2、电力系统的接线

合集下载

电力系统基础第二章习题答案

电力系统基础第二章习题答案

第二章电力系统的接线一、填空题1.有母线的主接线的形式有单母线和双母线。

其中单母线分为单母线无分段、单母线有分段、单母线分段带旁路母线等,双母线分为普通双母线、双母线分段、3/2断路器、双母线带旁路母线等。

3.开关电器按功能分为断路器、隔离开关、熔断器、负荷开关以及自动重合器和自动分段器。

4.高压断路器按所采用的灭弧介质分为油断路器、压缩空气断路器、和真空断路器、六氟化硫断路器。

5.SF断路器灭弧室的结构分为单压式和双压式。

66. 电力系统的中性点接地方式有直接接地,不接地,经消弧线圈接地。

7. 电力网接线方式通常按供电可靠性分为无备用接线和有备用接线。

二、判断题1.电气主接线图是反映电气一次设备连接情况的图纸。

( √ )2.电气主接线图中所有设备均用单线代表三相。

( × )3.隔离开关与断路器在操作时应满足“隔离开关先通后断”原则。

( √ )4.一台半断路器接线当任意一组母线发生短路故障时 , 均不影响各回路供电。

( √) 5.单母线带旁路母线接线中旁路母线的作用是作为母线的备用。

( × )6.桥形接线与单母不分段接线相比节省了一台断路器。

(√)7.内桥接线适用于变压器需要经常切换的发电厂。

(×)8.内桥接线适用于线路有穿越功率的发电厂。

(×)9.主接线方案的经济比较主要是比较综合投资和年运行费用。

(√)10.发电厂和变电站的自身用电量很小 , 因此不重要。

(×)11、保护接零是在 380/220 低压系统中 , 将电气设备的金属外壳与工作零线相连。

(√)12、开关电器分为以下四类:: 断路器、隔离开关、负荷开关、接触器。

(×)13、高压断路器在电网中起控制与保护作用。

(√)14、高压断路器既能开断负荷电流又能开断短路电流。

(√)15、断路器在工作过程中的合、分闸动作是由操动系统来完成的。

(√)16、六氟化硫断路器是利用六氟化硫气体作为灭弧和绝缘介质。

电力系统的接线方式

电力系统的接线方式

(1)L1故障 仅QF1跳闸,T1及其它 回路继续运行
QF
(2) T1检修 ①断开QF、QF1,再 拉开QS1,出线l1停电 ②关合QF和QF1,恢 复L1供电。
T2
T1
内桥接线
l1 QS2 QF QS1
l2
(1)L1故障 ①QF和QF1同时自动跳 闸,T1被切除 ②断开QS2,合QF1和 QF,恢复T1运行。 (2) T1检修 仅停QF1和QS1 。
QF1
QF2
T1
外桥接线
T2
桥形接线的适用范围:
内桥接线:输电线路较长,变压器不需经 常切除时,故障断开机会较多,穿越
功率少的场合。
外桥接线:输电线路较短,变压器经常切
除, 或系统有穿越功率经过。
14
l1 QS7
QS8 l2
跨 条 的 作 用
QS3 QF1 QS2 QS1
QF2 QF T1 T2
QF2 QFC
QF3
QS2
QS3
QSP2
QSP3
W2 W1
QF1 QF QF2
母联兼旁路接线
w3
QS QS QF QS2 w2 w
1
QS1
旁路跨条
双母线双断路器接线
WL1 WL2 WL3 WL4
W2 W1
7
3.一个半断路器接线
l1 l2 l3 l4 W2
QF1
QF2
QF3
W1
பைடு நூலகம் 9
10
二、无母线的电气主接线
19
大 型 火 电 厂 主 接 线
热 电 厂 主 接 线
水 电 厂 主 接 线
2.多角形接线
3.单元接线
17
18

电力系统接线方式

电力系统接线方式

电力系统接线方式电力系统中性点是指星形连接的变压器或发电机的中性点。

电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。

电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。

电力系统中性点接地方式主要是技术问题,但也是经济问题。

在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。

简言之,电力系统的中性点接地方式是一个系统工程问题。

接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与人地作良好的电气连接称为接地。

根据接地的目的不同,分为工作接地和保护接地。

工作接地是指为运行需要而将电力系统或设备的某一点接地。

如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。

保护接地是指为防止人身触电事故而将电气设备的某一点接地。

如将电气设备的金属外壳接地、互感器二次线圈接地等。

接地方式主要有2种,即直接接地系统和不接地系统。

1.中性点直接接地系统中性点直接接地系统一一又称人电流系统;适于UOkV以上的供电系统,380V以卞低压系统。

直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。

随着电力系统电压等级的增高和系统容量增人,设备绝缘费用所占比重也越来越人。

中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。

所以,UOkV及以上系统均采用中性点直接接地方式。

对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。

对于高压系统,如UOkV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受J 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资人人增加;另外11ORV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在llOkV以上供电系统,多采用中性点直接接地系统。

4-1 电力系统的接线方式(2018)

