大学物理第二章-行波-波动方程

合集下载

大学物理波动方程

大学物理波动方程

4
波线: 沿波的传播方向作的 有方向的线。 波前: 在某一时刻,波传播 到的最前面的波面。
波面 波线
波面
波线
球面波 z
波面
x
y
波线
平面波
柱面波
5
注意 在各向同性均匀介质中,波线⊥波面。
三、波长
周期
频率和波速
波长() : 同一波线上相邻两个相位差为 2 的质点之间
的距离;即波源作一次完全振动,波前进的距离 。波长反映了波的空间周期性。
T 4s
2m
u 0.5 m s 1
2 rad s 1 T 2 y0 0.5 cos( t ) t=0原点0: 2 2 2
20
例 一平面简谐波沿x轴正方向传播,已知其波函数为
y 0.04 cos (50t 0.10 x) m
1
横波 波的传播方向 质点的振动方向 特点:具有波峰和波谷 纵波 波的传播方向 质点振动方向 特点:具有疏密相间的区域
下面以横波为例观察波的形成过程
2
t 0
1 2
3
4
5
6
7
8
9 10 11 12 13
静止
T t 4
1 2
3
4
5
6
7
8
9 10 11 12 13
振动状态 传至4
T t 2
1 2
t1 时刻x1 处的振动状态经Δt 时间传播到x1+Δx 处,则
可得到
x1 x1 x (t1 ) (t1 t ) u u x u t
x y ( x, t ) A cos[ (t ) 0 ] u x y ( x, t ) A cos[2π (t ) 0 ] t x y ( x, t ) A cos[2π ( ) 0 ] T

大学物理_波动及课后习题

大学物理_波动及课后习题


A 2
2 0 3
取 S点为坐标 原点,以
波的传播方向为 x 轴正方向。
2) 在 x 轴上任取一点 P, OP = x ,
y
o s
x
u
P
x
由于 P点相位落后
S点的时间为—— 于是得到波的表达式为 :
x 2 y 8 10 cos[ (t ) ]m u 3
2
结论:
(1) 质元并未“随波逐流”
波的传播不是媒质质元的传播
(2) “上游”的质元依次带动“下游”的质元振动 (3) 某时刻某质元的振动状态将在较晚时刻 t T /于“下游”某处出现 4 ---波是振动状态的传播
(4) 同相点----质元的振动状态相同
t T / 4 t 5T / 4 t T / 2
x


p
x
4m
s
D
x y 0.05 cos[3(t ) ](SI ) 2 3
x D 4m 代入波方程,得到 D点的
振动方程:
y D 0.05 cos[3(t 2) ](SI ) 3
(2). 以 S 点左方7m处的 O 点为坐标原点, 取 x 轴正方向向右,写出波方程及 D 点的 振动方程。 u
x / cm
0 0
5 yo cos( t ) 3
5 x y cos[ (t )] 3 10
方法2: 将波形倒退
6
得出 t 0 波形,再写方程! …..
0 0
20.2 解:应用时间落后法,
可得
ξ 0 0.1 x x
x 0.1 y 0.05sin[1.0 4.0(t )] 0.8 0.05sin[(4.0t 5 x 0.5)] 0.05sin[ (4.0t 5 x 0.5)] 0.05sin(4.0t 5 x 2.64)

(完整版)波动方程

(完整版)波动方程

y (1.0m) cos[2 π( t x ) π] 2.0s 2.0m 2
t 1.0s y (1.0m) cos[ π (π m1)x]
波形方程
2
(1.0m) sin(π m1)x
y/m
1.0
o
2.0
x/m
-1.0
t 1.0 s 时刻波形图
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t x ) π] 2.0s 2.0m 2
第二节 波动方程
用数学表达式表示波动----波函数 波函数—任意时刻任意位置处的质点的振动位移。
y y(x,t)
各质点相对于平衡位置的位移
波线上各质点平衡位置
一、平面余弦行波的波函数
1、从无穷远处来到无穷远处去
已知 原点的振动
(1)前进波(波沿X轴正方向传播) 已知:一列平面简谐波从无穷远处来到无穷远处去,沿X
原点处的质点位于平衡位置沿 O y 轴正方向运动 . 求
1)波动方程
解 写出波动方程的标准式
O
y
A
y Acos[2π ( t x ) ] T
t0 x0
y 0, v y 0
π
2
t
y (1.0m) cos[2π( t x ) π] 2.0s 2.0m 2
2)求t 1.0s 波形图.
已知波源的振动 y(0,t) Acos(t 0 )
求波线上任意位置x处质点的振动方程: y(x,t)
x 0处 前进波 x 0处 后退波
y( x, t ) y( x, t )
A cos[ (t A cos[ (t
x) ux ) u
0 ] 0 ]
4、已知真实波源的振动,波源不在原点

