大学物理光学答案Word版

合集下载

大学物理 光学答案

大学物理 光学答案

第十七章 光的干涉一. 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A. 1.5λB. 1.5n λC. 3λD. 1.5λ/n解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。

2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。

干涉条纹将变密。

本题答案为A 。

3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。

若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B )A. P 处仍为明条纹B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增π,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。

故本题答案为B 。

4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定解:反射光和透射光的等倾干涉条纹互补。

本题答案为B 。

5.一束波长为λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. λ/4B. λ/ (4n )C. λ/2D. λ/ (2n )6.在折射率为n '=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。

当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm 选择题3图解:增透膜 6.904/min ==n e λnm本题答案为C 。

大学物理--光学期末试卷答案

大学物理--光学期末试卷答案

1单选(2分)在双缝干涉实验中,用单色自然光在屏上形成干涉条纹。

若在两缝后放一个偏振片,则得分/总分•A.干涉条纹的间距不变,但明纹的亮度减弱•B.无干涉条纹•C.干涉条纹的间距不变,但明纹的亮度加强•D.干涉条纹的间距变窄,且明纹的亮度减弱正确答案:A你没选择任何选项2单选(2分)得分/总分•A.•B.•C.•D.正确答案:A你没选择任何选项3单选(2分)用单色光做杨氏双缝实验,如现将折射率n=1.5的薄透明玻璃片盖在下侧缝上,此时中央明纹的位置将:得分/总分•A.向上平移,且间距改变•B.向上平移,且条纹间距不变•C.不移动,但条纹间距改变•D.向下平移,且条纹间距不变正确答案:D你没选择任何选项4单选(2分)关于普通光源,下列说法中正确的是:得分/总分•A.普通光源同一点发出的光是相干光•B.利用普通光源可以获得相干光•C.两个独立的普通光源如果频率相同,也可构成相干光源。

•D.两个独立的普通光源发出的光是相干光正确答案:B你没选择任何选项5单选(2分)得分/总分•A.•B.•C.•D.正确答案:A你没选择任何选项6单选(2分)得分/总分•A.•B.•C.•D.正确答案:C你没选择任何选项7单选(2分)严格地说,空气的折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去时,干涉圆环的半径将:得分/总分•A.不变•B.变大•C.消失•D.变小正确答案:B你没选择任何选项8单选(2分)有两个几何形状完全相同的劈尖:一个由空气中的玻璃形成,一个由玻璃中的空气形成。

当用相同的单色光分别垂直照射它们时,从入射光方向观察到干涉条纹间距得分/总分•A.两劈尖干涉条纹间距相同•B.玻璃劈尖干涉条纹间距较大•C.空气劈尖干涉条纹间距较大•D.已知条件不够,难以判断正确答案:C你没选择任何选项9单选(2分)在单缝夫琅禾费衍射实验中波长为的单色光垂直入射到单缝上.对应于衍射角为的方向上,若单缝处波面可分成4个半波带,则缝宽度a等于得分/总分•A.•B.•C.•D.正确答案:B你没选择任何选项10单选(2分)设星光的有效波长为550 nm ,用一台物镜直径为1.20 m的望远镜观察双星时,能分辨的双星的最小角间隔是得分/总分•A.•B.•C.•D.正确答案:B你没选择任何选项11单选(2分)波长为550nm的单色光垂直入射到光栅常数为的光栅上,可能观察到的光谱线的最大级次为得分/总分•A.1•B.2•C.4•D.3正确答案:A你没选择任何选项1/3•C.1•D.1/4;正确答案:A你没选择任何选项13单选(2分)光强为的线偏振光通过偏振片P,如果P的偏振化方与线偏振光的振动振方向夹角为30度,则光通过P后的光强为.得分/总分•A.3/4利用迈克耳逊干涉仪可测量单色光的波长。