4-1 电力系统的接线方式(2018)

母线隔离开关
单母线接线图 16
母线隔离开关
断路器
17
线路隔离开关
接地刀闸
18
接地刀闸
19
电气倒闸操作
通过操作隔离开关、断路器以及挂、拆接地线将 电气设备从一种状态转换为另一种状态的有序操 作,叫做倒闸操作。
电气设备工作状态:运行、冷备用、热备用、检 修。
20
电气倒闸操作
运行状态:电气设备所连的断路器、隔离开关都在合闸位 置。
36
3)一个半断路器接线(3/2接线)
优点:可靠性高、操作 检修方便、运行灵活。 (两组母线同时故障, 一个半断路器接线还可 以输送功率。)
联络断路器
缺点:设备多,投资多、 继电保护、自动重合闸 和二次回路较复杂。
联络断路器故障时与其相连的 两条回路会短时停电
37
3)一个半断路器接线(3/2接线)
一组主母线运行,另一组主母线备用时,当工 作母线检修时的倒闸操作顺序
l1
l2
l3
l4
等电位操作
W2 W1
QF
G1
母联断路器
G2
30
优点:可靠性较高、调 度灵活、扩建方便
缺点: 1)接线复杂、设备增多,经济性差; 2)当母线故障或检修时,隔离开关作为倒换操作电器
(等电位操作),容易误操作。
避免误操作的措施: 1)严格执行“操作票”工作监管步骤; 2)采用“五防”开关:防止带负荷拉合隔离开关;防
为什么装2个? 可以是1个,但是为了便于在检修跨 条支路的隔离开关时在两侧也形成明 显的电位开断点,所以装设两台,互 为检修电位隔离点。
48
3)角形接线
特点:1)断路器接成环形电路,进出线数等 于断路器数;

电力系统电气主接线(其他形式)

电力系统电气主接线(其他形式)

电力系统电气主接线(其他形式)4.一个半断路器接线一个半断路器接线可归属于双母线类接线。

在两组母线之间,每三个断路器形成一串。

每串连接两条回路。

相当于每一个半断路器带一条回路,故称之为一个半断路器接线,也称为3/2接线。

在一个半接线的每串断路器中,位于中间的断路器称为联络断路器。

运行中两母线及全部断路器都投入工作,形成多重环状供电。

5.双母线单(双)分段带旁路接线为进一步缩小母线故障的影响范围,对于可靠性要求较高的330~500kV超高压系统,当进出线达到6回以上时,可采用双母线单段或双分段带旁路接线。