波动详解

波动详解
机械波和电磁波统称为经典波,它们代表的是某种实在的物 理量的波动。
虽然各类波的具体物理机制不同,但它们都具有叠加性,都能 发生干涉和衍射现象,也就是说它们所具有波动的普遍性质。
除了机械波和电磁波都能发生干 涉和衍射现象外,实验中发现,电 子、质子和中子这些微观粒子也能 发生干涉和衍射。因此,微观粒子 也具有波动性。
波面——同相点组成的曲面。波阵面 波前 波线——表示传播方向的曲线。波射线
球面波(同心球形波面)
波线
平面波(平行平面波面)
可以证明: 球面波
A1 r
平面波
A 常量
§2-1 机械波 行波
§2-2 平面简谐波
Plane Simple Harmonic Wave
1. 简谐波 波速和波长
简谐波——各媒质质元作简谐运动的波。
固体:铁轨 长绳 弹簧;流体:水 空气
m1 m2 m3
F2 ,
F1 不平衡,使m时左时右
F1
F2
m
波源 m1 m2 m3
挤压/拉伸 §2-1 机械波 行波
横波与纵波
横波——媒质质元的振动方向与振动的传播方向垂直的波。
横向抖动绳端
光波
纵波——媒质质元的振动方向与振动的传播方向在一条直 线上的波。 疏密波:空气中的声波
t
x u
Hale Waihona Puke ( tdt)
x
d u
x
于是得到
u d x 相速度(相速) dt
即,简谐波的波速就是相速。
说明: 波函数中的0 为原点处质元振动的初相。
设如果波沿x轴负向传播,“上游”在右“下游” 在左,t时刻x点的相位应是O点 t x u 时刻的相
位,即为 (t x u) 0 ,此时的波函数应为

波动方程和行波法剖析课件

波动方程和行波法剖析课件
波动方程和行波法剖析课件
目录 Contents
• 波动方程的基本概念 • 行波法的基本原理 • 波动方程的解析解法 • 波动方程的数值解法 • 行波法的应用实例
01
波动方程的基本概念
பைடு நூலகம்
波动方程的定义
波动方程
描述波动现象的基本数学模型,通常 用于描述物理场(如声场、电磁场、 水波等)随时间和空间的变化规律。
03
最后,通过迭代求解差分方程 ,得到波在每个网格点上的值 ,从而得到波的传播和演化过 程。
行波法的优缺点
优点
行波法简单易懂,易于编程实现,能够处理复杂的边界条件和初始条件,适用 于求解各种类型的波动方程。
缺点
行波法需要设定初始条件和边界条件,对于某些复杂的波动问题可能需要较高 的计算成本和精度要求。
水波传播的模拟
要点一
总结词
利用行波法模拟水波的传播,有助于研究水波的形成、演 化及对环境的影响。
要点二
详细描述
在水波传播的模拟中,行波法能够模拟水面的波动情况, 包括波浪的生成、传播和消散。通过调整参数,可以研究 不同条件下水波的传播规律,如风速、水深、地形等,对 于水文学、海洋学等领域具有重要意义。
03
波动方程的解析解法
分离变量法
将波动方程的解表示为若干个变量的 乘积或商的形式,以便分别求解。
VS
分离变量法是一种求解波动方程的常 用方法。通过假设波动方程的解可以 表示为若干个变量的乘积或商的形式 ,我们可以将一个复杂的偏微分方程 转化为若干个简单的常微分方程,从 而方便求解。
积分变换法
利用积分变换将波动方程化为易于求解的形式,再进行逆变换得到原方程的解。
地震学
用于模拟地震波的传播和反射,进行地震预 测和地球结构研究。

