ "'601=2、扇形的弧长和面积公式:180πr n l =,360π2r n S =. 问题1 : 能否在改变度量方式的同时简化公式?2.形成概念,构建新知(1)1弧度角的概念问题2:如何作出1个单位的角?动手操作:准备圆形彩纸,让学生动手尝试作出一个单位的角.追问:如何定义1个单位的角?1弧度的角:将长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)弧度制弧度制:这种以弧度为单位来度量角的制度叫做弧度制.1873年,詹姆斯 汤姆森(James Thomson)教授在其编著的一本考试问题集中创造性的首先使用了“弧度”一词. 当时,他将“半径”(radius )的前四个字母与“角”(angle )的前两个字母合在一起,构成radian , 并被人们广泛接受和引用.早在18世纪,伟大的瑞士数学家欧拉(1707-1783)在他的名著《无穷小分析引论》中倡用弧度制,即以半径为单位来量弧长,统一了角和长度的单位.rl=α r l α= (扇形的弧长公式) 追问:还有什么公式可以简化?.2121ππ222rl r r S ==⋅=αα(3)弧度制和角度制的换算注:用弧度为单位表示角的大小时,“弧度”二字或“rad ”通常省略不写.但是“度”( )为单位不能省.注:用弧度为单位表示角时,一般不将π化成小数.3.例题分析,巩固提高例1 把下列各角从弧度化为度:;)(53π1 3.5.2)(解:;)(︒︒=⨯=108π1805π3rad 53π1 .54.200π1805.33.5rad 2︒︒≈⨯=)( 例2 把下列各角从度化成弧度:;)( 2521 .15112'︒)( 解:;)(rad 5π7rad 180π2522521=⨯=︒ .rad 16πrad 180π25.1125.1115112'=⨯==︒ )(例3 已知扇形的周长为8cm,圆心角为2rad,求该扇形的面积.解:设扇形的半径为r ,弧长为l ,则有⎩⎨⎧==+,,r l l r 282 解得⎩⎨⎧==.42l r , 故扇形的面积为.cm 4212)(==rl S 4.归纳小结 提炼升华 角的度量有很多进制,如百分度制,它常用于建筑或土木工程的角度测量;毫弧度,一般用作空间分辨率的单位;密位制,它被广泛用于航海和军事上. 在日常生活中常用角度制,因为它直观方便,数学上我们常用弧度制,它使得我们对三角函数的研究大为简化,尤其是微积分创立后公式的计算.通过这节课的学习,大家有哪些收获?教学设计说明:弧度制的引入是为了统一角和长度的单位,但统一单位的方式很多,为什么用rl 来度量角的大小,主要原因还是简化公式的需要. 本节课由︒30与︒30sin 能否相加,引发学生的认知冲突,让学生意识到角度不是实数. 为了满足对应关系的函数定义,我们需要用实数来度量角的大小. 接下来由公式的简化入手,引导学生猜想令圆周角为2π个单位即可,进一步通过数学实验学生自主探究得到一弧度角的定义. 这样的设计顺应了弧度制的发展史,又符合学生的认知规律. 本节课的教学设计遵循了弧度制的发展历史,把浓缩在其中的思维历程充分“还原”、“稀释”,让学生沿着前人思维活动的足迹去重演知识的产生与发展过程,从中发现、体验、掌握弧度制产生的方法和学习科学思维的方法. 我从学生当前遇到的学习困难入手,通过问题链的形式,引导学生发现问题,提出问题,分析问题,解决问题. 通过有趣的数学实验,把看似枯燥、抽象的数学概念变得生动形象,从而引发学生的探究性思维活动,使学生在思考、讨论、交流中经历每个知识点的产生和发展过程.数学史的巧妙融合,激发了学生的学习兴趣,也提高了学生的文化修养. 通过介绍弧度制彰显的简洁美、对称美,以及其它量角制度,如百分制、密位制等.与学生一起感受引入弧度制的合理性与必要性,这样的安排开拓了学生的眼界和思路,增加了学生的文化底蕴.。
高中数学教案弧度制
高中数学教案弧度制一、教学目标:1. 了解弧度的定义和性质;2. 掌握弧度与度的换算方法;3. 能够在实际问题中应用弧度制计算。
二、教学重点:1. 弧度的定义和推导;2. 弧度与度的换算;3. 弧度在解题中的应用。
三、教学内容:1. 弧度的定义:弧度制是以半径为单位长度的圆弧对应于的一个唯一的实数,记作 rad;2. 弧度与度的关系:1 弧度对应的弧长等于圆心角为 1 弧度的圆的半径;3. 弧度的换算:1 弧度≈57.2958 度;4. 弧度在解题中的应用:解决舍弃角度制所带来的误差,简化计算过程。
四、教学步骤:1. 弧度的引入:介绍弧度的定义和性质,引导学生理解弧度的重要性;2. 弧度与度的换算:讲解如何进行弧度与度之间的换算,进行相关例题训练;3. 弧度在解题中的应用:通过实际问题,引导学生应用弧度制进行计算,培养学生解决问题的能力;4. 教师总结:总结弧度制的重要性和应用,强调学生灵活运用弧度制进行计算。