这种接线是把工作母线分为两段,在两段工作母线之间,两工作母线与备用母线之间都设置有母联断路器。

6.变压器—母线接线各出线经过断路器分别接在母线上,变压器直接经隔离开关接到母线上,组成变压器—母线接线。

电源和负荷可以自由调配。

由于变压器是高可靠性设备,所以直接接在母线上,对母线的运行并不产生严重影响,一旦变压器故障时,接在母线上的各断路器开断,这时不会影响对用户的供电。

在出线数目很多时也可以用一台半断路器接线形式。

这种接线在远距离大容量输电系统中应用时,对系统稳定与可靠性均有良好的效果。

7.无母线接线(1)桥式接线对于具有双电源进线、两台变压器终端式的总降压变电所,可采用桥式接线。

它实质是连接两个35~110kV“线路─变压器组”的高压侧,其特点是有一条横联跨桥的“桥”。

根据跨接桥横连位置不同,分为内桥接线和外桥接线。

1)内桥接线的跨接桥靠近变压器侧,桥开关装在线路开关之内,变压器回路仅装隔离开关,不装断路器。

采用内桥接线可以提高改变输电线路运行方式的灵活性。

内桥接线适用于:对一、二级负荷供电;供电线路较长;变电所没有穿越功率;负荷曲线较平稳,主变压器不经常退出工作;终端型工业企业总降压变电所。

2)外桥接线跨接桥靠近线路侧,桥开关装在变压器开关之外,进线回路仅装隔离开关,不装断路器。

外桥接线适用于:对一、二级负荷供电;供电线路较短;允许变电所有较稳定的穿越功率;负荷曲线变化大,主变压器需要经常操作;中间型工业企业总降压变电所,宜于构成环网。

电力系统的接线方式汇总

电力系统的接线方式汇总
重庆水利电力职业技术学院
学习任务三 电力系统接线方式和电压等级 电力系统的接线方式
电力系统是最大的人工系统,它敷设在非常广大的地 域上,因而任何人想在不长的时间内看到整个系统的全部 连接的实际情况那是不可能的,然而只能通过看元件连接 情况的单线图,从而了解到整个系统的连接情况。
1、电力系统接线图 电力系统的接线图有两种:电气接线图和地理接 线图。 电气接线图较详细地表示出电力系统各主要元件 之间的电气联系,但不能反映各发电厂,变电所的 相对地理位置。 在地理接线图上,各发电厂,变电所的例表示出 来,但各主要元件之间的电气联系却不能在图中表 示清楚。因此,这两种接线图常配合使用。
2、电力系统接线 电力系统的接线方式应能满足电力系统运行的基 本要求: (1)必须保证用户供电的可靠性 (2)必须能灵活地适应各种可能地运行方式 (3)应力求节约设备和材料,减少设备费用和运 行费用,使电网地建设和运行比较经济; (4)应保证各种运行方式下运行人员能安全操作。
电力系统的接线方式大致可分无备用和有备用两类。 (1)无备用接线。用户只能从一个方向取得电源的 接线方式,包括单回路放射式,干线式和链式网络, 如图所示。这类接线适用于向二类负荷供电。
(a)
无备用接线方式 放射式 (b) 干线式 (c) 链式
(2)有备用接线。它是用户可以从两个或两个以上 方向取得电源的接线方式,如图所示的双回路放射式, 干线式,链式以及环式和两端供电网络。
有备用接线方式 (a)放射式 (b) 干线式 (c)链式 (d) 环式 (e) 两端供电网
这类接线适用于对一,二类负荷尤其是一类负 荷供电,应当优先考虑采用有备用接线

电力系统的接线方式

电力系统的接线方式

单母线带旁路适用范围:出线回路数较多的110kV及以上系统
W2 带
旁 路
QS2

QF
旁路母线
线

QS1
W1

母 线
正常运行时, QF2和QS3断开,工作母线接旁母不 Nhomakorabea。线
电源侧
l1


QS3

线
l1
QF1




QF1
电源侧
W2
QS2 QF
QS1
W1
当与旁母相连的
任一出线断路器检 修时,不中断该回 路供电。
2)当出线断路器检修时,必须停止该回路的工作。
3)电源只能并列运行,不能分列运行,线路侧短路时,有 较大的短路电流。
• 适用于只有一台发电机和一台主变的中小型发电 厂或变电所的6~220kV的配电装置
一类用户
L1 L2
L3 L4






QF1
分段数越多,故障时停电的范围就越小。
图2-2 单母线分段接线
适用: 出线数较多的110kV及以上的高压配电装
置中,断路器检修时间长、停电影响也较大。 一般35 kV以下配电装置多为屋内型,为
节省建筑面积,降低造价都不设旁路母线。
单母分段兼旁路
W3
QS QS 3 QF 4
W1
QS QS
W2
1
2
1)旁路母线接至Ⅰ段母线运行时,要闭合隔离开关QS1、
QS4及QF (此时QS2、QS3断开);
1.无备用接线方式(单回路)
负荷点 电源点
放射式
干线式
链式

电力系统的接线

电力系统的接线
第二章 电力系统的接线
第一节 电气主接线 第二节 电力设备及其选择的一般原则 第三节 电力网接线及中性点接地方式 第四节 直流输电
本章重点:电气主接线、电力网 接线及中性点接地方式
电力系统的接线
1
• 无论电力系统在正常工况下运行的经济性, 调度操作的灵活性、方便性,供电的可靠 性,还是系统在故障工况下进行故障隔离、 检修,修复后的供电恢复操作甚至电气设 备的选择等,都与电力系统接线方式密切 相关。
双母线带旁母
– (a)设专用的旁路断路器 – (b)旁路断路器兼作母联断路器 – (c)母联断路器兼作旁路断路器
电力系统的接线
15
第一节 电气主接线(有汇流母线)
一台半断路器接线(3/2接线)
– 每两个回路用三台断路器串成 一串接在两组母线上
• 完整串运行——两组母线和同一 串的三台断路器都投入工作,形 成多环路状供电
– 双母线接线的优点:
• (1)供电可靠——通过两组母线、隔离开关的倒换 操作,可以轮流检修一组母线而不致供电中断;一 组母线故障后能迅速恢复供电,检修任一回路的母
线隔离开关,只停该回路
• (2)调度灵活——各个电源和负荷可以任意分配到 某一组母线上,能灵活地适应系统各种运行方式调
度和潮流变化的需要。
• 合母线隔离开关QS21 • 合线路隔离开关QS22 • 投入断路器QF2
– 切断电路时:
• 断开断路器QF2 • 断线路隔离开关QS22 • 断母线隔离开关QS21
电力系统的接线
第一节 电气主接线(有汇流母线)
6
第一节 电气主接线(有汇流母线)
– 单母线接线的适用范围
• 只适用于可靠性、灵活性要求不高,小容量的配电 装置,若采用成套开关柜可相应地提高可靠性

电力系统分析练习题及其答案(何仰赞)上册

电力系统分析练习题及其答案(何仰赞)上册

1-2,电力系统的部分接线如图1-2,各电压级的额定电压及功率输送方向表于图中.试求:(1)发电机及各变压器高低绕组的额定电压;(2)各变压器的额定变比;(3)设变压器T-1工作于+5%抽头,T-2,T-4工作于主抽头,T-3工作于-2。

5%抽头时,各变压器的实际变比。

解:(1)总的原则:发电机的额定电压比同电压级网络的额定电压高5%;变压器一次侧额定电压等于同电压级网络的额定电压高,二次侧额定电压比同电压级网络的额定电压高10%。

