大学物理(第四版)课后习题及答案刚体
大学物理刚体的定轴转动习题及答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时,角加速度β不变;刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变;又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化;2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩;()2z i iL m l I ωω==∑,其中()2i iI m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====;既 z M I β=; 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式; 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:1如果它们的角动量相同,哪个轮子转得快2如果它们的角速度相同,哪个轮子的角动量大答:1由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;2如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大; 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒;5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求:(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度; 解:1由题意飞轮的初角速度为飞轮作均减速转动,其角加速度为故从开始制动到停止转动,飞轮转过的角位移为 因此,飞轮转过圈数为/2θπ∆=100圈;2开始制动后5秒时飞轮的角速度为6.如图所示, 一飞轮由一直径为2()d m ,厚度为()a m 的圆盘和两个直径为1()d m ,长为()L m 的共轴圆柱体组成,设飞轮的密度为3(/)kg m ρ,求飞轮对轴的转动惯量;解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;由此可得7. 如图所示,一半径为r,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度;解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= 1对于滑轮按转动定律有212Tr mr β=2 由角量线量关系有a r β= 3联立以上三式解得8. 如图所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r 1、r 2,质量为1m 和2m ,可绕过盘心且与盘面垂直的光滑水平轴转动,两轮上绕有轻绳,各挂有质量为3m 和4m 的重物,求轮的角加速度β;解:设连接3m 的绳子中的张力为T1,连接4m 的绳子中的张力为T2; 对重物3m 按牛顿第二定律有3133m g T m a -= 1 对重物4m 按牛顿第二定律有2444T m g m a -= 2对两个园盘,作为一个整体,按转动定律有112211221122T r T r m r m r β⎛⎫-=+ ⎪⎝⎭3aLd 1d 2由角量线量之间的关系有 31a r β=442a r β= 5联立以上五式解得9. 如图所示,一半径为R,质量为m 的匀质圆盘,以角速度ω绕其中心轴转动;现将它平放在一水平板上,盘与板表面的摩擦因数为μ;1求圆盘所受的摩擦力矩;2问经过多少时间后,圆盘转动才能停止 解:分析:圆盘各部分的摩擦力的力臂不同,为此,可将圆盘分割成许多同心圆环,对环的摩擦力矩积分即可得总力矩;另由于摩擦力矩是恒力矩,由角动量定理可求得圆盘停止前所经历的时间;1圆盘上半径为r 、宽度为dr 的同心圆环所受的摩擦力矩为负号表示摩擦力矩为阻力矩;对上式沿径向积分得圆盘所受的总摩擦力矩大小为2由于摩擦力矩是一恒力矩,圆盘的转动惯量212I mr =,由角动量定理可得圆盘停止的时间为10. 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题4-10图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:1设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转2如果在2s 内飞轮转速减少一半,需加多大的力F解: 1先作闸杆和飞轮的受力分析图如图b .图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反.∵ N F r μ=N N '=∴F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为可知在这段时间里,飞轮转了1.53转. 210s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 用上面式1所示的关系,可求出所需的制动力为11. 如图所示,主动轮A 半径为r 1,转动惯量为1I ,绕定轴1O 转动;从动轮B 半径为r 2,转动惯量为2I ,绕定轴2O 转动;两轮之间无相对滑动;若知主动轮受到的驱动力矩为M ,求两个轮的角加速度1β和2β;解:设两轮之间摩擦力为f 对主动轮按转动定律有:111M fr I β-= 1对从动轮按转动定律有222fr I β= 2由于两个轮边沿速率相同,有1122r r ββ= 3联立以上三式解得12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题4-12a 图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:1柱体转动时的角加速度; 2两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度方向题4-12b图.(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得 2由①式 由②式13. 一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘如题2-31图所示方向. 1开始时轮是静止的,在质点打入后的角速度为何值2用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比. 解: 1射入的过程对O 轴的角动量守恒 ∴ Rm m v m )(sin 000+=θω2020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ14. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0υ与杆下端小球m 作对心碰撞,碰后以021υ 的速度返回,试求碰撞后轻杆所获得的角速度.解:碰撞过程满足角动量守恒:而 222212()2()333I m l m l ml =+=2m m O21 0vl l 31l所以 2023mv l ml ω=由此得到:032vlω=15. 如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J A =10 kg ·m2 和 J B =20 kg ·m2.开始时,A 轮转速为600 rev/min,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:1 两轮啮合后的转速n ;2 两轮各自所受的冲量矩.