五、教学方法:1. 讲授结合讨论:教师讲解概念、定理等内容,学生根据教师引导进行讨论,提高学生思维的活跃程度;2. 例题演练:教师通过例题演练,帮助学生掌握解题方法和技巧;3. 课堂练习:设计一定难度的练习题,提高学生解题的能力;4. 课堂讨论:引导学生在课堂上进行问题讨论,促进学生的思维碰撞。
六、教学评估:1. 课堂表现评估:评估学生在课堂上的参与度和表现情况;2. 课后作业评估:布置相关作业,检测学生对弧度制的掌握程度;3. 学习笔记评估:要求学生认真记录学习笔记,评估学生对弧度制相关知识的整理和消化情况。
七、教学反思与改进:1. 在弧度与度的换算方面,可以设计更多的实际问题,增加学生练习机会;2. 在课堂中增加互动环节,激发学生学习兴趣,更好地引导学生掌握弧度制;3. 针对学生在学习过程中出现的问题,及时进行归纳总结,帮助学生更好地理解和掌握弧度制相关知识。
高中数学必修4公开课教案112弧度制
1.1.2 弧度制 整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的3601,记作1°. 通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此根底上,通过具体的例子,稳固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定根底.三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣. 重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算. 教学难点:弧度的概念及其与角度的关系. 课时安排 1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购置水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.推进新课 新知探究 提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?图1活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定根底.讨论后教师提问学生,并对答复好的学生及时表扬,对答复不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r,AB 所对的圆心角∠AOB 就是1弧度的角,即rl =1. 讨论结果: ①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关. ②能,用弧度制. 提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连结圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?讨论结果:①完全重合,因为都是1弧度的角. ②α=r 1;将角度化为弧度:360°=2π rad,1°=180πrad≈0.017 45 rad,将弧度化为角度:2π rad=360°,1 rad=(π180)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为αrad=(πa180)°,n°=n180π(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?的长OB 旋转的方向 ∠AOB 的弧度数∠AOB 的度数πr逆时针方向 2πr 逆时针方向R 1 2r -2-π0 180°360°活动:教师先给学生说明教科书上为什么设置这个“探究〞?其意图是先根据所给图象对一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+3或者2kπ+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.弧度制下关于扇形的公式为l=αR,S=21αR 2,S=21lR. 的长 OB 旋转的方向 ∠AOB 的弧度数∠AOB 的度数πr 逆时针方向 Π 180° 2πr 逆时针方向 2π 360° R 逆时针方向 1 57.3° 2r 顺时针方向 -2 -114.6° πr 顺时针方向 -π -180° 0 未旋转 0 0° πr 逆时针方向 Π 180° 2πr逆时针方向2π360°应用例如例1 以下诸命题中,真命题是( ) A.