(完整word版)高中物理力学图解动态平衡问题与相似三角形问题
(完整版)相似三角形法分析动态平衡问题)
相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
高中物理——相似三角形法在受力分析中的应用(可编辑修改word版)
高中物理——相似三角形法在受力分析中的应用“相似三角形法”指的是在对物体进行受力分析(尤其是准平衡态,即动态平衡过程)时找到两个相似三角形,其中一个三角形的边长表示长度,另一个三角形的边长表示力的大小。
利用相似三角形法可以判断某些力的变化情况。
例题:如图所示,在半径为R 的光滑半球面上高h 处悬挂一定滑轮,重力为G 的小球用绕过滑轮的绳子被站在地面上的人拉住,人拉动绳子,在与球面相切的某点缓缓运动到接近顶点的过程中,试分析小球对半球的压力和绳子拉力如何变化。
解:受力分析,不难看出由G 、N 、F 构成的力矢量三角形与由L 、R 、h +R 构成的几何三角形相似,依对应边成比例得:N=G =F 解得N = R G ,F =L GR h +R L h +R h +R又因为R 、h 、G 是恒量,所以N 不变,L 逐渐减小,F 逐渐减小。
例题:如图所示,支架 ABC,其中AB = 2.7m ,AC = 1.8m ,BC = 3.6m ,在 B 点挂一重物,G = 500N ,求 AB、BC 上的受力。
解:受力分析如图所示,杆 AB 受到拉力作用为T AB ,杆 BC 受到支持力为T BC ,这两个力的合力与重力 G 等大反向,显然由矢量G`、TAB、T BC 构造的三角形与图 1 中∆ABC 相似,由对应边成比例AB BC AC得:=T T =G 把代入上式,可解得T AB = 750N ,AB BCTBC= 1000N 。
例题:如图所示,竖直绝缘墙壁上的 Q 处有一固定的质点 A,在 Q 的正上方的 P 点用丝线悬另一质点 B,A、B 两质点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使 A、B 两质点的带电荷量逐渐减少,在电荷漏电完之前悬线对悬点 P 的拉力大小()A.变小B. 变大C. 不变D. 无法确定解:受力分析如图所示,设 PA=L,PB=l由几何知识知:△APB∽△BDC则:T=mg,即:T =mg l PB PA L因为 T 和T’是作用力和反作用力,故 T=T’,故选C例题:如图所示,用线把小球A 悬于O 点,静止时恰好与另一固定小球B 接触。
图解法、相似三角形法解决动态平衡问题
.A. T、NC.小球作用于板的压力可能小于球所受的重力D.小球对板的压力不可能小于球所受的重力一个截面是直角三角形的木块放在水平地面上,在斜面上放一个光滑球,所示。
若在光滑球的最高点再施加一个竖直向下的力.保持静止,则在加入砂子的过程中A.球B对墙的压力减小C.地面对物体A的摩擦力减小..21.AB与BC所受的拉力大小;22.若将C点逐渐上移,同时将BC线逐渐放长,而保持AB的方向不变,在此过程中AB与BC中的张力大小如何变化?如图所示,有倾角为30°的光滑斜面上放一质量为2kg的小球,球被竖直挡板挡住,若斜面足够长,g取10m/s2,求:23.球对挡板的压力大小。
24.撤去挡板,2s末小球的速度大小。
25.如图1所示,电灯悬挂于两干墙之间,使连接点A上移,但保持O点位置不变,则在A点向上移动的过程中,绳OA、OB的拉力如何变化?图1.参考答案1. B【解析】以结点O为研究对象进行受力分析如图(a)。
由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a)。
由图可知水平拉力增大。
以环、绳和小球构成的整体作为研究对象,作受力分析图如图(b)。
由整个系统平衡可知:F N=(mA+mB)g;Ff=F。
即F f增大,F N不变,故B正确。
2.A【解析】3. BC【解析】本题考查受力分析及整体法和隔离体法.以两环和小球整体为研究对象,在竖直方向始终有FN=Mg+2mg,选项C对A错;设绳子与水平横杆间的夹角为θ,设绳子拉力为T,以小球为研究对象,竖直方向有,2Tsinθ=Mg,以小环为研究对象,水平方向有,Ff=Tcosθ,由以上两式联立解得Ff=(Mgcotθ)/2,当两环间距离增大时,θ角变小,则Ff增大,选项B对D错.4.D【解析】球形物体处于静止状态,故其合外力为零,以球形物体为研究对象,受力如图所示,本题中由于球形物体的重力是不变的,而斜面对球形物体的支持力的方向是不变的,由共点力的平衡条件可知:支持力与绳的拉力的合力与重力等大反向,则绳的拉力的变化如右图所示,故绳的拉力先减小后增大,故D对。
(完整版)相似三角形法分析动态平衡问题)
相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
五动态平衡与相似三角形典例分析