解:1 两轮啮合过程满足角动量守恒: 所以 A AA BI I I ωω=+ 因为 2n ωπ= 故 10600200/min 1020A A AB I n n r I I ⨯===++ 2 两轮各自所受的冲量矩: 末角速度:2200202/603n rad s ππωπ⨯=== A 轮各所受的冲量矩:202060040010(2) 4.1910()3603A A L I I N m s ππωωπ∆=-=⨯-⨯=-=-⨯⋅⋅B 轮各所受的冲量矩:16. 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径.解:1 球体收缩过程满足角动量守恒:所以17. 一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上圆盘与水平面之间的摩擦系数为,圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求1 子弹击中圆盘后,盘所获得的角速度.2 经过多少时间后,圆盘停止转动.解:1 子弹击中圆盘过程满足角动量守恒: 所以 002211()22mRv mv mR MR m M Rω==++ 2圆盘受到的摩擦力矩为 由转动定律得 M Iβ'=。
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
大学物理第四章 刚体的转动部分的习题及答案
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
大学物理(第四版)课后习题及答案 刚体
题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为 圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即CJ 20ωθ=在时间t 内所转过的圈数为 CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理第四版课后习题答案
大学物理第四版课后习题答案大学物理第四版课后习题答案大学物理是一门广受学生喜爱的学科,它涵盖了众多的知识点和概念,需要学生付出大量的努力来掌握。
而课后习题则是检验学生对所学知识的理解和掌握程度的重要方式之一。
然而,对于大多数学生来说,完成课后习题往往是一项具有挑战性的任务。
因此,有一本完整的课后习题答案对学生来说无疑是非常有帮助的。
在大学物理第四版中,课后习题是根据每一章节的内容设计的。
这些习题旨在帮助学生巩固所学的知识,并提供一些实际应用的练习。
然而,由于习题的难度和复杂性不同,学生在解答时可能会遇到一些困难。
因此,拥有一本详细的习题答案可以帮助他们更好地理解和解决问题。
对于大学物理第四版的课后习题,以下是一些可能的答案和解决方法:1. 机械振动和波动习题:一个质点以振幅为0.2m的简谐运动在频率为5Hz的弹簧上进行,求其最大速度和最大加速度。
答案:根据简谐运动的公式,最大速度v_max = Aω,其中A为振幅,ω为角频率。
最大加速度a_max = Aω²。
代入数据,可得到v_max = 0.2m × 2π × 5Hz ≈ 6.28m/s,a_max = 0.2m × (2π × 5Hz)² ≈ 62.8m/s²。
2. 电磁场和电磁波习题:一个半径为0.1m的圆形线圈中通有电流,求该线圈在中心处产生的磁场强度。
答案:根据安培环路定理,磁场强度B = μ₀I/(2πr),其中μ₀为真空中的磁导率,I为电流,r为距离。
代入数据,可得到B = (4π × 10⁻⁷T·m/A) × I/(2π × 0.1m) ≈ 2 × 10⁻⁵T。
3. 热力学习题:一个理想气体从初始状态(P₁,V₁,T₁)经历了一个等温过程,最终达到状态(P₂,V₂,T₁),求气体对外做功。
答案:由于等温过程中气体的温度保持不变,根据理想气体状态方程PV = nRT,可得到P₁V₁ = P₂V₂。
大学物理习题答案03刚体运动学
⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。
若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。
(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。
(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。
(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。
[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。
(1)021 F F,=0合外F ,动量守恒。
(2)2211r F r F A =合。
21F F,但21r r时0A 外,因此E不⼀定守恒。
(3)21F F,2211d F d F M =合。
两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。
2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。
则物体 (A) 动能不变,动量改变。
(B) 动量不变,动能改变。
(C) ⾓动量不变,动量不变。
(D) ⾓动量改变,动量改变。
(E)⾓动量不变,动能、动量都改变。
[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。
r 减⼩,v 增⼤。
因此p 、E k 均变化(m不变)。
3. 有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。
[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。
另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。
大学物理第四版下册课后题答案
习题1111-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mBC=,0.03mAC=)。
解:1q在C点产生的场强:1124ACqE irπε=,2q在C点产生的场强:2224BCqE jrπε=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:224123.2410VE E E m=+=⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010q C mlλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。
解法1:利用微元积分:21cos4O xRddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆αji2cmORxαα心O 点的场强。
解:以O 为坐标原点建立xOy 坐标,如图所示。
①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强: 有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:20002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。
最新大学物理(第四版)课后习题及答案 刚体