一弧度是一度的圆心角所对的弧 B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题. 答案:D点评:此题考查弧度制下角的度量单位:1弧度的概念. 变式训练以下四个命题中,不正确的一个是( ) A.半圆所对的圆心角是π rad B.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度 答案:D例 2 将以下用弧度制表示的角化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,并指出它们所在的象限:①-415π;②332π;③-20;④-32. 活动:此题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=kπ,k ∈Z },{β|β2π=kπ,k ∈Z }.第一、二、三、四象限角的集合分别为: {β|2kπ<β<2kπ+2π,k ∈Z }, {β|2kπ+2π<β<2kπ+π,k ∈Z }, {β|2kπ+π<β<2kπ+23π,k ∈Z },{β|2kπ+23π<β<2kπ+2π,k ∈Z }.解:①415π-=-4π+4π,是第一象限角.②432π=10π+32π,是第二象限角.③-20=-3×6.28-1.16,是第四象限角. ④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k×6.28+α,k ∈Z ,|α|∈[0,6.28)的形式,通过α与2π,π,23π比拟大小,估计出角所在的象限.变式训练(1)把-1 480°写成2kπ+α(k ∈Z ,α∈[0,2π))的形式; (2)假设β∈[-4π,0),且β与(1)中α终边相同,求β.解:(1)∵-1 480°=-974π=-10π+916π,0≤916π<2π, ∴-1 480°=2(-5)π+916π.(2)∵β与α终边相同,∴β=2kπ+916π,k ∈Z . 又∵β∈[-4π,0),∴β1=92π-,β2=920π-.例3 0<θ<2π,且θ与7θ相同,求θ.活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终到达熟练掌握.从实际教学来看,用弧度制解决角的问题要很容易却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练根本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由,得7θ=2kπ+θ,k ∈Z ,即6θ=2kπ.∴θ=3k π. 又∵0<θ<2π,∴0<3kπ<2π. ∵k ∈Z ,当k=1、2、3、4、5时,θ=3π、32π、π、34π、35π.点评:此题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2kπ+α(k ∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角. 例4 一个扇形的周长为a,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这是一道应用题,并且考查了函数思想,教师提示学生回忆一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和稳固,并对答复好的学生进行表扬,对答复不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个根本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值. 解:设扇形的弧长为l,半径为r,圆心角为α,面积为S. 由,2r+l=a,即l=a-2r.∴S=21l·r=21(a-2r)·r=-r 2+2a r=-(r-4a)2+162a .∵r>0,l=a-2r>0,∴0<r<2a. ∴当r=4a时,S max =162a .此时,l=a-2·4a =2a ,∴α=r1=2. 故当扇形的圆心角为2 rad 时,扇形的面积取最大值162a .点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函数,然后求这个函数的最大值及相应的圆心角. 变式训练一个扇形的周长为98π+4,圆心角为80°,求这个扇形的面积. 解:设扇形的半径为r,面积为S,由知道,扇形的圆心角为80×180π=94π, ∴扇形的弧长为94πr,由,94πr+2r=98π+4,∴r=2.