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII》作业 No.02 波动方程 参考答案

2、一平面简谐波,波长为 12m,沿 Ox 负向传播。如图所示为原点处质点的振 动曲线,求: (1)原点处质点的振动方程, (2)此波的波函数。
解:由题意得:振幅 A=0.4m,初始位置 y0 0.2 相为
2 , 其对应旋转矢量如上图所示。 从图还可以看出 5s 后, 矢量转动的角度: 3 5 2 t 5 12 s ; ,则 , T 3 2 6 6 2 ) m) 所以其振动方程为 y 0.4 cos( t ( 6 3 2 12 s ,波速 u 1( m / s ) ,又因传播方向为负, (2)由题意 12m , T T 2 ( ] m) 所以波函数为: y 0.4 cos[ (t x) 6 3
答:振动是波动的基础,振动在空间的传播就形成波动。平面简谐波动方程是关 于时间和空间的函数, 而简谐振动方程只是关于时间函数;当平面简谐波动方程 中的空间变量 x 确定时,波动方程成为表述该点运动的振动方程。振动曲线是以 位移为纵坐标, 时间为横坐标做的曲线,描述质点在不同时刻离开平衡位置的位 移;波形曲线是位移为纵坐标,介质元空间位置为横坐标做的曲线,用来描述某 一时刻,波线上各个质元离开平衡位置的距离。 2、平面简谐行波波函数的表达式与哪些因素有关?总结求波函数的基本步骤。 答:平面简谐行波波函数与波的特征量:振幅、周期、频率、波速及其传播方向 有关, 此外与坐标原点、 计时起点的选择有关。 求波函数的基本步骤可以概况为: (1)选择一个参考点,根据已知条件确定出该参考点的振动方程; (2)选定坐标原点,选定正方向,建立坐标;
《大学物理 AII》作业
No.02 波动方程
班级 ________ 学号 ________ 姓名 _________ 成绩 _______

第二章波动方程资料

第二章波动方程资料

注意:对于混合问题,情况类似。叠加原理只对线性问题成立。
定理 2.1
定解问题(2.2)和(2.4)的解可表示为
注:利用变上限积分求导公式:
证明:
2.2 解的表达式(行波法)
求解定解问题(2.3):
利用特征线法求得:
利用定理2.1可得定解问题(2.1)的解为:
——一维非齐次波动方程初值问题解的Kirchhoff 公式
( )d
at x
1 2a
t
x a
0
xa(t )
f (s, )dsd
a(t ) x
t
t
x a
xa (t ) xa(t )
f
(s, )dsd
.
(2) 非齐次端点条件 考虑定解问题
例4. 求解初值问题
utt
a2uxx
1 2
(x t),
0 x ,t 0
u(x, 0) sin x,ut (x, 0) 1 cos x, 0 x ,
因此, 对于非齐次波动方程的初值问题
由定理2.1得 ——三维非齐次波动方程初值问题的Kirchhoff 公式
于是
例1. 求解初值问题
utt a2 (uxx uyy uzz ), (x, y, z) R3, t 0 u(x, y, z, 0) x y z,ut (x, y, z, 0) 0, (x, y, z) R3
u(0,t) 0,
t 0.
解.
把 (x) sin x, (x)
1 cos x,
f
( x, t )
1 2
(
x
t
)
关于 x 奇延拓到 (, 0),
(x) sin x,
(
x)

波动方程_精品文档

波动方程_精品文档
u
l
=
=
12
50
600
s
=
1
(
)
υ
例题:有一列向x 轴正方向传播的平面简谐波,
它在t = 0 时刻的波形如图所示其波速为:
u = 600m/s 。试写出波动方程。
=
5m
A
24m
l
=
从波形图中可知:
ω
=
π
2
=
π
50
(
)
rad.
s
1
υ
原点处质点的振动方程为:
波动方程为:
y
0
2
π
由旋转矢量法:
u
l
=
=
=
t
+
cos
(
)
y
A
ω
0
1.时间推迟方法
x
x
u
y
o
P
·
A
已知振源(波源)的振动方程为:
振源的振动状态从0点以传播速度u传送到P 点,显然时间要落后:
´
u
x

t
u
x
j
=
t
+
cos
(
)
A
ω

j
=
t
+
cos
(
)
y
A
ω
0
´
t
j
=
t
+
cos
(
)
y
A
ω

P
介质中任一质点(坐标为 x)相对其平衡位
置的位移(坐标为 y)随时间t 的变化关系。

0

第2章波动方程

第2章波动方程
引理证毕。
2.齐次方程的初值问题(Cauchy 问题)
考察问题
⎧⎪ ⎨ ⎪⎩
utt
u(
− a2uxx =
x,0) = ϕ (
0,
x)
,
ut
( x,0)
x ∈ \, t > 0,
=ψ ( x), x∈\.
利用齐次波动方程的通解表达式:
(1.1)
u( x, t ) = F ( x − at ) + G ( x + at ) ,
u = F ( x − at ) , a > 0
显然是弦振动方程的解。给 t 以不同的值,就可以看出作一维自由振动的物体在各时刻的相
应位置。在 t = 0 时, u = F ( x ) 对应于初始的振动状态,而 u = F ( x − at ) 作为 ( x, u ) 平
面 上 的 曲 线 是 曲 线 u = F ( x ) 向 右 平 移 了 at 个 单 位 , 所 以 齐 次 弦 振 动 方 程 的 形 如
=
1 2a
⎧∂
⎨ ⎩
∂t
ϕ x+at (ξ )dξ +
x − at
ψ x + at