题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为 ()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为 ()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为 JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即 CJ 20ωθ=在时间t 内所转过的圈数为CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理(第四版)课后习题及答案_电介质
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
大学物理(第四版)课后习题及答案_分子运动
题5.1:一打足气的自行车内胎,在7.0 ℃时,轮胎中空气的压强为Pa 100.45⨯,则当温度变为37.0 ℃时,轮贻内空气的压强为多少?(设内胎容积不变)题5.1分析:胎内空气可视为一定量的理想气体,其始末均为平衡态(即有确定的状态参量p 、V 、T 值)由于气体的体积不变,由理想气体物态方程RT MmpV =可知,压强p 与温度T 成正比。
由此即可求出末态的压强。
解:由分析可知,当C 0.372 =T 时,轮胎内空气压强为P a 1043.451122⨯==T p T p 可见当温度升高时,轮胎内气体压强变大,因此,夏季外出时自行车的车胎不宜充气太足,以免爆胎。
题5.2:在水面下50.0 m 深的湖底处(温度为4.0 ℃),有一个体积为1.0⨯10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0 ℃,求气泡到达湖面的体积。
(取大气压强为p 0 = 1.013⨯105 Pa )题5.2分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。
利用理想气体物态方程即可求解本题。
位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103kg·m -3)。
解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。
由分析知湖底处压强为gh p gh p p ρρ+=+=021。
利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ 题5.3:氧气瓶的容积为32m 102.3-⨯,其中氧气的压强为71030.1⨯Pa ,氧气厂规定压强降到61000.1⨯Pa 时,就应重新充气,以免经常洗瓶。
某小型吹玻璃车间,平均每天用去0.40 m 3压强为51001.1⨯Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变)题5.3分析:由于使用条件的限制,瓶中氧气不可能完全被使用。
大学物理课后习题及答案刚体
题:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转题解:(1)由于角速度2n (n 为单位时间内的转数),根据角加速度的定义t d d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα (2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为圈390220=+==t n n N πθ 题:某种电动机启动后转速随时间变化的关系为)1(0τωωt e --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题解:(1)根据题意中转速随时间的变化关系,将t s 代入,即得100s 6.895.01--==⎪⎪⎭⎫ ⎝⎛-=ωωωτt e(2)角加速度随时间变化的规律为220s 5.4d d ---===tt e e t ττωωα (3)t = s 时转过的角度为rad 9.36d 1d 60060=⎪⎪⎭⎫ ⎝⎛-==⎰⎰-s t s t et τωωθ 则t = s 时电动机转过的圈数圈87.52==πθN 题:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半(2)在此时间内共转过多少转题解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为J C t ωωα-==d d (1)根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t 由于C 和J 均为常量,得t J C e -=0ωω 当角速度由0021ωω→时,转动所需的时间为 2ln CJ t = (2)根据初始条件对式(2)积分,有⎰⎰-=t t J C t e 000d d ωθθ即CJ 20ωθ= 在时间t 内所转过的圈数为CJ N πωπθ420== 题:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理学(第四版)课后习题答案(下册)
大学物理学课后习题答案(下册)习题99.1 选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q 所受到合力为零,则Q 与q 的关系为:()(A )Q=-2 3/2q (B) Q=2 3/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A )若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B )若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D )若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:D](3)一半径为R 的导体球表面的面点荷密度为σ,则在距球面R 处的电场强度()(A )σ/ε0(B)σ/2ε0(C)σ/4ε0(D )σ/8ε0[答案:C](4)在电场中的导体内部的()(A )电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2 填空题(1)在静电场中,电势不变的区域,场强必定为。
[ 答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[ 答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。
[ 答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q 均匀分布在半径为R 的球体内,则球内球外的静电能之比。
[ 答案:5:6]9.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解: 如题9.3 图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2 14π0qcos30a 214π(qq3a)23解得(2)与三角形边长无关.q3q3题9.3 图题9.4 图9.4 两小球的质量都是m,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 , 如题9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4 图示T sin T cosF emg14π 0 (2lq 2sin ) 2解得q2l sin 4 0 mg t an9.5 根据点电荷场强公式 Eq4 0 r,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?q解: E4 π0rr0 仅对点电荷成立,当r0 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有 A ,B 两平行板,相对距离为 d ,板面积为S ,其带电量分别为+ q 和- q .