其中,变压器受功率侧为一次侧,输功率侧为二次侧.发电机:变压器T—1:变压器T-2:变压器T—3:变压器T-4:(2) 各变压器的额定变比变压器T—1:变压器T—2:变压器T-3:变压器T—4:(3) 各变压器的实际变比变压器T—1:变压器T—2:变压器T—3:变压器T—4:1-3,电力系统的部分接线如图1-3,网络的额定电压已经标明图中。

试求:(1)发电机,电动机及变压器高,中,低压绕组的额定电压;(2)设变压器T-1高压侧工作于+2.5%抽头,中压侧工作于+5%抽头;T-2工作于额定抽头;T-3工作于-2。

5%抽头时,各变压器的实际变比.解(1)发电机:网络无此电压等级,此电压为发电机专用额定电压,故.变压器T-1: 一次侧与发电机直接连接,故其额定电压等于发电机的额定电压;二次侧额定电压高于网络额定电压10%,故T—1的额定电压为。

变压器T-2:一次侧额定电压等于网络额定电压,二次侧额定电压高于网络额定电压10%,故T—2的额定电压为。

变压器T—3:一次侧额定电压等于网络额定电压,二次侧与负荷直接连接,其额定电压应高于网络额定电压5%,因此T—3的额定电压为。

电动机:其额定电压等于网络额定电压。

(2)各变压器的实际变比为变压器T—1:变压器T-2:变压器T-3:[例2-1]一条220kV的输电线,长180km,导线为LGJ—400(直径2.8cm),水平排列,相间距7m,求该线路的R,X,B,并画等值电路。

详细解读电力系统主接线的基本要求、基本形式和接线方式

详细解读电力系统主接线的基本要求、基本形式和接线方式

详细解读电力系统主接线的基本要求、基本形式和接线方式导读主接线是实现电能输送和分配的一种电气接线。

变配电站的主接线是由各主要电气设备(包括变压器、开关电器、母线、互感器及连接线路等)按一定顺序连接而成的、接受和分配电能的总电路。

本期专题将详细解读电力系统主接线的基本要求、基本形式和接线方式。

主接线一般需符合电力系统对本电站在供电可靠性和电能质量方面的要求,技术先进,经济合理,接线简单、清晰,操作维护方便和具有一定的灵活性,并能适应工程建设不同阶段的要求。

对主接线的要求电气主接线应满足下列基本要求:1)牵引变电所、铁路变电所电气主接应综合考虑电源进线情况(有无穿越通过)、负荷重要程度、主变压器容量和台数,以及进线和馈出线回路数量、断路器备用方式和电气设备特点等条件确定,并具有相应的安全可靠性、运行灵活和经济性。

2)具有一级电力负荷的牵引变电所,向运输生产、安全环卫等一级电力负荷供电的铁路变电所,城市轨道交通降压变电所(见电力负荷、电力牵引负荷)应有两回路相互独立的电源进线,每路电源进线应能保证对全部负荷的供电。

没有一级电力负荷的铁路变、配电所,应有一回路可靠的进线电源,有条件时宜设置两回路进线电源。

3)主变压器的台数和容量能满足规划期间供电负荷的需要,并能满足当变压器故障或检修时供电负荷的需要。

在三相交流牵引变电所和铁路变电所中,当出现三级电压且中压或低压侧负荷超过变压器额定容量的15%时,通常应采用三绕组变压器为主变压器。

4)按电力系统无功功率就地平衡的要求,交流牵引变电所和铁路变、配电所需分层次装设并联电容补偿设备与相应主接线配电单元。

为改善注入电力系统的谐波含量,交流牵引变电所牵引电压侧母线,还需要考虑接入无功、谐波综合并联补偿装置回路(见并联综合补偿装置)。

对于直流制干线电气化铁路,为减轻直流12相脉动电压牵引网负荷对沿线平。

电力系统的接线

电力系统的接线
多环形供电,运行可靠灵活。
2.1 电气主接线--一台半断路器接线
3/2接线的优点:
1) 运行灵活可靠。 兼有环形和双母接线的优点; 正常运行时成环形供电,任一组母线发生短路故 障,均不影响各回路供电。
2) 操作方便。 任一台断路器或母线检修,只需拉开对应的断路 器及隔离开关,各回路仍可继续运行。 隔离开关仅作检修隔离电压操作,不易误操作。
2.1电气主接线--单母线接线
单母线接线 线图
QSL
QSW
2.1电气主接线--单母线接线
单母线接线概述:
仅一组汇流母线; 每个电源和出线回路都通过断路
器和隔离开关接至母线; 尽量使负荷均匀分配在母线上,
减少功率在母线上的传输; 任一回路故障,该回路的断路器
能够切除该回路,而使其他电源和 和线路能继续工作; (QS4-接地刀闸,检修线路或 设备时合上,起安全地线作用。)
2.1 电气主接线--双母线接线
为了克服双母接线的缺点:
2.1 电气主接线--双母线接线
特点: 兼具单母分段和双母接线的特点; 运行方式多样、灵活; 但母联、分段断路器均随分段数目而增加。
分段数目:取决于主母线负荷大小及出线回路数( 如220KV回路数,若10~14回,双母三分段; 15接线--对电气主接线的基本要求
四、其他 -接线尽可能简单明了,倒闸操作步骤最少。
2.1电气主接线--主接线的基本形式
主接线的三大基本环节:
电源(发电机或变压器或高压进线) 母线出线(馈线)
母线(汇流排):中间环节,在进出线较多时帮
助汇集和分配电能。 优点:使接线简单清晰,运行方便,利于安装和
扩建。 缺点:配电装置占地面积增大、使用的开关设备
2.1电气主接线--主接线的基本形式