大学物理光学第一章答案

大学物理光学第一章答案

i1《1的条件下,取小角近似
于是有
sin i1 i1 ,cos i1 cos i2 1
x n 1 i1t n

12如图所示,在水中有两条平行线1和2,光线2射到水和平行平板玻璃的分界面上。
• •
(1)两光线射到空气中是否还平行? (2)如果光线1发生全反射,光线2能否进入空气? 解: 我们先推到一下光线经过几个平行界面的多层媒质时出射光线的方向。 因为界面都是平行的,所以光线在同一媒质中上界面的的折射角与下界面的入射角相等,如下图所示:
• • • • •
解得
S0 R
sin i sin u
S0 ' R
sin i ' sin u '
u u ' (i ' i)
又根据折射定律 进一步得到 由此可见,只在
n sin i n 'sin u
S0 n ' sin i ' R n sin u
以及角度关系
S0 '
f 如设该透镜在空气中和在水中的焦距分别为 f1 ,2 ,按上式有 f2 n 1 L f1 ( nL 1) n0 1.50 1 ( f1 10.0) f1 则 f2 3 1.50 1 4
4 f1 40cm

• •
• •
3用一曲率半径为20cm的球面玻璃和一平玻璃粘合成空气透镜,将其浸入水中(见图),设玻璃壁厚可忽略,水和空气的折射 率分别为4/3和1,求此透镜的焦距f。此透镜是会聚的还是发散的? 1 n 4 r 解:以 nL 1 ,0 3 , 20cm , r2 代入薄透镜焦距公式 f 1 n 1 1 ( L 1)( ) n0 r1 r2 算出该空气薄透镜(置于水中)的焦距为 f= - 80cm ,它是发散透镜。

大学物理波动光学习题答案.doc

大学物理波动光学习题答案.doc

第七章波动光学习题答案1.从一光源发出的光线,通过两平行的狭缝而射在距双缝100 cm的屏上,如两狭缝中心的距离为0.2 mm,屏上相邻两条暗条纹之间的距离为3 mm,求光的波长(A为单位)。

已知D= 100cm a=0. 2mm 8x=3mm 求A[解]X=a5x/D=3X 10_3X0. 2X 10 7100X 10 2=0. 6X10%=6000 A2.用波长为7000 A的红光照射在双缝上,距缝lm处置一光屏,如果21个明条纹(谱线以中央亮条为中心而对称分布)共宽2.3 cm,求两缝间距离。

[解]明条纹间距Ax = - cm Ax = —a=6.08x 10-2cmJ21-1 aL4.用波长为4800 A的蓝光照射在缝距为0.1 mm的双缝上,求在离双缝50 cm处光屏上干涉条纹间距的大小。

[解]Zkx = £=2.4mm5.什么是光程?在不同的均匀媒质中,单色光通过相等光程时,其几何路程是否相同?需要时间是否相同?[解]光程=nx。

在不同的均匀媒质中,单色光通过相等光程时,其儿何路程是不同。

需要时间相同6.在两相干光的一条光路上,放入一块玻璃片,其折射率为1.6,结果中央明条纹移到原是第六级明条纹处,设光线垂直射入玻璃片,入射光波长为6.6xl°3 A。

求玻璃片厚度。

已知n=1.6尢=6.6X10』求d[解]光程差MP-d+nd-NP=O・.・NP-MP二6入(n-1) d=6Xd=6V(n-l)=6. 6X 10 b m7.在双缝干涉实验中,用钠光灯作光源(X.=5893 A),屏幕离双缝距离D=500mm,双缝间距a=1.2mm,并将干涉实验装置整个地浸在折射率1.33的水中,相邻干涉条纹间的距离为多大?若把实验装置放在空气中,干涉条纹变密还是变疏?(通过计算回答)己知n水=1.33入二5893 A D二500 mm a=1.2mm 比较8x水和8x空气[解]8x *=DX/na=500X 5893xlO-,0xlO'7(l. 2xW3X 1. 33)=1. 85x10'm8x 空气=DA/a=500x5893xl0-l°x 10 7(1. 2x10 3)=2. 46x1 O m・.・干涉条纹变疏8.用白光垂直照射到厚度为4x10-5 cm的薄膜上,薄膜的折射率为1.5o问在可见光范围内,哪几个波氏的光在反射时加强。