则q 2 这两板之间有相互作用力 f ,有人说 f =4 d 2, 又有人说,因为 f = qE , Eq,所S222d2l l 22以 f =q .试问这两种说法对吗 ?为什么 ? f 到底应等于多少 ?S解: 题中的两种说法均不对. 第一种说法中把两带电板视为点电荷是不对的,第二种说法把q合场强 E看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个S板的电场为 E q,另一板受它的作用力fq q q2,这是两板间相互作用的电场力.2 0 S2 0 S2 0 S9.7 长 l =15.0cm 的直导线 AB 上均匀地分布着线密度=5.0x10 -9C 2 m-1的正电荷.试求:(1) 在导线的延长线上与导线B 端相距a 1 =5.0cm 处 P 点的场强; (2) 在导线的垂直平分线上与导线中点相距d 2 =5.0cm 处 Q 点的场强.解: 如题 9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq 在 P 点产生场强为 dE PE P14 π 0 ( adE Pdxx) 22 dx题 9.7 图4π 02(a x) 2[ 11]4π 0a l al 2 2lπ 0 (4 al 2)用 l15 cm ,5.0 10 9 C m 1, a 12.5 cm 代入得(2) 同理2E P6.74 10 N CdE1 dx 1方向水平向右方向如题 9.7 图所示Q 4 π 0 x2由于对称性dE Qxl0 ,即 E Q 只有 y 分量,2d 220 l 1∵dE Qy1x d2 224 π 0 xd 2x22EdEd 2 2 dxQylQyl4π 2l 2(x23d 2 )22π 0 l4d2以5.0 10 9C cm , l 15 cm , d 2 5 cm 代入得E Q E Qy14.96 102 N C ,方向沿 y 轴正向9.8一个半径为 R 的均匀带电半圆环,电荷线密度为, 求环心处 O 点的场强.解: 如 9.8 图在圆上取 dl Rd题 9.8 图dqdl R d ,它在 O 点产生场强大小为Rd dE24π 0 R方向沿半径向外则dE xdE sinsin d 4π 0 RdE ydE cos()cos d 4π 0 R积 分 E xsin d4π 0 R2π 0 RE ycos d 04π 0 R∴E E x2π R,方向沿x 轴正向.122222 229.9均匀带电的细线弯成正方形,边长为 l ,总电量为 q .(1) 求这正方形轴线上离中心为 r处的场强 E ; (2) 证明:在 rl 处,它相当于点电荷 q 产生的场强 E .解: 如 9.9 图示,正方形一条边上电荷q在 P 点产生物强4dE P 方向如图,大小为dE Pcos 4π 0 1 cos 2 l2r24∵cos 1l22r 2l 2∴dE Pcos 2cos 1ll2l24π0 rr42dE P 在垂直于平面上的分量dE∴dEl dE P cosr4π 0 rlr 2lr2l424题 9.9 图由于对称性, P 点场强沿 OP 方向,大小为E P 4 dE∵4π 0(r 2q 4l4 lr l2l2) r 24222e .e内r 0 内1∴E P4π 0 (r qrl) r 2l4 2方向沿OP9.10(1) 点电荷q 位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1) 由高斯定理 E dS qs立方体六个面,当q 在立方体中心时,每个面上电通量相等∴各面电通量q 6 0(2) 电荷在顶点时,将立方体延伸为边长2a 的立方体,使q 处于边长2a 的立方体中心,则边长2a 的正方形上电通量q 6 0对于边长 a 的正方形,如果它不包含q 所在的顶点,则qe,24 0如果它包含q 所在顶点则 e 0 .如题9.10 图所示.题9.10 图9.11均匀带电球壳内半径6cm,外半径10cm,电荷体密度为238cm ,12cm 各点的场强.10 5 C2 m-3 求距球心5cm,解: 高斯定理 E dSsq2q , E4πr0 0当r 5 cm时,q 0 , E 0r 8 cm 时,q4π3p (r r 3 ) 34πr 3 r 2∴ E34π 23.48 10 4 N C ,方向沿半径向外.22外3 r 3r 12 cm 时, q4π(r3 r 内)4π 3 外 ∴E33r 内 4.10 10 4N C1沿半径向外 .4π 0 r9.12半径为 R 1 和 R 2 ( R 2 > R 1 ) 的两无限长同轴圆柱面,单位长度上分别带有电量 和-, 试求:(1)r < R 1 ; (2) R 1 < r < R 2 ;(3) r > R 2 处各点的场强.解: 高斯定理qE dSs取同轴圆柱形高斯面,侧面积则S E d S S2πrl E 2πrl对(1)r R 1 q 0, E 0(2)R 1rR 2q l∴E2π 0 r沿径向向外(3)∴r R 2q 0E题 9.13 图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为 1 和 2 ,试求空间各处场强. 解:如题 9.13 图示,两带电平面均匀带电,电荷面密度分别为1 与2 ,两面间,E1( 2 02)n1 面外,E1 (1 2)n20 210 1 2 面外, E(12 02) nn :垂直于两平面由1 面指为2 面.9.14半径为 R 的均匀带电球体内的电荷体密度为, 若在球内挖去一块半径为r < R 的 小球体,如题 9.14图所示.试求:两球心 O 与 O 点的场强,并证明小球空腔内的电场是均匀的. 解:将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题9.14 图 (a) .(1)球在 O 点产生电场球在 O 点产生电场 E 10E 200,4 πr 33OO' 4π 0d∴O 点电场 E 0r33 d3OO ';4 d 3(2)在 O 产生电场 E 103 4π 0dOO '球在 O 产生电场 E 20∴ O 点电场E 0OO'3 0题 9.14 图(a)题 9.14 图 (b)(3) 设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r ( 如 题 8-13(b) 图)r 则E PO,3r E PO,3 03 3q -8r0 6OO∴E PE PO E PO(r r )3 0 OO' d3 0 3 0∴腔内场强是均匀的.-69.15 一电偶极子由 =1.0 3 10 C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电5-1偶极子放在 1.0 3 10 N2 C的外电场中,求外电场作用于电偶极子上的最大力矩.解:∵ 电偶极子 p 在外场 E 中受力矩Mp E∴M maxpE qlE 代入数字M max1.0 1062 1031.0 1052.0 10 4N m9.16 两点电荷1 =1.5 3 10 C , -82 =3.03 10C ,相距 r 1 =42cm ,要把它们之间的距离变为r 2 =25cm ,需作多少功 ?解: Ar 2 F drr 2 q 1 q 2dr q 1q 2(11 ) r 1r 24π 24π 0 r 1r 26.55 10 J外力需作的功AA 6.55 106J题 9.17 图9.17 如题 9.17图所示,在 A , B 两点处放有电量分别为+q ,- q 的点电荷, AB 间距离为2 R ,现将另一正试验点电荷q 0 从 O 点经过半圆弧移到 C 点,求移动过程中电场力作的功. 解:如题 9.17 图示U 1 ( q 4π 0 Rq) 0 RU 1 ( q q ) 4π 0 3 R Rq 6 π 0 Rq q4-31-19∴A q 0 (U O U C )q o q 6π 0 R9.18 如题 9.18图所示的绝缘细线上均匀分布着线密度为 的正电荷 , 两直导线的长度和半圆环的半径都等于R .