五、动态平衡分析(一)共点力的平衡(一)共点力的平衡 1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力. 2.平衡状态:在共点力的作用下,物体处于静止或匀速直线运动的状态. 3.共点力作用下物体的平衡条件:合力为零,即=合F 0. 4.力的平衡:作用在物体上几个力的合力为零,这种情形叫做力的平衡. (1)(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡等、方向相反、作用在一条直线上,即二力平衡. .(2)(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上线上. .(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成:îíì=S =S 00y x F F(二)物体的动态平衡问题物体在几个力的共同作用下处于平衡状态,如果其中的某个力(或某几个力)的大小或方向,发生变化时,物体受到的其它力也会随之发生变化,会随之发生变化,如果在变化的过程中物体仍能保持平衡状态,如果在变化的过程中物体仍能保持平衡状态,如果在变化的过程中物体仍能保持平衡状态,我我们就可以依据平衡条件,分析出物体受到的各力的变化情况。
分析方法:(1)矢量三角形法①如果物体在三个力作用下处于平衡状态,其中只有一个力的大小和方向发生变化,而另外两个力中,一个大小、方向均不变化;一个只有大小变化,方向不发生变化的情况。
②如果物体在三个力作用下处于平衡状态,其中一个力的大小和方向发生变化时,物体受到的另外两个力中只有一个大小和方向保持不变,另一个力的大小和方向也会发生变化的情况下,不变,另一个力的大小和方向也会发生变化的情况下,考虑三角形考虑三角形的相似关系。
(完整word版)高中物理力学图解动态平衡问题与相似三角形问题.doc
图解法分析动态平衡问题所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。
题型特点:( 1)物体受三个力。
( 2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。
解题思路:( 1)明确研究对象。
( 2)分析物体的受力。
( 3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。
( 4)正确找出力的变化方向。
(5)根据有向线段的长度变化判断各个力的变化情况。
注意几点:( 1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。
(2)正确判断力的变化方向及方向变化的范围。
(3)力的方向在变化的过程中,力的大小是否存在极值问题。
【例 1】如图 2- 4- 2 所示,两根等长的绳子 AB 和 BC 吊一重物静止,两根绳子与水平方向夹角均为 60° .现保持绳子 AB 与水平方向的夹角不变,将绳子 BC 逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC 的拉力变化情况是()A .增大B .先减小,后增大C.减小 D .先增大,后减小解析:方法一:对力的处理 (求合力 )采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法 ).作出力的平行四边形,如图甲所示.由图可看出,FBC 先减小后增大.方法二:对力的处理 (求合力 )采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将 FAB、 FBC 分别沿水平方向和竖直方向分解,由两方向合力为零分别列出:FABcos 60°= FB Csin θ,FABsin 60°+ FB Ccos θ= FB ,联立解得 FBC sin(30 °+θ )= FB/2,显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大.答案: B变式 1- 1 如图 2- 4-3 所示,轻杆的一端固定一光滑球体,杆的另一端O 为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ.且θ+β <90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力 F 的大小及轻杆受力T 和地面对斜面的支持力 N 的大小变化情况是()A.F 逐渐增大, T 逐渐减小, FN 逐渐减小B.F 逐渐减小, T 逐渐减小, FN 逐渐增大C.F 逐渐增大, T 先减小后增大, FN 逐渐增大D. F 逐渐减小, T 先减小后增大,FN 逐渐减小解析:利用矢量三角形法对球体进行分析如图甲所示,可知T 是先减小后增大.斜面对球的支持力FN′逐渐增大,对斜面受力分析如图乙所示,可知 F =FN″ sinθ,则 F逐渐增大,水平面对斜面的支持力FN= G+ FN ″ ·cos θ,故 FN 逐渐增大.答案: C利用相似三角形相似求解平衡问题2.相似三角形法:当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。