∴S=21·94πr 2=98π.故扇形的面积为98π.点评:求扇形的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.相反,也可由扇形的面积结合其他条件,求扇形的圆心角、半径、弧长.解题时要注意公式的灵活变形及方程思想的运用. 知能训练课本本节练习. 解答:1.(1)8π;(2)67m -;(3)320m . 点评:能进行角度与弧度的换算.2.(1)15°;(2)-240°;(3)54°.点评:能进行弧度与角度的换算. 3.(1){α|α=kπ,k ∈Z };(2){α|α=2π+kπ,k ∈Z }. 点评:用弧度制表示终边分别在x 轴和y 轴上的角的集合. 4.(1)cos0.75°>cos0.75;(2)tan1.2°<tan1.2.点评:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制.注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置.如求cos0.75°之前,要将角模式设置为DEG(角度制);求cos0.75之前,要将角模式设置为RAD(弧度制). 5.3πm. 点评:通过分别运用角度制和弧度制下的弧长公式,体会引入弧度制的必要性. 6.弧度数为1.2.点评:进一步认识弧度数的绝对值公式. 课堂小结重要的一点是,同学们自己找到了角的集合与实数集R 的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以效劳于社会,造福于人类. 作业①课本习题1.1 A 组6、8、10.②课后探究训练:课本习题1.1 B 组题.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,开展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定根底.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.。
弧度制优秀教学设计
《弧度制》教学设计弧度制的产生历史以及教材(人教A 版)中弧度制的呈现方式决定了“弧度制”必为教学难点.对于“弧度制”教学探索也一直没有停息:有些做法是直接给出“1弧度”定义,然后阐述该定义的合理性;有些是类比角度制的定义引出弧度制,再比较角度制与弧度制,进而凸显弧度制的优越性;有些依托数学史,详细阐述角度制向弧度制演变历史.这些做法从某种程度可以减轻弧度制“从天而降”的弊端,使学生经历比较自然地概念建构过程,但遗憾的是它们都忽略了“引入弧度制必要性”的揭示,即“为什么引入弧度制,引入弧度制的目的是什么?”这两个问题没有解释清楚很容易导致学习目的不明确,教学过程不自然.一般情况下,数学概念教学首先要解决的是必要性的问题,其次才是合理性、优越性.弧度制的教学也可以按照这样的思路展开.由于弧度是在角度制的改进与优化,类比角度制有助于弧度制概念的生成与理解.除此之外,在引入弧度制的过程中,还可以与生活中的计算、物理中的公式进行类比,有助于凸显弧度制的必要性.依据教材内容和教参分析,确定本节课的教学重点是:弧度制的概念,弧度制与角度制的互化;教学难点是:弧度制概念的建立与理解.下面具体介绍笔者对于突破这两者的教学设计.1、创设情景,引入新课1. 有一个扇形的篱笆,半径为3m ,圆心角为135°,则篱笆的弧长和面积分别是多少?2. 有一个扇形的篱笆,若已知其周长为10m ,求扇形的面积最大时圆心角的大小?设计意图:通过这两个问题复习初中有关扇形弧长、面积等的有关公式,同时发现有些问题用角度制来表示弧长或面积会显得比较复杂、冗长和繁琐,因此自然而然会思考一个问题:有没有其它度量角的单位以有利于上述这些公式的表示与计算.3.在数学中,度量角的大小可以用角度制,那么1º是如何规定的?4. 一个物体是2.1g ,若表示为0.0021kg ,你觉得表示方便了吗?5. 地球上物体所受的重力G =mg ,这里的m 是物体的质量,g 是重力加速度9.8N/kg ,若物体的质量为1kg ,则所受重力为G =9.8N ,若物体质量为1磅,则所受重力为多少?物体在“磅”单位下的重力公式是什么?由于,故可形成以下对比:10.45359kg =磅设计意图:问题3首先是回忆角度是怎么定义的,确认1º怎么规定.其次,类比生活和物理中的情景,思考用什么度量单位来度量一个问题比较合适,通过强烈的视觉对比反差可以发现,同一个对象用不用的度量单位表示是有繁简差异的,为后续弧度制的引出奠定基础.2、类比观察,探究发现6. 