试求环中心 O 点处的场强和电势.解: (1) 由于电荷均匀分布与对称性, AB 和 CD 段电荷在 O 点产生的场强互相抵消,取dl Rd则 dqRd 产生 O 点 d E 如图,由于对称性, O 点场强沿 y 轴负方向题 9.18 图EdE2Rd cosy24π 0 R[ sin() 4 π 0 R2sin]22 π 0 R(2)AB 电荷在 O 点产生电势,以 UAdx 1B4 π 0 x2 R dxR4π 0 x4π 0ln 2同理 CD 产生半圆环产生U 24 π 0πR 3ln 24π 0 R4 0∴U O U 1 U 2 U 32π 0ln 24 09.19 一电子绕一带均匀电荷的长直导线以23 10 m 2 s 的匀速率作圆周运动. 求带电直线上的线电荷密度. ( 电子质量m 0 =9.1 3 10 kg ,电子电量 e =1.60 3 10 C)2U U -1E 解:设均匀带电直线电荷密度为 ,在电子轨道处场强E2π 0 r电子受力大小F eeEe 2 π 0 r∴e mv2π 0 rr2π 0 得mv 2 12.5 10 13 C m 1e-19.20 空气可以承受的场强的最大值为=30kV2 cm,超过这个数值时空气要发生火花放 电. 今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压. 解:平行板电容器内部近似为均匀电场UEd 1.5 104V9.21 证明:对于两个无限大的平行平面带电导体板 ( 题9.21 图) 来说, (1) 相向的两面上,电荷的面密度总是大小相等而符号相反; (2) 相背的两面上,电荷的面密度总是大小相等而符号相同. 证:如题 9.21 图所示,设两导体 A 、B 的四个平面均匀带电的电荷面密度依次为1 ,2 ,3 ,4题 9.21 图(1) 则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有E d S ( s3) S 0∴2 3说明相向两面上电荷面密度大小相等、符号相反;(2) 在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即2212342 02222-77又∵2 3∴1 4说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板 A , B 和 C 的面积都是 200cm , A 和 B 相距 4.0mm , A 与 C 相距 2.0 mm . B , C 都接地,如题 9.22图所示.如果使 A 板带正电 3.0 3 10 C ,略去边缘效应,问 B 板和 C 板上的感应电荷各是多少 ?以地的电势为零,则 A 板的电势是多少 ? 解: 如题 9.22 图示,令 A 板左侧面电荷面密度为1 ,右侧面电荷面密度为2题 9.22 图(1) ∵U AC U AB ,即∴E AC d ACE AB d A B1E AC d AB ∴22E AB且1 +2q A23S d ACq A S2 q A 13S而qCS 2q 32 10 7Cq B2S1 10 C(2)U A E AC d A Cd AC2.3 103V9.23 两个半径分别为R 1 和 R 2 ( R 1 < R 2 ) 的同心薄金属球壳,现给内球壳带电+ q ,试计算:(1) 外球壳上的电荷分布及电势大小;(2) 先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.得, 1A 1R 2解: (1) 内球带电q ;球壳内表面带电则为 q , 外表面带电为 q ,且均匀分布,其电势qdrq UE drRR4π r 2 4π R22题 9.23 图(2) 外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍为 q .所以球壳电势由内球q 与内表面 q 产生:Uq 4π 0 R 2q 04π 0 R 2(3) 设此时内球壳带电量为q ;则外壳内表面带电量为 q ,外壳外表面带电量为 q q( 电荷守恒 ) ,此时内球壳电势为零,且q' q' U Aq q' 04 π 0 R 14π 0 R 24π 0 R 2得外球壳上电势UqR 1 qR 2q' q'q q'R 1 R 2 qB4π 0 R 24π 0 R 24π 0 R 24π 0 29.24 半径为 R 的金属球离地面很远,并用导线与地相联,在与球心相距为一点电荷 + q ,试求:金属球上的感应电荷的电量. d3R 处有解:如题 9.24 图所示,设金属球感应电荷为q ,则球接地时电势 U O由电势叠加原理有:题 9.24 图q' q O4π 0 R4π 0 3 RUF 01223得qq 39.25 有三个大小相同的金属小球,小球1, 2带有等量同号电荷,相距甚远,其间的库仑力为 F 0 .试求:(1) 用带绝缘柄的不带电小球3先后分别接触 1,2后移去,小球 1,2之间的库仑力;(2) 小球 3依次交替接触小球 1, 2很多次后移去,小球 1, 2之间的库仑力.解: 由题意知q 4π 0r2(1) 小球 3 接触小球 1后,小球 3 和小球 1均带电qq ,2小球 3 再与小球 2 接触后,小球 2 与小球 3 均带电q3 q 4∴此时小球 1与小球 2 间相互作用力3 q 2F q' q" 8 3 F 4π 0 r4π 0 r8(2) 小球 3 依次交替接触小球 1、 2 很多次后,每个小球带电量均为2q .3∴小球 1 、 2 间的作用力 F 22 23 q 3 q 40 4π 0r 299.26 在半径为R 1 的金属球之外包有一层外半径为R 2 的均匀电介质球壳, 介质相对介电常数为r ,金属球带电Q .试求:(1) 电介质内、外的场强; (2) 电介质层内、外的电势; (3) 金属球的电势.解: 利用有介质时的高斯定理D dS qS(1) 介质内(R 1 rR 2 ) 场强DQr4 πr, E 内 Qr ;4 π 0 r r20 F 3r外 2介质外 (r R 2 ) 场强DQr 4πr 3, E 外Qr4 π 0 r(2) 介质外 (rR 2 ) 电势UE drrQ 4 π 0 r介质内(R 1 rR 2 ) 电势UE 内 dr rE 外 drrq1 ( 4π 0 r r 1 Q )R 2 4 π 0 R 2(3) 金属球的电势Q(1 r1 4π 0 r rR 2R 2 U E 内 drE 外 drR 1 R 2R 2 Qdr QdrR4π 0 r R 24 π 0rQ4π 0( 1 r1 rR 1R 29.27 如题 9.27图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题 9.27 图所示,充满电介质部分场强为E 2 ,真空部分场强为 E 1 ,自由电荷面密度分别为2 与1由 D dSq 0 得D 11 ,D 22而D 1E 1 , D 20 rE 23)2)2E 1 E 2∴2 U d0 rE 2 r10 E 1题 9.27 图题 9.28 图9.28 两个同轴的圆柱面,长度均为l ,半径分别为 R 1 和 R 2 ( R 2 > R 1 ) , 且 l >> R 2 - R 1 ,两柱面之间充有介电常数的均匀电介质 . 当两圆柱面分别带等量异号电荷Q 和- Q 时,求:(1) 在半径 r 处(R 1 < r < R 2 =,厚度为 dr ,长为 l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2) 电介质中的总电场能量; (3) 圆柱形电容器的电容.