大学物理光学答案

大学物理光学答案

第十七章 光的干涉一. 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A. 1.5λB. 1.5n λC. 3λD. 1.5λ/n 解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。

2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失 解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。

干涉条纹将变密。

本题答案为A 。

3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。

若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B ) A. P 处仍为明条纹 B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增π,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。

故本题答案为B 。

4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定 解:反射光和透射光的等倾干涉条纹互补。

本题答案为B 。

5.一束波长为λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. λ/4B. λ/ (4n )C. λ/2D. λ/ (2n ) 6.在折射率为n '=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。

当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm选择题3图解:增透膜 6.904/min ==n e λnm 本题答案为C 。

大学物理-光学答案

大学物理-光学答案

第十七章 光的干涉一. 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A. 1.5λB. 1.5n λC. 3λD. 1.5λ/n解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。

2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。

干涉条纹将变密。

本题答案为A 。

3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。

若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B )A. P 处仍为明条纹B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增π,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。

故本题答案为B 。

4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定解:反射光和透射光的等倾干涉条纹互补。

本题答案为B 。

5.一束波长为λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. λ/4B. λ/ (4n )C. λ/2D. λ/ (2n )6.在折射率为n '=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。

当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm选择题3图解:增透膜 6.904/min ==n e λnm本题答案为C 。

大学物理光学答案Word版

大学物理光学答案Word版

第十七章光的干涉一. 选择题1.在真空中波长为的单色光,在折射率为n的均匀透明介质中从月沿某一路径传播到氏若儿万两点的相位差为3 ,则路径初的长度为:(D )A. 1・ 5B. 1. onC. 3D. 1.5 /n解: △卩=二-nil = 3/r所以d= 1.52/n本题答案为D。

2.在杨氏双缝实验中, 若两缝之间的距离稍为加大,英他条件不变,则干涉条纹将(A)A. 变密B.变稀C.不变D.消失解:条纹间距= 所以/增大,Ar变小。

干涉条纹将变密。

本题答案为A。

3.在空气中做双缝干涉实验,屏幕E上的P处是明条纹。

若将缝S:盖住,并在S,、S:连线的垂直平分而上放一平面反射镜氐其它条件不变(如图),则此时(B )A.P处仍为明条纹B.P处为暗条纹C.P处位于明、暗条纹之间D.屏幕E上无干涉条纹解对于屏幕E上方的P点,从S,直接入射到屏幕E上和从出发5经平而反射镜M 反射后再入射到屏幕上的光相位差在均比原来增,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。

故本题答案为B。

4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是(B )A.亮斑B.暗斑C.可能是亮斑,也可能是暗斑D.无法确泄解:反射光和透射光的等倾干涉条纹互补。

本题答案为&5.一束波长为的单色光由空气垂宜入射到折射率为刀的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(B )A. /4B. / (4n)C・ /2 D・/ (2n)6.在折射率为m =1.60的玻璃表而上涂以折射率沪1.38的MgF:透明薄膜,可以减少光的反射。

当波长为500. Onm的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为(C )A. 5. OnmB. 30. OnmC. 90.6nmD. 250. Onm解:增透膜e min = A/4n = 90.6 nm本题答案为C。

大学物理第十一章光学经典题型及答案

大学物理第十一章光学经典题型及答案

十一章光学经典题型鸡答案一、简答题1、相干光产生的条件是什么?答:相干光产生的条件:两束光频率相同,振动方向相同,相位差恒定2、何谓光程?其物理意义是什么?答:介质折射率n和光在介质内走过的几何路程L的乘积nL叫光程,其物理意义是光程就是把光在媒质中通过的几何路程按相位差相等折合为真空中的路程.使用凸透镜不能引起附加的光程差。

3、什么是菲涅尔衍射、夫琅禾费衍射,两者的区别是什么?答:菲涅耳衍射:在这种衍射中,光源或显示衍射图样的屏,与衍射孔(或障碍物)之间距离是有限的,若光源和屏都距离衍射孔(或障碍物)有限远,也属于菲涅耳衍射。