在角度制下,扇形的弧长公式看上去有点繁琐,能不能想办法简化?180n R l π=设计意图:通过对比不同制度下同一个物理公式的繁简差异,只要将整体简化10.45359m 就可以将公式变得简洁清晰,类比得到在弧长公式中,只需将整体替换为,也m 180n πo o1n 即令就可以将公式精简为,突出了问题的本质,彰显数学的简1180π=o 180n R l π=o o 1l n R =洁美.3、形成概念,构建知识7. 这样我们就有,依次类推,我们发现了衡量角度180=πo 360=290=60=23πππo o o L ,,,大小的另一种单位.那么这种度量角的公式是怎么样的?8. 这样定义合理吗,这个角会不会随着圆的半径变化而变化呢?设计意图:这样自然而然就从问题6引出了问题7,只要是在的前提下,就有180=πo ,即.同时会思考,这样一个定义的合理性,对于这个问题,通过代数上1l n R =1l n R=的公式变形及几何上的相似比的显示,都可以验证定理的合理性.8. 那么1弧度的角是怎样定义的呢?它有什么特殊含义?10. 若,即单位圆的圆心角的弧度数跟弧长有什么关系?1R =设计意图:通过设问1弧度的角的定义与含义,引出弧度制的概念:长度等于半径长的弧所对的圆心角为1弧度的角.用符号rad 表示,读作弧度.因而.再补充强()180=rad πo调正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是.同时在的条件l Rα=1R =下,弧长与圆心角的弧度数相等,此时可以直接用弧长来表示角的大小,呈现了更为直观的几何关系,如当车轮在地面沿着直线行进时,车轮碾过的弧长就是对应的点从初始位置至终止位置转过的角弧度大小.以上10个问题,通过问题链的形式,环环相扣、层层递进,可以清晰有效地呈现引入弧度制的必要性与合理性,突出重点、突破难点,且能提升学生通过现象看清问题本质的能力,具有一定的新颖性和创新性.4、例题分析,当堂训练例1. 填写下列表格注:今后我们用弧度制表示角的时候,“弧度”二字或者“rad”通常省略不写,而只写这个角所对应的弧度数.但如果以度(º)为 单位表示角时,度(º)不能省略.例2. 将下列角转化为相应的角度制或弧度制33718,,1,1.10π'-o o 强调:在例2的基础上可以发现,角的集合与实数集R 之间建立了一一对应的关系.变式. 把下列各角化成 的形式:例3. 设扇形篱笆的圆心角是3rad ,所对的弧长是4m ,求扇形篱笆的面积.变式1. 设扇形篱笆的周长为10m ,圆心角为2rad ,求该扇形的面积.变式2. 有一个扇形的篱笆,若已知其周长为10m ,求扇形的面积最大时圆心角的大小.设计意图:例3是生活实际应用,体现数学来源于生活,同时变式3首尾呼应,可以看到,在弧度制下,扇形有关公式如等变得简洁,有利于记忆、211,22l R S R lR αα===计算和凸显数量之间的本质关系,体现了弧度制的优越性,整堂课自此一气呵成.5、课堂反思,作业布置同时,可以引领学生反思以下问题:1. 通过今天的学习,你觉得弧度制有什么优势与不足?在接下来的学习中弧度制还有其他优势吗?2. 一条弦的长等于半径,这条弦所对的圆心角是1弧度吗?为什么?当圆半径变化时,该圆心角有变化吗?能不能由此定义“弦度数”概念,它有什么利弊?3. 作业布置:习题1.1A 组1,3,8,B 组1,2板书设计如下:()Ζ202∈<≤+k k ,πααπ教学反思:21. 角度制与弧度制可以看作将圆360等分和等分,每等分所对的圆心角大小分别为1°和1rad,两者外在形式不一样,但本质是相同的,两种单位制各有特点与优劣.本节课尝试从弧度制下的扇形弧长、面积公式较简单作为突破口导入课堂,首尾呼应、一气呵成、较为连贯,突破教学难点方面颇具新意,但教学引入内容可能有点相对普通;2. 课堂环节教师启发和引导较多,学生基本是跟着老师思路走,自主性不大,如果更好地分配及安排学生自主探究学习时间需要进一步思考与改进.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《弧度制》教学设计
深入挖掘数学学科的核心价值,树立以发展学生数学学科核心素养为导向的教学意识,将数学学科核心素养的培养贯穿于教学活动的全过程——这是我教学设计的根本宗旨.本节课教学的重点就是弧度制概念.
一.教学内容解析
弧度制在本章的位置:
本节知识结构:
《弧度制》是必修4第一章第一节第二课时的内容,教学重点是弧度制的概念.本节内容起着承上启下的作用,在弧度制下,任意角的集合和实数集建立起一一对应的关系,为三角函数奠定基础.
二.教学目标设置
首先,理解1弧度的角及弧度制的定义;掌握角度和弧度的换算公式;了解角的集合和实数集之间一一对应的关系;理解并掌握弧度制下的弧长公式、扇形。