解: 取半径为 r 的同轴圆柱面(S)则D d S ( S)2πrlD当 (R 1 r∴R 2 ) 时,q QDQ 2 πrl D 2Q2 (1) 电场能量密度w2 8π2r 2l 2Q2 Q 2dr 薄壳中 dWwd8π2r 2l22πrdrl4π rl(2) 电介质中总电场能量WdWR 2 Q2drQ lnR 2VR 14πrl4πl R 1(3) 电容:∵WQ2C2Q 2 2πl∴C2W ln( R2 / R1 )题9.29 图9.29 如题9.29 图所示,C1 =0.25 F,C2 =0.15 F,C3 =0.20 F .C1上电压为50V.求:U AB .解: 电容C1 上电量Q1 C1U 1电容C2 与C3 并联C23 C2 C3其上电荷∴Q23 Q1Q232C1U 125 50UABC23U 1 U 2C2350(13525)3586 V9.30C1 和C2 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) C1 与C2 串联后电容C C1C2200 300 120pF(2) 串联后电压比C1 C2U 1 C2200 300 3U 2 C1,而U 1 U 221000∴U 1600 V , U 2400 V即电容C1 电压超过耐压值会击穿,然后C2 也击穿.9.31半径为R1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2 =4.0cmU2222 2和 R 3 =5.0cm ,当内球带电荷 Q =3.0 3 10 C 时,求:(1) 整个电场储存的能量;(2) 如果将导体壳接地,计算储存的能量; (3) 此电容器的电容值.解: 如图,内球带电 Q ,外球壳内表面带电Q ,外表面带电 Q(1) 在 rR 1 和 R 2题 9.31 图r R 3 区域在 Rr R 时E 0E Qr 1214π 0 rrR 3 时Qr 24π 0 r∴在 R 1rR 2 区域W 1R 2 1 R 1 2Q( 2 4π 0 r) 24πr drR 2 Q drQ( 1 1 ) R 18π 0 r8π 0 R 1R 2在 rR 3 区域W 1 ( Q) 2 4πr 2drQ 1R 32 0 4π 0 r8π0 R 3∴ 总能量W W 1 W 2Q( 1 1 1 ) 8π 0 R 1R 2R 31.82 10 4J(2) 导体壳接地时,只有R 1rR 2 时 EQr , W 2 04π 0 r2 -83E 3 22312∴W W 1Q21( 8π 0 R 11 ) 1.01 R 210 4 J(3) 电容器电容C2W Q2 4 π 0 /(11 ) R 1R 24.49 10F习 题 1010.1 选择题(1) 对于安培环路定理的理解,正确的是:( A )若环流等于零,则在回路 L 上必定是 H 处处为零; ( B )若环流等于零,则在回路 L 上必定不包围电流;( C )若环流等于零,则在回路L 所包围传导电流的代数和为零;( D )回路 L 上各点的 H 仅与回路 L 包围的电流有关。
大学物理 习题课(刚体)
J1r1r2 10 2 2 2 J1r2 J 2 r1
11、质量为m,长为 l的均匀棒,如图, 若用水平力打击在离轴下 y 处,作用时 Ry 间为t 求:轴反力
解:轴反力设为 Rx Ry d 由转动定律: yF J y dt yF t t 为作用时间 F 得到: J 由质心运动定理: l d l 2 切向: F Rx m 法向: R y mg m 2 dt 2 2 2 2 3y 9 F y (t ) R 于是得到: x (1 ) F R y m g 2l 2l 3 m
10
r1
r2
解: 受力分析: 无竖直方向上的运动
10
o1
N1
f
r1
N2
r2
N1 f m1 g N 2 f m2 g
以O1点为参考点, 计算系统的外力矩:
o2
f
m1 g
m2 g
M ( N2 m2 g )(r1 r2 )
f (r1 r2 ) 0
作用在系统上的外力矩不为0,故系统的角动量不守恒。 只能用转动定律做此题。
r
at r
在R处:
R
at R
(2)用一根绳连接两个或多个刚体
B
C
M 2 o2 R 2
o1R1 M1
D
A
m2
m1
• 同一根绳上各点的切向加速度相同;线速度也相同;
a t A a t B a t C a t D
A B C D
• 跨过有质量的圆盘两边的绳子中的张力不相等;
TA TB TD
但 TB TC
B
C
M 2 o2 R 2
o1R1 M1
大学物理(第四版)课后习题及答案_量子物理
第十七 章量子物理题17.1:天狼星的温度大约是11000℃。
试由维思位移定律计算其辐射峰值的波长。
题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。
若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。
设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。
题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。
太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 5800122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。
哪一种金属可以用作可见光范围内的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率范围可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。
题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。
题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==, 可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。
大学物理第四章习题及答案
第四章 刚体的转动4-1 一汽车发动机曲轴的转速在12s 内由3102.1⨯r.min -1增加到3107.2⨯r.min -1。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 解:曲轴做匀变速转动。
(1)角速度n πω2=,根据角速度的定义dtd ωα=,则有:()=-=-=tn n t002πωωα13.1rad.s -2 (2)发动机曲轴转过的角度为t t t 221020ωωαωθ+=+=()t n n 0+=π在12秒内曲轴转过的圈数为 N 390220=+==t n n πθ圈。
4-2 一半径为0.25米的砂轮在电动机驱动下,以每分钟1800转的转速绕定轴作逆时针转动,现关闭电源,砂轮均匀地减速,15秒钟后停止转动.求(1)砂轮的角加速度;(2)关闭电源后10=t s 时砂轮的角速度,以及此时砂轮边缘上一点的速度和加速度大小.解:(1)4.1886060180020==⨯=ππω rad.s 1- 57.12415600=-=-=πα rad.s 2- (2)7.621057.124.1880=⨯-=+=t αωω rad.s 1-7.1525.07.62=⨯==r v ω m.s 1-14.3-==αr a t m.s 2- , 9872==ωr a n m. s 2-98822=+=n t a a a m. s 2-.4-3如图,质量201=m kg 的实心圆柱体A 其半径为20=r cm ,可以绕其固定水平轴转动,阻力忽略不计,一条轻绳绕在圆柱体上,另一端系一个质量102=m kg 的物体B ,求:(1)物体B 下落的加速度;(2)绳的张力T F 。
解: (1) 对实心圆柱体A ,利用转动定律αα2121r m J r F T == ——①对物体B ,利用牛顿定律a m F g m T 22=- ——② 有角量与线量之间的关系 αr a = 解得:9.422212=+=m m g m a m ·s -2(2)由②得 492)(2121=+=-=g m m m m a g m F T N4—3题图4-4如图,一定滑轮两端分别悬挂质量都是m 的物块A 和B ,图中R 和r ,已知滑轮的转动惯量为J ,求A 、B 两物体的加速度及滑轮的角加速度(列出方程即可)。