)dξ
⎫ ⎬
.
x − at

u2 满足非齐次方程的初值问题
4
⎧⎪ ⎨ ⎪⎩
utt
u(
− a2uxx =
x, 0) = 0,
f ut
( (
x, x,
t), 0) =
x∈ 0,
\
, t> x∈
0, \.
为了求解(1.4),首先求解
条件无关。称这个三角形区域为区间 ⎡⎣ x1 , x2 ⎤⎦ 的决定区域。

《大学物理(下)》第二章 行波

《大学物理(下)》第二章 行波

P 点振动的相位 t 时刻 P点质元振动的表达式:
2

x
y A cos( t
2

x a )
y
x
o

u
P

x
2
y A cos( t

x a )
因为P点是任选的,上式就是 x 轴上任意质元 的振动表达式,即平面简谐波的波函数 利用关系 2 ,u
F
F
⑵ 切变
S
F
S
d

D
F
F
在弹性限度内,切变的应力也和应变成正比。
F d G G S D
G 称作切变弹性模量。由材料的性质决定。
⑶ 体变
P
V
V V
一块物质周围受到的压强改变时, 其体积也会发生改变,如图,
P K
以 V 表示原体积,ΔP 表示压强的改变,
2.
波长 λ
在波的传播方向上两个相邻的同相质 元之间的距离叫做波长。记作 λ
λ
λ
纵波的一个波长内有一个疏部和一个密部。 相邻两个密部或疏部之间的距离等于一个波长 横波中的一峰一谷和纵波的一疏一密构成了 一个“完整波”——包含了全部振动状态, 因此 一个波长就是一个“完整波”的长度。
3. 周期 T、频率 ν 与波长 λ 的关系 波的时间上的周期性和空间上的周期性 是密切联系的,这种联系就表现在: 在一个周期的时间内,某一确定的振动状态,也即 某一确定的相位,所传播的距离正好是一个波长。 如果以 u 表示振动状态或振动相的传播的速度,
波传播是由于质元的形变,
对横波、纵波来说, 质元发生形变情形是什么样的呢?
横波

大学物理-波动方程

大学物理-波动方程
感谢观看
通过将波动方程中的空间和时间变量分离,简化求解过程。
傅里叶分析
利用傅里叶变换将时域信号转换为频域信号,便于分析波的频率 和振幅。
数值解法
对于复杂边界条件和初始条件,采用数值方法求解波动方程。
三维波动方程的应用
声波传播
研究声波在介质中的传播规律,如声呐、超声成像等。
光学研究
解释光波在介质中的传播规律,如折射、干涉、衍射等现象。
波动方程在声学中的应用
声波传播规律
波动方程可以用来描述 声波在空气、固体等介 质中的传播规律,如声 速、声压、声强等。
声学仪器设计
在声学仪器设计中,如 超声波探伤仪、声呐等, 需要利用波动方程来计 算和优化仪器的性能。
声音信号处理
在声音信号处理中,如 音频压缩、降噪等,可 以利用波动方程对声音 信号进行分析和变换。
数值解法
对于一些复杂的问题,可以通过 数值计算方法求解二维波动方程, 如有限差分法、有限元法等。
二维波动方程的应用
声波传播
在声学领域,二维波动方程可以用来描述声波在 固体、液体或气体中的传播规律。
地震波传播
在地球物理学中,二维波动方程可以用来模拟地 震波在地壳中的传播和散射。
电磁波传播
在电磁学领域,二维波动方程可以用来描述电磁 波在介质中的传播特性。
物理背景
波动方程基于物理原理,如牛顿第二定律和弹性力学 等,用于描述波在空间中的传播和变化。
建立过程
通过将物理原理和数学方法相结合,可以建立二维波 动方程的数学表达式。
二维波动方程的解法
分离变量法
通过将二维波动方程中的空间和 时间变量分离,将问题简化为求 解一系列一维方程。
傅里叶分析
利用傅里叶变换将时间和空间域 的函数转换为频率域的函数,从 而简化求解过程。

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII 》作业No.02波动方程班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解波动产生的条件、传播的特性及波的分类。