电力系统接线方式

电力系统接线方式
7双母线分段带旁路接线:
双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器,它具有双母线带旁路的优点,但投资费用较大,占用设备间隔较多,一般采用此种接线的原则为:
1) 当设备连接的进出线总数为12~16回时,在一组母线上设置分段断路器;
2) 当设备连接的进出线总数为17回及以上时,在两组母线上设置分段断器。
4单母线分段接线:
单母线分段接线就是将一段母线用断路器分为两段,它的优点是接线简单,投资省,操作方便;缺点是母线故障或检修时要造成部分回路停电。
5双母线接线:
双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。
3多角形接线:
多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。多角形接线所用设备少,投资省,运行的灵活性和可靠性较好。正常情况下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部分故障时,对电网的运行影响都较小。其最主要的缺点是回路数受到限制,因为当环形接线中有一台断路器检修时就要开环运行,此时当其它回路发生故障就要造成两个回路停电,扩大了故障停电范围,且开环运行的时间愈长,这一缺点就愈大。环中的断路器数量越多,开环检修的机会就越大,所一般只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器采用对角连接原则。四边形的保护接线比较复杂,一、二次回路倒换操作较多。
1线路变压器组接线:
线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式,其特点是设备少、投资省、操作简便、宜于扩建,但灵活性和可靠性
2桥形接线:

1.3电力系统的接线方式和电压等级

1.3电力系统的接线方式和电压等级

系统结构和电压等级如下
10kV T1
110kV T2 10kV
各设备的额定电压为
10.5kV 10.5kV/121kV
110kV
110kV/11kV
24
变压器的分接头
变压器的分接头一般在高压侧、中压侧 以高压绕组的额定电压作基准,为100%,称之为主抽头。 高压绕组的额定电压=主抽头电压 分接头的额定电压以百分值表示:表示分接头电压与主抽 头电压的差值为主抽头电压的百分之几. 如10kV/3.3kV变压器,+5%抽头为10.5kV
25
电力线路电压与输送容量、距离的关系
三相输电线路传送的功率 P 3UICOS 输送容量 S 3UI
在U一定的情况下,S的增大导致电流 I 的增大
电压等级(kV) 输送容量(MVA) 输送距离(km)
输电 500
220 高中压 110(部分输电) 配电
35
1000~1500 100~500 10~50
2~10
150~850(跨省) 100~300(跨地区) 50~100(跨县市)
20~50
10
0.2~2
低压配电380/220V(楼内、农电)
6~20
四、电力系统中性点运行方式
星形接线变压器或发电机的中性点称为电力系统的中性点
中性点运行方式:
直接接地:110kV及以上系统中,有利于绝缘.
不接地:3~66kV系统, 绝缘要求提高,可靠性高.
+2.5%抽头为10.25kV -2.5%抽头为9.75kV
22
ห้องสมุดไป่ตู้
变压器的变比
额定变比:两侧额定电压之比 实际变比:两侧实际工作抽头的空载线电压之比
额定变比和匝数比

13第六章电力系统接线方式

13第六章电力系统接线方式
灵活性:高 操作:避免用隔离开关进行大量 倒闸操作 便于调度和扩建
经济性:大 一次投资:每串增加联络断路器。
(2)进出线布置原则 电源和负荷配对成串
(3)适用范围:330~500KV配电装置
(二)无汇流母线接线 1、单元接线 (1)接线形式
发电机-双绕组变压器单元接线 发电机-三绕组变压器单元接线 扩大单元接线
供电; 4)两组母线带有均衡负荷,当母联投入并联运行时,相当于单母线分段
接线的作用;
(2)适用范围 出线带电抗器的 6~10KV配电装置中。 35~60KV 出线数超过8回,或连接电源较大、负荷较大 110~220KV出线数5回以上
4、双母线分段接线 (1)接线特点分析(与双母线比较)
双母线再分段,三分段或四分段 可靠性
停电范围、时间
厂站全停及对系统稳定的影响
2)灵活性 (1)操作的方便性 (2)调度的方便性 (3)扩建的方便性 3)经济性 (1)节省一次投资 (2)占地面积少 (3)电能损耗少
二、电气主接线的基本接线形式
(一)有汇流母线接线 1、单母线接线 (1)相关名称
断路器 母线侧隔离开关 线路侧隔离开关 (2)隔离开关与断路器联合操作顺序
6~10KV 单 母 或 单 母 分 段 , 出 线 数 较 多
随着断路器和隔离开关质量提高, 电网结构合理,计划检修向状态检
修过渡,将逐步取消旁路。
6、一台半断路器接线(3/2接线) (1)接线特点分析
3个断路器构成1串,接在两母线间,引出2条出线
可靠性:高 断路器检修不会中断供电: 母线检修不会停止供电:
母线故障:该分段的回路倒母线 经济性:
一次投资:增加分段和母联设备。 (2)适用范围
发电厂的6~10KV配电装置,出线和电源较多 220~500KV配电装置中