大学物理-刚体的定轴转动-习题和答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
大学物理第四版)课后习题及答案 磁场
习题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。
题10.2:已知地球北极地磁场磁感强度B的大小为6.0⨯10-5 T。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R,通过的电流均为I,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d等于线圈的半径R时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O,两线圈中心连线为x轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB)题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。
题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。
大学物理学第四版课后习题答案(赵近芳)上册
大学物理学第四版课后习题答案(赵近芳)上册大学物理学第四版课后习题答案(赵近芳)上册I. 力学基础1.1 物理量、单位和量纲1.2 一维运动1.3 二维运动1.4 多维运动1.5 动力学定律1.6 四个基本定律的应用II. 力学进阶2.1 万有引力定律2.2 物体的机械平衡2.3 力的合成和分解2.4 刚体的平衡条件2.5 动力学定律的矢量形式2.6 力的合成与分解在动力学中的应用III. 力学应用3.1 动量和冲量3.2 动量定理和动量守恒定律3.3 质心运动3.4 矩和对称性3.5 碰撞和动能IV. 振动与波动4.1 简谐振动的基本概念4.2 简谐振动的物理规律4.3 简谐振动的叠加4.4 波的基本概念4.5 机械波的传播4.6 声波的特性V. 热学基础5.1 温度和热量5.2 热学平衡5.3 理想气体状态方程5.4 热力学第一定律5.5 热力学第二定律5.6 热力学循环VI. 热学进阶6.1 热传导6.2 理想气体的物态方程6.3 热机的工作原理6.4 理想气体的热力学过程6.5 热力学第三定律6.6 热力学中的熵VII. 光学基础7.1 几何光学的基本假设7.2 反射和折射7.3 薄透镜的成像7.4 光的衍射7.5 光的干涉与衍射VIII. 光学进阶8.1 光的波动性8.2 波动光学中的衍射现象8.3 干涉与衍射的应用8.4 偏振光的特性和产生8.5 偏振的应用IX. 电学基础9.1 电荷和电场9.2 电场中的电荷9.3 静电场中的电势能9.4 电介质中的电场9.5 电容器和电容9.6 电容器在电场中的应用X. 电学进阶10.1 电流和电阻10.2 欧姆定律和电功率10.3 理想电源和内阻10.4 串联和并联电路10.5 微观电流与输运过程10.6 磁场和电流的相互作用XI. 磁学基础11.1 磁场的基本概念11.2 安培力和磁场的作用11.3 安培环路定理和比奥-萨伐尔定律11.4 磁场中的磁矩和磁矢势11.5 磁场中的电荷和电流XII. 电磁感应12.1 法拉第电磁感应定律12.2 电磁感应的应用12.3 洛伦兹力和电磁感应的关系12.4 电磁感应中的能量转换XIII. 光学和电磁波13.1 光的多普勒效应13.2 光的全反射和光导纤维13.3 电磁波的基本特性13.4 电磁波的干涉和衍射13.5 电磁波的产生和传播XIV. 原子物理14.1 原子的组成和结构14.2 原子能级和辐射14.3 布拉格衍射和X射线的产生14.4 原子谱和拉曼散射14.5 布居和粒子统计XV. 物质内部结构15.1 固体的晶体结构15.2 固体的导电性15.3 半导体的性质和应用15.4 介质的极化和磁化15.5 核能和放射性以上是《大学物理学第四版课后习题答案(赵近芳)上册》的大纲,根据各个章节的内容进行详细解答可帮助学生更好地掌握物理学知识。
大学物理学(课后答案)第4章
第4章 刚体的定轴转动习 题一 选择题4-1 有两个力作用在一个有固定转轴的刚体下,对此有以下几种说法:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.对L 述说法下述判断正确的是[ ](A )只有(l )是正确的 (B )(1)、(2)正确,(3)、(4)错误 (C )(1)、(2)、(3)都正确 (D )(1)、(2)、(3)、(4)都正确 解析:力矩是描述力对刚体转动的作用,=⨯M r F 。
因此合力为零时,合力矩不一定为零;合力矩为零时,合力也不一定为零。
两者并没有一一对应的关系。
答案选B 。
4-2 有A 、B 两半径相同,质量相同的细圆环。
A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为A I 和B I ,则有[ ](A )A B I I > (B )A B I I < (C )无法确定哪个大 (D )A B I I = 解析:转动惯量2i i iI m r =∆∑,由于A 、B 两细圆环半径相同,质量相同,所以转动惯量相同2A B I I mR ==,而与质量分布均匀与否无关。
选D 。
4-3 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图4-3所示.今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是[ ](A )角速度从小到大,角加速度不变 (B )角速度从小到大,角加速度从小到大(C )角速度从小到大,角加速度从大到小 (D )角速度不变,角加速度为零解析:在棒摆到竖直位置的过程中,重力势能和转动动能相互转化,因此转速越来越大,即角速度从小到大。
整个过程中棒只受到重力矩的作用,211cos 23M mg l J ml θαα===,所以3cos 2gl αθ=,随着转角θ逐渐增大,角加速度α由大变小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 题 4.1解:(1)由于角速度2n (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为 ()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为 ()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为 JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JCe-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即 CJ 20ωθ=在时间t 内所转过的圈数为CJ N πωπθ420==题 4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
当轮的转速由13min r 1080.2-⋅⨯增大到14min r 1012.1-⋅⨯时,所经历的时间为多少?题4.4解1:在匀变速转动中,角加速度tωωα-=,由转动定律αM J =,可得飞轮所经历的时间()s 8.10200=-=-=n n MJJ Mt πωω 解2:飞轮在恒外力矩作用下,根据角动量定理,有()00d ωω-=⎰J t M t则()s 8.10200=-=-=n n MJJ Mt πωω 题4.5:用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O 点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动,记下重物下落的距离和时间,就可算出飞轮的转动惯量。