相似三角形分析动态平衡问题
相似关系的寻找。
动态平衡问题还有一类处理方法是使用相似三角形法。
选定研究对象后,倘若物体受三个力作用而平衡,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。
例题1 如图所示,杆BC 的B 端铰接在竖直墙上,另一端C 为一滑轮,重力为G 的重物上系一绳经过滑轮固定于墙上A 点处,杆恰好平衡,若将绳的A 端沿墙向下移,再使之平衡(BC 杆、滑轮、绳的质量及摩擦均不计),则( )A. 绳的拉力增大,BC 杆受压力增大B. 绳的拉力不变,BC 杆受压力增大C. 绳的拉力不变,BC 杆受压力减小D. 绳的拉力不变,BC 杆受压力不变思路分析:(1)本题比较的是轻绳的A 端移动前后的两个平衡状态,两个状态下,滑轮上所受三力均平衡;(2)B 端是铰链,BC 杆可以自由转动,所以BC 杆受力必定沿杆;(3)绳绕过滑轮,两段绳力相等,要保证合力沿杆(否则杆必转动),则杆必处于两绳所构成角的平分线上。
方法一:选取滑轮为研究对象,对其受力分析,如图所示。
绳中的弹力大小相等,即T 1=T 2=G ,T 1、T 2、F 三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。
方法二:图中,矢量三角形与几何三角形ABC 相似,因此Fmg BC AB ,解得F =AB BC ·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。
方法三:将绳的A 端沿墙向下移,T 2大小和方向不变,T 1大小不变,但与T 2所夹锐角逐渐增大,再使之平衡时,画出两段绳子拉力与轻杆的弹力所构成的封闭三角形如图所示,显然F ′大于F ,即轻杆的弹力变大,根据牛顿第三定律,BC 杆受压力增大。
(完整版)高一物理力学受力分析之动态平衡问题
动态平衡一、三角形图示法(图解法)方法规律总结:常用于解三力平衡且有一个力是恒力,另一个力方向不变的问题。
例1、如图1-17所示,重G的光滑小球静止在固定斜面和竖直挡板之间。
若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1 、F2各如何变化?答案:F1逐渐变小,F2先变小后变大变式:1、质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示,用T表示OA段拉力的大小,在O点向左移动的过程中( A )A.F逐渐变大,T逐渐变大B。
F逐渐变大,T逐渐变小C。
F逐渐变小,T逐渐变大D。
F逐渐变小,T逐渐变小2、如图所示,一个球在两块光滑斜面板AB、AC之间,两板与水平面间的夹角均为60°,现使AB板固定,使AC板与水平面间的夹角逐渐减小,则下列说法中正确的是( A )A。
球对AC板的压力先减小再增大B.球对AC板的压力逐渐减小C.球对AB板的压力逐渐增大D.球对AB板的压力先增大再减小二、三角形相似法方法规律总结:在三力平衡问题中,如果有一个力是恒力,另外两个力方向都发生变化,且力的矢量三角形与题所给空间几何三角形相似,可以利用相似三角形对应边的比例关系求解.例2、如图所示,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆AB一端通过铰链固定在A点,另一端B悬挂一重为G的重物,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BAC>90°,现使∠BAC缓慢变小,直到杆AB接近竖直杆AC.此过程中,杆AB所受的力( A )A.大小不变 B.逐渐增大C.先减小后增大 D.先增大后减小变式:1、如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移.在移动过程中手对线的拉力F和轨道对小球的弹力N的大小变化情况是( C )A。
(完整版)相似三角形分析动态平衡问题
知识点考纲要求题型分值牛顿运动定律的应用会用相似三角形解决动态平衡问题选择题6分二、重难点提示相似关系的寻找。
动态平衡问题还有一类处理方法是使用相似三角形法。
选定研究对象后,倘若物体受三个力作用而平衡,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。
例题1 如图所示,杆BC的B端铰接在竖直墙上,另一端C为一滑轮,重力为G的重物上系一绳经过滑轮固定于墙上A点处,杆恰好平衡,若将绳的A端沿墙向下移,再使之平衡(BC杆、滑轮、绳的质量及摩擦均不计),则()A. 绳的拉力增大,BC杆受压力增大B. 绳的拉力不变,BC杆受压力增大C. 绳的拉力不变,BC杆受压力减小D. 绳的拉力不变,BC杆受压力不变思路分析:(1)本题比较的是轻绳的A端移动前后的两个平衡状态,两个状态下,滑轮上所受三力均平衡;(2)B 端是铰链,BC 杆可以自由转动,所以BC 杆受力必定沿杆;(3)绳绕过滑轮,两段绳力相等,要保证合力沿杆(否则杆必转动),则杆必处于两绳所构成角的平分线上。