夫琅禾费衍射:当把光源和屏都移到无限远处时,这种衍射叫做夫琅禾费衍射。

前者是光源—衍射屏、衍射屏—接收屏之间的距离均为有限远或是其中之一是有限远的场合;后者是衍射屏与两者的距离均是无穷远的场合。

理论上夫琅禾费衍射是菲涅耳衍射的一种特殊情形,当场点的距离逐渐增大时,由菲涅耳衍射向夫琅禾费衍射过渡。

4、简述何谓自然光、何谓偏振光、何谓部分偏振光?答:一般光源发出的光,包含着各个方向的光矢量,没有哪一个方向占优势,即在所有可能的方向上,E的振幅都相等,这样的光叫做自然光。

振动只在某一固定方向上的光,叫做线偏振光,简称偏振光。

若某一方向的光振动比与之相垂直方向上的光振动占优势,那么这种光叫做部分偏振光。

5、简述布儒斯特定律的主要内容及发生该现象的条件是什么?答:入射角i 改变时,反射光的偏振化程度也随之改变,当入射角B i 满足12tan n n i B =时,反射光中就只有垂直入射面的光振动,而没有平行于入射面的光振动,这时反射光为偏振光,而折射光仍为部分偏振光,这种规律叫做布儒斯特定律。

条件是入射角B i 满足12tan n n i B =时,可发生。

二、选择题1、杨氏双缝干涉实验是( A ):(A) 分波阵面法双光束干涉 (B) 分振幅法双光束干涉(C) 分波阵面法多光束干涉 (D) 分振幅法多光束干涉2、来自不同光源的两束白光,例如两束手电筒光照射在同一区域内,是不能产生干涉图样的,这是由于( C ):(A) 白光是由不同波长的光构成的 (B) 两光源发出不同强度的光(C) 两个光源是独立的,不是相干光源 (D) 不同波长的光速是不同的3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中( C ):(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等4、光在真空中和介质中传播时,正确的描述是( C ):(A) 波长不变,介质中的波速减小 (B) 介质中的波长变短,波速不变(C) 频率不变,介质中的波速减小 (D) 介质中的频率减小,波速不变5、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则( B )(A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大(D) 中央明纹向下移动,且条纹间距不变6、如图所示,折射率分别为2n ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,且21n n <,32n n >,若用波长为λ的单色光平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( B ):(A) e n 22 (B) 222λ−e n (C) λ−e n 22 (D) 2222n e n λ−7、在杨氏双缝干涉实验中,正确的叙述是( B ):(A) 增大双缝间距,干涉条纹间距也随之增大(B) 增大缝到观察屏之间的距离,干涉条纹间距增大(C) 频率较大的可见光产生的干涉条纹间距较大(D) 将整个实验装置放入水中,干涉条纹间距变大8、由两块玻璃片(7511.n =)所形成的空气劈尖,其一端厚度为零,另一端厚度为0.002cm ,现用波长为7000 Å的单色平行光,从入射角为30︒角的方向射在劈尖的表面,则形成的干涉条纹数为( A ):(A) 27 (B) 56 (C) 40 (D) 1009、光波从光疏媒质垂直入射到光密媒质,当它在界面反射时,其( C ):(A) 相位不变 (B) 频率增大 (C) 相位突变 (D)频率减小10、如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,经上下两个表面反射的两束光发生干涉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章 光的干涉一. 选择题1.在真空中波长为的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3,则路径AB 的长度为:( D )A. 1.5B. 1.5nC. 3D. 1.5/n解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。

2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失 解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。

干涉条纹将变密。

本题答案为A 。

3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。

若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B ) A. P 处仍为明条纹 B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。

故本题答案为B 。

4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定 解:反射光和透射光的等倾干涉条纹互补。

本题答案为B 。

5.一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. /4B. / (4n )C. /2D. / (2n )6.在折射率为n =1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。

当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为(选择题3图C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm 解:增透膜 6.904/min ==n e λnm 本题答案为C 。