2、掌握描述波的特征量:周期、频率、波长、波速的物理意义及其相互关系,并能与振动的特征量相区分。

3、掌握相位传播、波形传播意义,并能根据质点简谐运动方程或振动曲线建立平面简谐波的波函数。

理解波函数与波形曲线、振动曲线和行波的关系。

4、理解波的能量密度、能流、能流密度及波的强度等概念。

行波的传播过程就是能量的传播过程。

5、理解多普勒效应产生的机制及应用。

-------------------------------------------------------------------------------------------------------一、填空题1、波动是振动的传播,其中机械振动在弹性介质中的传播称为机械波,它的传播需要介质(选填:需要,不需要)。

由于带电粒子的运动引起周围空间电磁场交替变化而形成的波称为电磁波,它的传播不需要介质(选填:需要,不需要)。

根据质点振动方向与波的传播方向之间的关系(垂直或平行),波又可以分为横波和纵波。

2、描述波时间周期性的特征量是周期T ,描述波空间周期性的特征量是波长λ振动状态(相位)在介质中传播速度称为波速(相速)u ,三者之间的关系为T u λ=。

3、某时刻t 的波形曲线如图所示,图中B 点的y 坐标By 表示的是t 时刻B x 处质元离开平衡位置的位移,若为纵波,图中A 、C 分别对应纵波的密部中心和疏部中心(填:密部中心或疏部中心)。

数学物理方程第二章(波动)

数学物理方程第二章(波动)
数学物理方程
第二章 波动方程
第二章 波动方程
§1 §2 §3 §4 §5 方程的导出及其定解条件 一维波动方程的初值问题 半无界弦的自由振动问题 高维波动方程的初值问题 混合问题的分离变量法
数学物理方程
第二章 波动方程
§1、方程的导出及其定解条件
一、弦的自由振动方程的建立
问题:均匀柔软且拉紧的细弦, 在平衡位置附近作微小横振动, 求不同时刻弦线的形状。
2u u 0
u f1 ( ) f 2 ( )
数学物理方程
第二章 波动方程
代回原变量:
利用初始条件:
u f1 ( x at) f 2 ( x at)
u( x,0) f1 ( x) f 2 ( x) ( x)
数学物理方程
第二章 波动方程
几个相关概念
1 1 x at u ( x, t ) ( x at ) ( x at ) xat ( )d 2 2a
t
t
P( x, t )
依赖区间
x x1 at
x x2 at
x at
t
x at
x
决定区域
当gi (t ) 0时,表示该端点处弦是固定的
第二类边界条件:已知端点处弦所受的垂直于弦线的外力,
即T sin
u 具体为: x
x a
当g(t ) 0时,表示弦在该端点处可自由滑动
x a
u T x
u x
x a
g (t )(a 0或a l )
0或
x a
g (t )(a 0或a l )
------齐次方程
数学物理方程

大学物理第二章 行波波动方程

大学物理第二章 行波波动方程
应表示出所有质元在时刻 t 的位移,
除了取决 t o 外,
还应与质元的位置坐标有关
下面来写出平面简谐波的表达式
假设一平面简谐波在理想的、不吸收振动能量的 均匀无限大媒质中传播。
波传播的速度为 u ,方向如图 u

o
x
选择平行波线方向的直线为 x 轴。
u

o
x
在垂直 x 轴的平面上的各质元(振动状态相同),
即应变,则有
K 叫体变弹性模量,它由物质的性质决定,
“-”表示压强的增大总导致体积的减
§2.1 行波
一. 机械波的产生 1. 机械波产生的条件
振源 作机械振动的物体——波源 媒质 传播机械振动的物体 在物体内部传播的机械波,是靠物体的弹性形成的, 因此这样的媒质又称弹性媒质。
什么是物质的弹性?
机械振动是如何靠弹性来传播呢?
T
将上式改写


u

表明:波的频率等于单位时间内通过媒质 某一点的“完整波”的个数。
4. 波速 u
振动状态或振动位相的传播速度,也称相速度
波速的大小决定于媒质的性质,
(1) 固体中的横波
(2) 固体棒中的纵波
u
G

u E

G — 切变模量
E — 杨氏弹性模量 — 体密度
∵G < E, 固体中 u横波 <u纵波

a
2. 表达式也反映了波是振动状态的传播
y( x x,t t) y( x, t)
x ut
y
o●
u
t
ut


x
x x x
y Acos( t 2 x )

波动方程

波动方程

波动方程或波动方程是重要的偏微分方程,主要描述自然界中的各种波动现象,包括横波和纵波,如声波,光波,无线电波和水波。

波动方程是从声学,物理光学,电磁学,电动力学,流体力学和其他领域中抽象出来的。

历史上许多科学家,例如D'Alembert,Euler,daniel bernoulli和Lagrange,在研究乐器和其他物体中的弦振动时对波动方程理论做出了重要贡献。