方法一:选取滑轮为研究对象,对其受力分析,如图所示。
绳中的弹力大小相等,即T 1=T 2=G ,T 1、T 2、F 三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。
方法二:图中,矢量三角形与几何三角形ABC 相似,因此Fmg BC AB,解得F =AB BC·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。
方法三:将绳的A 端沿墙向下移,T 2大小和方向不变,T 1大小不变,但与T 2所夹锐角逐渐增大,再使之平衡时,画出两段绳子拉力与轻杆的弹力所构成的封闭三角形如图所示,显然F ′大于F ,即轻杆的弹力变大,根据牛顿第三定律,BC 杆受压力增大。
高中物理动态平衡问题图解法新人教版必修1
动态平衡“动态平衡”是指物体所受的力一部分是变力,是动态力,力的大小和方向均要发生变化,但变化过程中的每一时刻均可视为平衡状态,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问题的一般思路是:化“动”为“静”,“静”中求“动”,常采用图解法求解。
1.三角形图解法Ⅰ.恒力F+某一方向不变的力例 如图所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m 的光滑均质球体,试求:β取何值时,夹板对球的弹力最小?【解析】对球体进行受力分析,然后对平行四边形中的矢量G 和N 1进行平移,使它们构成一个三角形,如图所示.由G 的大小和方向均不变,而N 1的方向不可变,当β增大导致N 2的方向改变时,N 2的变化和N 1的方向变化如图中的右图所示.显然,随着β增大,N 1单调减小,而N 2的大小先减小后增大,当N 2垂直N 1时,N 2取极小值,且N 2min = Gsin α.【答案】当β=90°时,甲板对球的弹力最小.Ⅱ.恒力F+某一不变的相似关系(通常叫做相似三角形法)例 如图所示,竖直杆OB 顶端有光滑轻质滑轮,轻质杆OA 自重不计,可绕O 点自由转动,OA =OB 。
当绳缓慢放下,使∠AOB 由00逐渐增大到1800的过程中(不包括00和1800)下列说法正确的是( )A .绳上的拉力先逐渐增大后逐渐减小B .杆上的压力先逐渐减小后逐渐增大C .绳上的拉力越来越大,但不超过2GD .杆上的压力大小始终等于G2.辅助圆图解法Ⅰ.恒力F+某一大小不变的力例 如图所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时α+β=90°.然后保持M 的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是( A )A 减小N 的读数同时减小β角B 减小N 的读数同时增大β角C 增大N 的读数同时增大β角D 增大N 的读数同时减小β角Ⅱ.恒力F+某一大小不变的角例 如图所示的装置,用两根细绳拉住一个小球,两细绳间的夹角为θ,细绳AC 呈水平状态.现将整个装置在纸面内顺时针缓慢转动,共转过90°.在转动的过程中,CA 绳中的拉力F 1和CB 绳中的拉力F 2的大小发生变化,即( BCD )A .F 1先变小后变大B .F 1先变大后变小C .F 2逐渐减小D .F 2最后减小到零 解析:。
相似三角形法分析动态平衡问题
静力学解题方法2——相似三角形法(非常好的方法,仔细分析例题,静力学受力分析三大方法之一)(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( )A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
高中物理力的平衡相似三角形
专题①图解法与相似三角形法②隔离法与整体法③平衡物体的临界、极值问题一、图解法与相似三角形法图解法:就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。
图解法具有直观、便于比较的特点,应用时应注意以下几点:①明确哪个力是合力,哪两个力是分力;②哪个力大小方向均不变,哪个力方向不变;③哪个力方向变化,变化的空间范围怎样。
例1、半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB 绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,OA绳和OB绳所受的力大小如何变化?练习:如图,一倾角为θ的固定斜面上有一块可绕其下端转动的挡板P,今在挡板与斜面间夹一个重为G 的光滑球,试分析挡板P由图示位置逆时针转到水平位置的过程中,球对挡板的压力如何变化?相似三角形法:就是利用力的三角形与边三角形相似,根据相似三角形对应边成比例求解未知量。
例2、光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图。