7.用波长为的单色光垂直照射到空气劈尖上,观察等厚干涉条纹。

当劈尖角增大时,观察到的干涉条纹的间距将( B )A. 增大B. 减小C. 不变D. 无法确定 解:减小。

增大,故l n l ,sin 2θθλ=本题答案为B 。

8. 在牛顿环装置中,将平凸透镜慢慢地向上平移,由反射光形成的牛顿环将 ( )A. 向外扩张,环心呈明暗交替变化B. 向外扩张,条纹间隔变大C. 向中心收缩,环心呈明暗交替变化D. 无向中心收缩,条纹间隔变小 解:本题答案为C 。

9.用波长为的单色平行光垂直照射牛顿环装置,观察从空气膜上下两表面反射的光形成的牛顿环。

第四级暗纹对应的空气膜厚度为( B )A. 4B. 2C. 4.5D. 2.25解:暗条纹条件:,2/)12(2/2λλ+=+k ne k=4,n=1,所以λ2=e 。

本题答案为B 。

10.在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是( D )A./2 B./(2n ) C./n D./(2(n 1))解:)1(2/ ,)1(2-==-=∆n d d n λλδ故 本题答案为D 。

二. 填空题1.光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 。

解:04I 。

2.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ,若使单色光波长减小,则干涉条纹间距 。

解:dD x λ=∆,所以 d 增大,x ∆减小; e nS 1屏λ减小,x ∆也减小。

3.如图,在双缝干涉中若把一厚度为e ,折射率为n 的薄云母片,覆盖在S 1缝上,中央明纹将向 移动。

覆盖云母片后,两束相干光到达原中央明纹o 处的光程差为 。

解:因为n >1,光从S 1、S 2传播到屏幕上相遇时光程差为零的点在o 点上方,所以中央明纹将向上移动。

光程差为e n )1(-。

4.在双缝干涉实验中,中央明条纹的光强度为I 0,若遮住一条缝,则原中央明条纹处的光强度变为 。

解:中央明条纹的光强度为I 02)2(A ∝,遮住一条缝,则原中央明条纹处的光强度I 2A ∝,I =4I 。

5.如图所示,在双缝干涉实验中,SS 1=SS 2,用波长为的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹,已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 ;若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n = 。

解: λδk = k =3 所以λδ3=。

在透明液体中 λδ'k n =,4'=k ,所以n λλ43=,34=n 6.如图所示,当单色光垂直入射薄膜时,经上下两表面反射的两束光发生干涉。

当n 1<n 2<n 3时,其光程差为 ;当n 1=n 3<n 2时,其光程差为 。

解:3221,n n n n << 所以上、下表面的反射光都有半波损失,附加光程差0'=δ 故光程差e n 22=δ。

231n n n <=时,上表面有半波损失,下表面无半波损失,附加光程差2'λδ=,故光程差222λδ+=e n 。

7.用波长为的单色光垂直照射如图所示的劈尖膜(n 1n 2n 3 ),观察反射光干涉,劈尖顶角处为 条纹,从劈尖膜尖顶算起,第2条明条纹中心所对应的厚度为 。

解:n 1n 2 n 3 所以上、下表面的反射光都没有半波损失,故劈尖顶角处光程差为零,为明条纹;第n 1n 2 n 3填空题7图nn 3 e填空题6图填空题5图SPES 1S 22条明条纹即第一级明条纹1,22==k k e n λ,所以22n e λ=。

8.单色光垂直照射在劈尖上,产生等厚干涉条纹,为了使条纹的间距变小,可采用的方法是:使劈尖角 ,或改用波长较 的光源。

解:θλsin 2=l ,要使l 变小,使劈尖角增大,或用波长较小的光源。

9.某一牛顿环装置都是用折射率为1.52的玻璃制成的,若把它从空气中搬入水中,用同一单色光做实验,则干涉条纹的间距 ,其中心是 斑。

解:λλλδk R r n e n =+=+=2222水,n R k r λ)(21-=, n 变大,干涉条纹间距变密。

其中心是暗斑。

10.用迈克耳孙干涉仪测反射镜的位移,若入射光波波长=628.9nm ,当移动活动反射镜时,干涉条纹移动了2048条,反射镜移动的距离为 。

解:2λN d =∆=0.644mm 。

三. 计算题1.在双缝干涉实验中,双缝与屏间的距离D =1.2m ,双缝间距d =0.45mm ,若测得屏上干涉条纹间距为1.5mm ,求光源发出的单色光的波长。