2016年9月吉林大学课程机考复习题-电力系统分析

2016年9月吉林大学课程机考复习题-电力系统分析

单选题:1:系统发生两相接地短路故障时,复合序网的连接方式为() 1.正序、负序、零序并联2:采用分裂导线,使得线路电感( ) 3.减小3:输电线路单位长度的电阻主要决定于() 4.材料和粗细4:已知一节点所带负荷,有功功率为P,视在功率为S,则功率因数角为() 4.arccos 5:中性点不接地系统中发生单相接地时,接地点有电流流过,电流的通路是( ) 4.输电线路和线路对地电容1:我国目前所规定的10KV及以下用户的供电电压允许变化范围是( ) 2.±7%2:系统中有功功率不足,必定会造成( ) 2.频率下降3:系统发生不对称短路后,负序电压的变化趋势为越靠近短路点,负序电压( ) 3.越高5:系统发生单接地短路故障时,复合序网的连接方式为() 1.正序、负序、零序串联1:110kV以上电压等级电网中一般采用中性点( ) 4.直接接地方式3:在系统的初始运行条件、故障持续时间均完全相同的情况下,导致系统的暂态稳定性最差的故障应为( ) 3.三相短路4:快速切除故障将使得系统的暂态稳定性得到( ) 2.提高5:我国35Kv以上高压电气设备允许的电压偏移为( ) 1.±5%1:我国规定的系统频率偏差范围是()1.+0.2~ +0.55:电力线路的等值电路中,电阻参数R主要反映电流流过线路产生的() 1.热效应1:P?δ被称为() 4.功角曲线2:电压降落指线路始末两端电压的() 3.相量差3:利用发电机调压() 2.不需要附加设备4:电力用户只能从一个电源获得电能的地理接线方式为( )。

4.无备用接线5:潮流方程是() 4.非线性方程1:我国电力系统的额定频率为( ) 1.30Hz3:采用分裂导线的目的是( ) 4.减小电晕和线路电抗4:频率的二次调整是( ) 3.发电机组的调频系统完成的5:将三个不对称相量分解为三组对称相量的方法是( ) 2.对称分量法1:已知一节点所带负荷,有功功率为P,视在功率为S,则功率因数角为() 4.arccos 3:在标么制中近似计算时,基准电压常选用( ) 2.平均额定电压5:无零序电流分量的不对称短路是() 2.两相短路2:二相断线时的复合序网是在断口处( )。

电力系统分析 第三版 (于永源 杨绮雯 著) 中国电力出版社 课后答案

电力系统分析 第三版 (于永源 杨绮雯 著) 中国电力出版社 课后答案

Chapter 一1-1、电力系统和电力网的含义是什么?答:电力系统指生产、变换、输送、分配电能的设备如发电机、变压器、输配电线路等,使用电能的设备如电动机、电炉、电灯等,以及测量、保护、控制装置乃至能量管理系统所组成的统一整体。

一般电力系统就是由发电设备、输电设备、配电设备及用电设备所组成的统一体。

电力系统中,由各种电压等级的电力线路及升降压变压器等变换、输送、分配电能设备所组成的部分称电力网络。

1-2、电力系统接线图分为哪两种?有什么区别?答:电力系统接线图分为地理接线图和电气接线图。

地理接线图是按比例显示该系统中各发电厂和变电所的相对地理位置,反映各条电力线路按一定比例的路径,以及它们相互间的联络。

因此,由地理接线图可获得对该系统的宏观印象。

但由于地理接线图上难以表示各主要电机、电器之间的联系,对该系统的进一步了解。

还需阅读其电气接线图。

电气接线图主要显示系统中发电机、变压器、母线、断路器、电力线路等主要电力元件之间的电气接线。

但电气接线图上难以反映各发电厂、变电所的相对位置,所以阅读电气接线图时,又常需参考地理接线图。

1-3、对电力系统运行的基本要求是什么?答:对电力系统运行通常有如下三点基本要求:1)保证可靠地持续供电;2)保证良好的电能质量;3)保证系统运行的经济性。

1-4、电力系统的额定电压是如何确定的?系统各元件的额定电压是多少?什么叫电力线路的平均额定电压?答:各部分电压等级之所以不同,是因三相功率S 和线电压U、线电流I 之间的关系为UI。