现缓慢地拉绳,在使小球沿球面由A到B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小如何变化?练习:为了用起重机缓慢吊起一均匀的钢梁,现用一根绳索拴牢此钢梁的两端,使起重机的吊钩钩在绳索的中点处,如图。
若钢梁的长为L,重为G,绳索所能承受的最大拉力为F m,则绳索至少为多长?(绳索重不计)二、隔离法与整体法-----处理连结问题的方法整体法:以几个物体构成的系统为研究对象进行求解的方法。
隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象,一部分、一部分地进行受力分析,分别列出方程,再联立求解的方法。
通常在分析外力对系统的作用时用整体法,在分析系统内各物体或各部分之间的相互作用时用隔离法。
有时需要两种方法交叉使用。
高一教科版物理必修一:第四章物体的平衡6应用相似三角形法解决动态平衡问题(讲义) Word版含答案
二、重难点提示:重点:掌握利用相似三角形法解决动态平衡问题的方法。
难点:图解法和相似三角形法使用条件的区别。
1. 相似三角形法则概述相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例,求出三角形中力的比例关系,从而达到求未知量的目的。
2. 适用条件往往涉及三个力,其中一个力为恒力,另两个力的方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常用到的一种方法,解题的关键是正确地进行受力分析,寻找力的三角形和几何三角形的相似关系。
3. 和图解法的区别图解法:三个力,一力为恒力,一力大小方向变,一力仅大小变。
相似三角形法:三个力,一力为恒力,其余两个力方向都变。
例题1 半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A. N 变大,T 变小B. N 变小,T 变大C. N 变小,T 先变小后变大D. N 不变,T 变小思路分析:如图2所示,对小球:由于缓慢地拉绳,所以小球运动缓慢,视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其他条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RN R h mg L T =+= 可得:mg Rh L T += 运动过程中L 变小,所以T 变小。
mg Rh R N += 运动中各量均为定值,所以支持力N 不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图解法分析动态平衡问题所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。
题型特点:(1)物体受三个力。
(2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。
解题思路:(1)明确研究对象。
(2)分析物体的受力。
(3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。
(4)正确找出力的变化方向。
(5)根据有向线段的长度变化判断各个力的变化情况。
注意几点:(1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。
(2)正确判断力的变化方向及方向变化的范围。
(3)力的方向在变化的过程中,力的大小是否存在极值问题。
【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是()A.增大B.先减小,后增大C.减小D.先增大,后减小解析:方法一:对力的处理(求合力)采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法).作出力的平行四边形,如图甲所示.由图可看出,FBC先减小后增大.方法二:对力的处理(求合力)采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将F AB、FBC分别沿水平方向和竖直方向分解,由两方向合力为零分别列出:F AB cos 60°=FB C sin θ,F AB sin 60°+FB C cos θ=FB,联立解得FBC sin(30°+θ)=FB/2,显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大.答案:B变式1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N的大小变化情况是()A.F逐渐增大,T逐渐减小,F N逐渐减小B.F逐渐减小,T逐渐减小,F N逐渐增大C.F逐渐增大,T先减小后增大,F N逐渐增大D.F逐渐减小,T先减小后增大,F N逐渐减小解析:利用矢量三角形法对球体进行分析如图甲所示,可知T是先减小后增大.斜面对球的支持力F N′逐渐增大,对斜面受力分析如图乙所示,可知F=F N″sinθ,则F逐渐增大,水平面对斜面的支持力F N=G+F N″·cos θ,故F N逐渐增大.答案:C利用相似三角形相似求解平衡问题2.相似三角形法:当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。