试写出它的计算式。
(假设轴承间无摩擦)题4.5解1:设绳子的拉力为F T ,对飞轮而言,根据转动定律,有 αJ R F =T而对重物而言,由牛顿定律,有 ma F mg =-T (2)由于绳子不可伸长,因此,有 αR a =(3)重物作匀加速下落,则有221at h =(4) 由上述各式可解得飞轮的转动惯量为⎪⎪⎭⎫⎝⎛-=1222h gt mR J解2:根据系统的机械能守恒定律,有0212122=++-ωJ mv mgh (1)而线速度和角速度的关系为ωR v =(2)又根据重物作匀加速运动时,有at v =(3) ah v 22=(4) 由上述各式可得⎪⎪⎭⎫⎝⎛-=1222h gt mR J若轴承处存在摩擦,上述测量转动惯量的方法仍可采用。
这时,只需通过用两个不同质量的重物做两次测量即可消除摩擦力矩带来的影响。
题4.6:一飞轮由一直径为cm 30,厚度为cm 0.2的圆盘和两个直径为cm 10,长为cm 0.8的共轴圆柱体组成,设飞轮的密度为33m kg 108.7-⋅⨯,求飞轮对轴的转动惯量。
题4.6解:根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得2424122221121m kg 136.0211612212212⋅=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⨯=+=ad ld d m d m J J J πρ题4.7:如图所示,圆盘的质量为m ,半径为R 。
求它对O O ''轴(即通过圆盘边缘且平行于盘中心轴)的转动惯量。
题4.7解:根据平行轴定理2O O mR J J +='和绕圆盘中心轴O 的转动惯量2O 21mR J =可得2222O O 2321mR mR mR mR J J ++=+=' 题4.8:试证明质量为m ,半径为R 的均匀球体,以直径为转轴的转动惯量为252mR 。
如以和球体相切的线为轴,其转动惯量又为多少?题4.8证:如图所示,图中阴影部分的小圆盘对OO 轴的转动惯量为()()x x R x R m r J d 21d 21d 22222--==ρπ 式中343R mπρ=为匀质球体的密度。
则球体以其直径OO 为转轴的转动惯量为()222252d 21d mR x x R J J RR =-==⎰⎰-πρ 又由平行轴定理可得球绕O 1O1轴的转动惯量为2257mR mR J J =+=' 题4.9:质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b l lb +σ。
其中l 为矩形板的长,b 为它的宽。
题4.9证:取如图所示坐标,在板上取一质元y x m d d d σ=,它对与板面垂直的,通过几何中心的轴线的转动惯量为()y x y x J d d d 22σ+=整个矩形板对该轴的转动惯量为()()⎰⎰⎰--+=+==22222222121d d d J l l b b b l lb y x y xJ σσ 题4.10:如图所示,质量kg 161=m 的实心圆柱体A ,其半径为cm 15=r ,可以绕其固定水平轴转动,阻力忽略不计。
一条轻的柔绳绕在圆柱体上,其另一端系一个质量kg 0.82=m 的物体B 。
求:(1)物体由静止开始下降s 0.1后的距离;(2)绳的张力T F 。
题4.10解:(1)分别作两物体的受力分析图。
对实心圆柱体而言,由转动定律得αα21T 21r m J r F ==(1) 对悬挂物体而言,依据牛顿定律,有a m F g m F P 2T 2T2='-='-(2) 且TT F F '=。
又由角量与线量的关系,得 αr a = 解上述方程组,可得物体下落的加速度 21222m m g m a +=在t = 1.0 s 时,B 下落的距离为m 45.222121222=+==m m gt m at s (2)由式(2)可得绳中的张力为()N 2.3922121=+=-=g m m m m a g m F T题4.11:质量为1m 和2m 的两物体A 、B 分别悬挂在如图所示的组合轮两端。
设两轮的半径分别为R 和r ,两轮的转动惯量分别为1J 和2J ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计。
试求两物体的加速度和绳的张力。
题4.11解:分别对两物体及组合轮作受力分析,根据质点的牛顿定律和刚体的转动定律,有11T111T 1a m F g m F P =-='-(1) 222T22T2a m g m F P F =-=-'(2) ()()α21T2T1J J r F R F +=-(3) T2T2T1T1,F F F F ='='(4) 由角加速度和线加速度之间的关系,有 αR a =1(5) αr a =2(6)解上述方程组,可得gR r m R m J J rm R m a 222121211+++-=gr r m R m J J rm R m a 222121212+++-=g m r m R m J J Rr m r m J J F 122212122221T1++++++=g m r m R m J J Rr m R m J J F 222212112121T2++++++=题4.12:如图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为1m 和2m 的物体A 、B 。
A 置于倾角为θ的斜面上,它和斜面间的摩擦因数为μ。
若B 向下作加速运动时,求:(1)其下落加速度的大小;(2)滑轮两边绳子的张力。
(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑)题4.12解:作A 、B 和滑轮的受力分析图。
其中A 是在张力F T1、重力P 1,支持力F N 和摩擦力F f 的作用下运动,根据牛顿定律,沿斜面方向有 11111T cos sin a m g m g m F =--θμθ(1)而B 则是在张力F T2和重力P 2的作用下运动,有 22T22a m F g m =-(2)由于绳子不能伸长、绳与轮之间无滑动,则有 αr a a ==21对滑轮而言,根据定轴转动定律有αJ r F r F ='-'T1T2(4) 且有T22T 1T T1,F F F F ='='(5) 解上述各方程可得22111221cos sin rJm m g m g m g m a a ++--==θμθ()()2212121T1cos sin cos sin 1r J m m r gJ m g m m F ++++++=θμθθμθ ()2212221T2cos sin 1r J m m r gJ m g m m F +++++=θμθ 题4.13:如图所示,飞轮的质量为kg 60,直径为m 50.0,转速为13min r 100.1-⋅⨯。
现用闸瓦制动使其在s 0.5内停止转动,求制动力F 。
设闸瓦与飞轮之间的摩擦因数40.0=μ,飞轮质量全部分布在轮缘上。
题4.13解:飞轮和闸杆的受力分析如图所示。
根据闸杆的力矩平衡,有()01N21='-+l F l l F 而N N F F '=,则闸瓦作用于轮的摩擦力矩为 d F l l l d F d F M μμ121N f2212+===(1) 摩擦力矩是恒力矩,飞轮作匀角加速转动,由转动的运动规律,有tn ttπωωωα200==-=(2)因飞轮的质量集中于轮缘,它绕轴的转动惯量42md J =,根据转动定律αJ M =,由式(1)、(2)可得制动力()N 1014.32211⨯=+=tl l nmdl F μπ题4.14:图是测试汽车轮胎滑动阻力的装置。