1746年,达朗伯(D'Alembert)发现了一维波动方程,而欧拉(Euler)在接下来的10年中发现了三维波动方程。

一维波动方程可以推导如下:一系列质量为m的小颗粒,相邻颗粒通过长度为h的弹簧连接。

弹簧的弹性系数(也称为“顽固系数”)为k:
从上面的形式可以看出,如果F和G是任意函数,则它们以以下形式组合必须满足原始方程式。

上述两项分别对应于两行行波(“线”和“动作”中的谐音器)-F表示通过该点(点X)的右行波,G表示通过该点的左行波。

为了完全确定f和g的最终形式,应考虑以下初始条件:波动方程的著名D'Alembert行波解,也称为D'Alembert 公式,是通过进行以下运算获得的:在古典意义上,如果然后。

但是,行波函数f和g也可以是广义函数,例如Diracδ函数。

在这种情况下,行波解应视为左行或右行中的脉冲。

基本波方程是线性微分方程,也就是说,同时受到两个波的点的振幅是两个波的振幅之和。

这意味着可以通过将一系列波动分解为其解决方案来有效地解决该问题。

另外,可以通过分离每个分量来分析波,例如,傅立叶变换可以将波分解为正弦分量。

大学物理_波动方程

大学物理_波动方程
其中以 x 以 m 计。
x 5 10
3
) m
5x) m 2 sin 5x m

《大学物理》
例题3 有一平面简谐波沿Ox轴正方向传播,已知振幅为1m,周 期为2s,波长为2m.在t=0时,坐标原点处的质点位于平衡位置沿y 轴正向运动.求
(1)波动方程; (2)1s时波形方程并作图; (3)0.5m处的质点振动方程. 解: (1)按题设条件,取波动方程形 式如下: y u
(3)按题设条件,x=0.5m处的质点 振动方程为:
u
1
0 2 x
y 1cos[ (t 0.5) / 2] cos(t )
《大学物理》
例题4 在x=0处有一个波源,振动初相为0,向x轴正向发出谐 波,波长为4m,振幅为0.01m,频率为50赫兹.现在x=10m处有 一个反射装置,将波反射.试求,反射波的波动方程. 解 在x轴上任意x处取一点来 讨论,波反射后到达x处的相位 落后为:
《大学物理》
(2) 波动表式为
y A cos (t
式中 x 以 m 计,t 以 s 计。
x x ) 0.1 10 3 cos 25 10 3 (t ) m 3 u 5 10
(3) 离原点 10cm 处质点的振动表式为
y 0.1 10 3 cos 25 103 (t 0.1 10 3 cos(25 10 3 t
1 5 10 ) m
4
) m

1 5 T 可见此点的振动相位比原点落后,相位差为 ,即 2 10 s 。 2 ,或落后 4 1 x 10 cm 0.10m ,相应的相位差为 (4) 该两点间的距离 4

2

第二章 波 动 方 程

第二章   波 动 方 程
2 3 utt a (uxx u yy u zz ) 2( y t ), ( x, y, z ) R , t 0 3 u ( x, y, z, 0) x y z, ut ( x, y, z, 0) 0, ( x, y, z ) R
解. 由例1,仅需计算推迟势
f ( x, t ) 延拓到 x < 0, 使得
数即可。而由命题1知,只要 ( x), ( x), F ( x, t ) 是 x 的奇
函数。 为此,只需要对
( x), ( x), f ( x, t ) 关于
x 作奇延拓。
( x), x 0, ( x) ( x), x 0. ( x), x 0, ( x) ( x), x 0. f ( x, t ), x 0, t 0, F ( x, t ) f ( x, t ), x 0, t 0.

1 2a

x at
x at
( )d

0
t
x a ( t )
x a ( t )
f ( s, )dsd .
x at 0, x 0 时,有
1 2 1 2a
u ( x, t ) [ ( x at ) ( x at )]
1 2a
得到新定解问题的解
U ( x, t ) [( x at ) ( x at )]
1 2
1 2a