当输送功率一定时,输电电压愈高,电流愈小,导线等截流部分的截面积愈小,投资愈小;但电压愈高,对绝缘的要求愈高,杆塔、变压器、断路器等绝缘的投资也愈大。

综合考虑这些因素,对应于一定的输送功率和输送距离应有一个最合理的线路电压。

但从设备制造角度考虑,为保证生产的系列性,又不应任意确定线路电压。

另外,规定的标准电压等级过多也不利于电力工业的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缺点:配电装置占地面积增大、使用的开关设备增多。
11
2.1 电气主接线--主接线的基本形式
两大类主接线形式
有汇流母线的接线形式: 1) 单母线接线 2) 双母线接线 3) 一台半断路器接线 (“3/2”接线) 无汇流母线的接线形式: 1) 单元接线 2) 扩大单元接线 3) 桥形接线 4) (多)角形接线
16
2.1 电气主接线--单母线接线
优点:
(1)接线简单、明了; (2)采用设备少、投资省; (3)操作方便、配电装置的建造容易,便
于扩建。
缺点:
可靠性、灵活性较差----表现在:
(1)母线、母线隔离开关故障或检修,都必须 全厂、站长时间停电;
(2)检修出线回路断路器时,该回路必须停电。
适用:可靠性、灵活性要求不高的小容
母联断路器
28
2.1 电气主接线--双母线接线
优点:
供电可靠性高,即:
1) 轮流检修主母线时,所有用户不会 停电(隔离开关“先合后拉”—— “热倒”);
2) 检修任一回路的母线隔离开关时, 只影响该回路及其相连母线的供电 (其它电路均可通过另一组母线继 续运行);
3)任一母线若故障,能利用正常母线使无故障线路迅速
n适用:
n110kv及以上高压配电装置,出线回路数较多或对供电可靠性有特殊
要求的情形。
24
2.1 电气主接线--单母线接线
单母分段带旁母
✓ QF1兼作分段和旁路断 路器,两段汇流母线均 可带旁母。
✓ 特点:相对节约了投资,:出线回路数较多,
容量不佷大的中小型发
标准运行方式/固定连接 运行方式(正常运行方 式):
母联闭合,电源、负 荷平均分配在两组母 线上;双母线同时并 列运行,最常用。 (相当于单母分段)
母联断路器
27
2.1 电气主接线--双母线接线
非标准运行方式:
一组母线运行,另一组 母线备用
(相当单母线,多在检修 母线时采用) ;
双母同时运行,但母联 断开,进出线分别接于 两组母线上(“分裂运 行”,可减少短路电 流。)
¨每回进出线都与两台QF相 连,而同一“串”支路的两 条回路共用三台断路器。
n正常运行方式:全部QF闭合,两组母线同时工
作,形成多环形供电,运行调度非常灵活可靠。 37
2.1 电气主接线--一台半断路器接线
多环形供电,运行可靠灵活。
38
2.1 电气主接线--一台半断路器接线
3/2接线的优点:
1) 运行灵活可靠。
适用:6~220kv变电所或中、小容
量发电厂6~10kv接线。
20
2.1 电气主接线--单母线接线
思考: 如果采用隔 离开关分段, 某段母线故 障时,停电 情况如何? 跟采用断路 器分段相比 较。
当某段母线故障时,继 电保护使QF1及故障电源 相关的断路器自动跳闸, 只故障段停电完好段不 停电;
(如220KV回路数,若10~14回,双母三分段; 15回及以上,双母四分段)。
适用:6~10kv机压母线负荷>24MW(分段处加
装限流电抗器以限制短路电流),或220kv及以 上进出线回路数较多时。
32
2.1 电气主接线--双母线接线
双母带旁母接线 ----具有专用旁路断路器的双母带旁路母线接线
41
2.1 电气主接线--发电机--变压器单元接线
适用:将发电机发出的全部电能以升高
电压(35KV以上)输入电网的大中型 电厂中。
根据采用变压器的不同,又可分为: 1) 发电机--双绕变单元接线
只有一个升高电压级; 发、变直接相连,机端电压侧不设母线,
可不装设QF或QS; 发电机与变压器容量应相当; 为了发电机检修后调试方便,亦可在发
电气主接线图
--采用国家规定
的设备图形符号及文 字符号,按电能产生、 汇集和分配的顺序, 表示出各设备的连接 关系的电路接线图。 即电气主接线的
图形表示,一般 用单线图----简单、 明了。
4
5
2.1 电气主接线
断路器QF:
具有专用灭弧装置,可开断或闭合负荷电流和 自动开断短路电流,主要用作接通或切断电路 的控制开关。
1
2.1 电气主接线
基本概念
电气主接线
--由发电厂/变电所的主要高压电气设备(发 电机、变压器、断路器、隔离开关、母线等) 及连接线按照一定顺序连接而成,用来接受和 分配电能的电路。 发电厂、变电所电气部分的核心。 又称:电气一次接线、一次电路、电气主系
统、主电路
2