解:根据公式x = k D / d 相邻条纹间距x = D / d 则 = d x / D = 562.5 nm2.在双缝干涉实验中,若缝间距为所用光波波长的1000倍,观察屏与双缝相距50cm ,求相邻明纹的间距。

解:由双缝干涉公式x = kD /d得:x = D /d = 0.05 cm3.在图示的双缝干涉实验中,若用折射率为n 1=1.4的薄玻璃片覆盖缝S 1,用同样厚度但折射率为n 2=1.7的玻璃片覆盖缝S 2,将使屏上原中央明条纹所在处O 变为第五级明条纹,设单色光波长=480.0nm ,求玻璃片厚度d (可认为光线垂直穿过玻璃片)。

解:双缝未覆盖玻璃片之前,两束光到达中央明条纹所在处o 点的光程差r 2 r 1 = 0双缝未覆盖玻璃片之后,o 点变为第五级明纹,因此两束光到达o 点后的光程差 [n 2d +(r 2 d )] [n 1d +(r 1d )]= 5因此Od S 1 S 2 n 1n 2r 1r 2计算题3图(n 2 n 1 ) d = 5d = 5/ (n 2 n 1 )=5480109/(1.7 1.4)=810 6 m4.在杨氏双缝实验中,两缝之间的距离d =0.5mm ,缝到屏的距离为D =25cm ,若先后用波长为400nm 和600nm 两种单色光入射,求:(1)两种单色光产生的干涉条纹间距各是多少?(2)两种单色光的干涉条纹第一次重叠处距屏中心距离为多少?各是第几级条纹?解:如图所示,屏上p 点处,从两缝射出的光程差为 = x d / D 明纹条件 = k 屏上明纹位置 x = D k/ d(1) 两明条纹的间距x = D /d x 1 = D 1/d = 0.2mm x 2 = D 2/d = 0.3mm(2) 在两种单色光的干涉条纹重叠处,有 x 1=x 2 即k 1 1 = k 22k 1/k 2 =2/1=3/2第一次重叠k 1=3, k 2 =2 x 1 = x 2 = 0.6mm故两种单色光的干涉条纹第一次重叠处距屏中心距离为0.6mm ,波长为400nm 的是第3级条纹,波长为600nm 的是第2级条纹。

5.如图,用白光垂直照射厚度e = 400nm 的薄膜,若薄膜折射率n 2 =1.4,且n 1>n 2>n 3,则反射光中哪些波长的可见光得到加强?解:由于n 1 > n 2 > n 3从上下表面反射的光均无半波损失。

反射光得到加强的条件是2 n 2e = k = 2.8400/ kk = 1时,= 1120 nm k = 2时,= 560 nm k = 3时,= 373.3nm可见光范围400nm~760nm ,所以反射光中可见光得到加强的是560nm 。

6. 一片玻璃(n =1.5)表面附有一层油膜(n =1.32),今用一波长连续可调的单色光束垂直照射油面。

当波长为485nm 时,反射光干涉相消。

当波长增为679nm 时,反射光再次干涉相消。

求油膜的厚度。

解:由于在油膜上,下表面反射时都有相位跃变,所以反射光干涉相消的条件是2ne =(2k +1)/2。

于是有2ne =(2k +1)1/2=(2k 1)2/2n 3n 1n 2 e计算题5图pDdx由此解出)(21212λλλλ-+=k ,进一步得到油膜的厚度nm 643)485679(32.12485679)(21212=-⨯⨯⨯=-=λλλλn e7.在折射率n =1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜。

如果此膜适用于波长=550nm 的光,膜的厚度应是多少?解:透射光干涉加强的条件是2ne +/2=k ,k =1,2,…m 10)6.993.199(38.1210550)21(2)21(99--⨯-=⨯⨯⨯-=-=k k n k e λ故最薄需要e =99.6nm 。

相关文档
最新文档