x at
x at
( )d

限制在 0
1 2a

t
x a ( t )
0 x a ( t )
F ( s, )dsd ,

数学物理方法16.1 行波法1-波动方程

数学物理方法16.1 行波法1-波动方程
x at
( )d xat
a[ f1(x at) f1(x at)] a[ f2 (x at) f2 (x at)]
1
x at
( )d
a xat
[ f1(x at) f2 (x at)] [ f1(x at) f2 (x at)]
确定待定函数(法二)
待求的?
1
x
(v)dv
0
f1(0) f2 (0) 2
能消去吗?
f2
(
x)
(x) 2
1 2a
x
(v)dv
0
f1(0) f2 (0) 2
待求的解为
u f1 (x at) f2 (x at)
确定待定函数(法一)
f1
(x)
(x) 2
1 2a
x
(v)dv
0
f1(0) f2 (0) 2
(x) 1
那么,可得原问题的解为
u(x,t) 1 [(x at) (x at)] 1
x at
(v)dv
2
2a xat
确定待定函数(法二)
(x) (x)
f1(x) f2 (x) af1(x) af 2(x)
有何关联?
观察第一个方程,和待求解 u f1(x at) f2 (x at)
上述方程组中:4个待定函数,3个方程, 因此,不能直接求解各个待定函数。
u f1(x at) f2 (x at) 整体思想
确定待定函数(法二)
(x at) (x at)
[ f1(x at) f2 (x at)] [ f1(x at) f2 (x at)]
1
x at
( )d
行波法:算例1
2u u(tx2 ,0)

《大学物理》第二章--波动方程

《大学物理》第二章--波动方程
S
u
a o
● ●
b

u
d
S
x


x
x dx
选棒长的方向为 x 轴,在棒上距 o 点 x 处附近
取一体积元 ab , 这一体积元的长度为 dx,体积 dV Sdx 当有纵波传播时,该体积元发生线变, 设 t 时刻体积元正被拉长(先做力分析—应力分析): 左端受到应力为σ,方向向左; 右端受到应力为 σ+dσ ,方向向右;
a o
● ●
b

u
d
S
x


x
x dx
a
t
时 刻
b
u
x
o

y

y dy

y E x
y v t
v dxS Sdx x t
a o
● ●
b

u
d
S
x


x
x dx
a
t
时 刻
b
u
x
o

y
2

y dy

y y E 2 2 x t
式中的A,B,C为正值恒量,则
A,波速为C/B B,周期为1/B
C,波长为 C / 2 D,圆频率为B D
例4,一列平面简谐波在媒质中以波速u=5m/s沿x轴正向 传播,原点处质元的振动曲线如图所示. (1)求解并画出x=25m处质元的振动曲线. (2)求解并画出t=3s时的波形曲线. Y(cm) 1
S
x


x
x dx
a
t
时 刻
b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
2.3 物体的弹性变形
物体包括固体、液体和气体,在受到外力作用时, 形状或体积都会发生或大或小的变化。 这种变化统称为形变
当外力不太大因而引起的形变也不太大时, 去掉外力,形状或体积仍能复原。 这个外力的限度称作弹性限度。
在弹性限度内,外力和形变具有简单的关系, 由于 外力施加的方式不同,形变可以有以下 几种基本方式: 线变 切变 体变
20
2. 波长 λ
在波的传播方向上两个相邻的同相质
元之间的距离叫做波长。记作 λ
λ
λ
纵波的一个波长内有一个疏部和一个密部。 相邻两个密部或疏部之间的距离等于一个波长
横波中的一峰一谷和纵波的一疏一密构成了 一个“完整波”——包含了全部振动状态, 因此 一个波长就是一个“完整波”的长度。
21
3. 周期 T、频率 ν 与波长 λ 的关系
波的时间上的周期性和空间上的周期性 是密切联系的,这种联系就表现在: 在一个周期的时间内,某一确定的振动状态,也即 某一确定的位相,所传播的距离正好是一个波长。
18
在媒质中沿波传播方向,每隔一定距离, 媒质的质元的振动状态在各时刻都相同
----质元的振动同相 表明波具有空间上的周期性。 引入波长的概念来描述波在空间上的周期性。
19
λ
λ 2. 波长 λ
在波的传播方向上两个相邻的同相质元之间
的距离叫做波长。记作 λ
从外形上看, 横波的一个波长中有一个波峰和一个波谷, 相邻两个波峰或波谷之间的距离等于一个波长
为了形象直观地表示媒质中各质元的位相的关系 以及波传播的方向,常用几何图形加以描述。
波线: 用带箭头的线表示波传播的方向。
波面: 媒质中振动位相相同的质元组成的曲面。
波前: 波源开始振动后,在同一时刻,振动到达的
各点构成的面,显然是一个同位相面,
由于这一波面在波传播方向的最前方,
所以又叫做波前或波阵面。
(2) “上游”的质元依次带动“下游”的质元振 动。 (3) 某时刻某质元的振动状态将在较晚时刻
于“下游”某处出现---波是振动状态的传播 (4) 在媒质中沿波传播方向,相隔一定距离
存在同相质元----质元的振动状态相同
15
5. 波的几何描述 波的传播是振动的传播而非质元的迁移, 由于振动状态常用位相来表示, 所以振动状态的传播也可以用位相的传播来说明。
P K V V
以 V 表示原体积,ΔP 表示压强的改变,
以 ΔV∕ V 表示相应体积的相对变化,
即应变,则有
K 叫体变弹性模量,它由物质的性质决定,
“-”表示压强的增大总导致体积的减
9
§2.1 行波
一. 机械波的产生 1. 机械波产生的条件
振源 作机械振动的物体——波源 媒质 传播机械振动的物体 在物体内部传播的机械波,是靠物体的弹性形成的, 因此这样的媒质又称弹性媒质。
虽然各类波的本质不同,各有其特殊的性质和规律, 但在形式上它们也具有许多共同的特征。 如都具有一定的传播速度,都伴随着能量的传播, 都能产生反射、折射、干涉或衍射等现象。
2
§2.1 行波
一. 机械波的产生 1. 机械波产生的条件
振源 作机械振动的物体——波源 媒质 传播机械振动的物体 在物体内部传播的机械波,是靠物体的弹性形成的, 因此这样的媒质又称弹性媒质。 什么是物质的弹性?
实验表明:在弹性限度内,应力和应变成正比。
5
⑴ 线变 胡克定律
l
l