2.1 电气主接线
3
2.1 电气主接线
适用:出线回路或母线电源数目多、大
容量的重要变电站和水电厂。
30
2.1 电气主接线--双母线接线
为了克服双母接线的缺点:
31
2.1 电气主接线--双母线接线
特点:
兼具单母分段和双母接线的特点; 运行方式多样、灵活; 但母联、分段断路器均随分段数目而增加。
分段数目:取决于主母线负荷大小及出线回路数
兼有环形和双母接线的优点; 正常运行时成环形供电,任一组母线发生短路
故障,均不影响各回路供电。
2) 操作方便。
任一台断路器或母线检修,只需拉开对应的断 路器及隔离开关,各回路仍可继续运行。
隔离开关仅作检修隔离电压操作,不易误操作。
39
2.1 电气主接线--一台半断路器接线
缺点:
二次接线和继电保护比较复杂; 用断路器多,投资较大。
2.1 电气主接线--单母线接线
倒闸操作示例:
线路1需停电进行检修时:
“逐级停电”---负荷侧到电源侧 (断开QF2 —确认QF2断开— 断开QS3 —断开QS2 —合上 QS4)。
线路1检修完送电时:
刚好相反,“逐级送电”---电源 侧到负荷侧(拉开QS4—检查确 认QF2断开—合QS2 —合QS3 — 最后合QF2)。
若用分段隔离开关分 段,当某段母线故障 时,全部短时停电, 拉开分段隔离开关后, 完好段可迅速恢复供 电。
21
2.1 电气主接线--单母线接线
电源侧断路器是否 接入旁母线? 根据实际需要决定
22
2.1 电气主接线--单母线接线
单母带旁母的运行方式:
--正常运行时: 旁母不带电,QF2断开,相当单母运行。
12
2.1 电气主接线--单母线接线
单母线
接线图
QSL
QSW
13
2.1 电气主接线--单母线接线
单母线接线概述:
仅一组汇流母线; 每个电源和出线回路都通过断路
器和隔离开关接至母线; 尽量使负荷均匀分配在母线上,
减少功率在母线上的传输; 任一回路故障,该回路的断路器
能够切除该回路,而使其他电源 和线路能继续工作; (QS4-接地刀闸,检修线路或 设备时合上,起安全地线作用。)
33
2.1 电气主接线--双母线接线
双母带旁母接线的优点:
✓ 检修接入旁路的出线断路器,该回路不会停电; ✓ 运行操作方便。
缺点:
✓ 投资、配电装置体积增加; ✓ 继电保护整定复杂。
一般适用:
110kV及以上高压配电装置,对出线回路供电可靠 性有特殊要求时;110KV出线6回及以上,220KV 出线4回及以上时,宜采用带专用旁路断路器的旁 路母线。
量配电装置,一般仅一台发电机或变压
器且出线回路不宜过多。
17
2.1 电气主接线--单母线接线
18
2.1 电气主接线--单母线接线
可用断路器(隔离开关)将汇流单母线分段;
运行方式:两段母线可以并列或分裂运行,运行
方式较灵活。
(正常时并列运行,即分段开关合上,可靠性高。)
分段数目的考虑:
取决于电源的容量和数量,多数情况下,分段数 等于电源的数量。
另:引出线在各分段上分配时,应该尽量使母线 各分段的授、受功率平衡,避免母线上过多的功 率流动。
19
2.1 电气主接线--单母线接线
单母分段的优点:
可轮流检修一段母线,减小停电范围; 重要用户可从不同分段实现双回路供
电; 提高了供电可靠性。
单母分段的缺点:
当检修出线断路器时,该回路仍须停电。
14
2.1 电气主接线--单母线接线
倒闸操作
--将设备由一种状态(运行、检修或备用) 改变为另一种状态的操作。
--对接地刀闸、刀闸和断路器之间的倒闸操作 时,必须严格按一定顺序进行。
与断路器配合时,隔离开关严格遵循: “先通后断”原则
送电:
先合隔离开关,最后合断路器
断电:
先断断路器,再断隔离开关 15
?三绕变?
44
2.1 电气主接线--发电机--变压器扩大单元接线
与单元接线相比:
为了适应机组独立开停的需要,每一发电机回 路都须装设断路器。
减少了主变、主变高压侧的断路器的数量,简 化了高压侧接线,节省了投资和场地。
适用:
大型厂、所超高压配电装置(330~ 500kv)
特别是多回路、超高压(500~ 750kv)、远距离送电时应用。
40
2.1 电气主接线--发电机--变压器单元接线
发电机与变压器 直接串联成一个 单元(亦称发变 组),其间没有 横向联系,称为 发电机--变压器 单元接线(简称 单元接线)。
34
双母线接线
在出线回路数较少时,为了省投资,有时也可将母联和旁路断 路器合二为一,仅须增加一组隔离开关。
35
2.1 电气主接线--一台半断路器接线
--( “特殊的双母线接线”)
36
2.1 电气主接线--一台半断路器接线
n“3/2接线”
¨两组母线,每一回路经一台 QF接至一组母线;
¨两个回路间有一台QF联络, 组成一个“串”电路;
相关文档
最新文档