S
F
F
在弹性限度内,应力和应变成正比。
F E l Sl E 为关于长度的比例系数,它随材料不同而不同, 叫杨氏模量。
6
⑵ 切变 F

Fd

S
S
F
D
F
一块矩形材料,当它的两个侧面受到与侧面平行的 大小相等方向相反的力作用时,形状就要发生改变, 如图,这种形式的形变叫切变。
第二章 波动学基础
§2.1 行波
一.机械波的产生 二.描述波的物理量
§2 .2 平面简谐波
一.波函数 二.波动曲线
§2 .3 波动方程
作业:2.3、 2.6、2.7
1
第二章 波动学基础
振动在空间的传播过程叫做波动
机械振动在媒质中的传播称为机械波。 如声波、水波、地震波等
变化电场或变化磁场在空间的传播称为电磁波。 如无线电波、光波、等
外力F 和施力面积 S 之比,为切变的应力
施力面积相互错开而引起的材料角度的变化 ф,
叫切变的应变。 d
D
7
F
⑵ 切变
S

Fd

S
F
D
F
在弹性限度内,切变的应力也和应变成正比。
F G G d
S
D
G 称作切变弹性模量。由材料的性质决定。
8
⑶ 体变
P
V
一块物质周围受到的压强改变时, 其体积也会发生改变,如图,
什么是物质的弹性?
机械振动是如何靠弹性来传播呢? 10
2. 机械波的传播
11
按质元振动方向与波传播的方向之间的关系波划分为 3. 纵波和横波
横波 振动方向与波传播方向垂直的波。 如细绳中传播的波
纵波 振动方向与波传播方向在一条直线上的波。 如弹簧中传播的波以及声波
波传播是由于质元的形变, 对横波、纵波来说, 质元发生形变情形是什么样的呢?
4
⑴ 线变
F
l
l
S

F
一段固体棒,当在其两端沿轴的方向 加以方向相反大小相等的外力时, 其长度会发生改变,伸长或压缩视二者方向而定。
以F 表示力的大小,以S 表示棒的横截面积, 则叫F∕S 叫做应力,以 l 表示棒的长度,
以 Δl 表示在外力 F 作用下的长度变化。 则 Δl∕l 叫相对长度变化,又叫应变
12
横波 从图上可以明显看出在横波中各质元发生切变, 外形有波峰波谷之分
横波只能在弹性固体中传播
13
纵波
在纵波中,各质元发生长变或体变, 因而媒质的密度发生改变,各处疏密不同, 所以纵波也叫疏密波。
纵波在气体、液体、固体媒质中都可以传播
14
4. 波的特征
(1) 不管是横波还是纵波,在波传播的过程中, 媒质中各质元均在各自的平衡位置附近振动, 质元本身并不迁移,质元并未“随波逐流” 。
16
根据波前的形状不同, 波可分为平面波,球面波,柱面波。
波面

线
平面波
球面波
17
二.描述波的物理量ቤተ መጻሕፍቲ ባይዱ
1. 周期 T、频率 ν
波是机械振动的传播,在传播的过程中, 媒质的各个质元都在平衡位置附近作机械振动。 由于振动具有时间上的周期性, 所以波也具有时间上的周期性, 即每隔一定的时间,媒质中各质元的 振动状态都将复原。 媒质中振动状态复原时所需的最短时间, 也即质元完成一次全振动的时间叫波的周期, 周期的倒数叫频率。
相关文档
最新文档