【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力F N 的大小变化情况是()A.F N先减小,后增大B.F N始终不变C.F先减小,后增大D.F始终不变解析:取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力F N和悬挂重物的绳子的拉力(大小为G)的作用,将F N 与G合成,其合力与F等值反向,如图所示,得到一个力的三角形(如图中画斜线部分),此力的三角形与几何三角形OBA 相似,可利用相似三角形对应边成比例来解.如图所示,力的三角形与几何三角形OBA 相似,设AO 高为H ,BO 长为L ,绳长为l ,则由对应边成比例可得 ,F N = G ,F = G式中G 、H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小.答案:B变式2-1如图2-4-5所示,两球A 、B 用劲度系数为k 1的轻弹簧相连,球B 用长为L 的细绳悬于O 点,球A 固定在O 点正下方,且点O 、A 之间的距离恰为L ,系统平衡时绳子所受的拉力为F 1.现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F 2,则F 1与F 2的大小之间的关系为( )A .F 1>F 2B .F 1=F 2C .F 1<F 2D .无法确定解析:两球间放劲度系数为k 1的弹簧静止时,小球B 受力如右图所示,弹簧的弹力F 与小球的重力G 的合力与绳的拉力F 1等大反向,根据力的三角形与几何三角形相似得 ,由于OA 、OB 均恒为L ,因此F 1大小恒定,与弹簧的劲度系数无关,因此换用劲度系数为k 2的弹簧后绳的拉力F 2=F 1,B 正确.答案:B【例2】如图1-31所示,竖直墙壁上固定一点电荷Q,一个带同种电荷q 的小球P,用绝缘细线悬挂,由于两电荷之间的库仑斥力悬线偏离竖直方向θ角,现因小球所带电荷缓慢减少,试分析悬线拉力的大小如何变化?[析与解]:分析小球受力情况,知其受重力G ,线的拉力F T ,点电荷Q 的排斥力F 三力作用而平衡,用三角形定则作其受力图如图,当q 逐渐减小时,斥力逐渐减小,θ角逐渐减小,同时斥力F 的方向也在变化,用图解法不能判断F 的大小变化情况,但注意到G//OQ ,F T //OP ,F 沿QP 方向,所以力三角形跟几何三角形OPQ 相似,由对应边的比例关系有F T /G=OP /OQ ,即F T =OP .G/OQ 因OP 长、OQ 长、重力G 在过程中均不变,得悬线的拉力F T 大小不变。
【例3】如图1---32所示,用细线AO 、BO 悬挂重物,BO 水平,AO 与竖直方向成30°角,若AO 、OB 能承受的最大拉力各为10N 和6N ,OC 能承受足够大的力,为使细线不被拉断,重物允许的最大重力是多大?3、[]解析:设若逐渐增大重物重量时绳AO 先断,由O 点受力图易得:当F A =10N 时OB 所受拉力为F B =5N ﹤6N ,假设正确,得此态OC 的拉力为F C = F A cos30°=53 N=8.66N ,即重物允许的最大重力为8.66N 。
平衡物体中的临界与极值问题 3.平衡物体的临界问题某种物理现象转化为另一种物理现象的转折状态叫临界状态。
临界状态可以理解为“恰好出现”或“恰好不出现”某种现象的状态。
平衡物体的临界状态是指物体所处的平衡状态将要破坏而尚未破坏的状态,涉及临界状态的问题叫临界问题。
O θ Q EP F T GA O 30°BC 图1---32 1500 F N F N2G方法技巧:1.若物体受三个共点力作用处于平衡状态,则表示此三力的矢量首尾相接时一定恰组成一个封闭的三角形。
当其中一个力的方向发生变化而引起各力的大小发生变化时,如果只要判断各力大小增减的定性问题,最简单的方法就是用图解法。
用图解法解题的第一步,就是正确作出力的矢量三角形(或平行四边形),第二步是确定好三角形的三条边哪些方向是不变的、哪一条的长短是不变的、哪一条的方向是变的、是向什么方向变的、变化的范围如何,从而得出需要的结论。
2.解决临界问题的基本思维方法是假设推理法。
其基本解题方法有两类:(1).物理分析法:通过对物理过程的分析,抓住临界条件进行求解。
例如两物体脱离的临界条件是相互压力为零;两物体相对静止到滑动的临界条件是摩擦达到最大静摩擦力。
(2).数学解法:通过对问题的分析,依据物理规律写出物理量之间的函数关系(或画出函数的图象)。
用数学方法求解得出结论后,一定要依据物理原理对解的合理性及物理意义进行讨论或说明。
【例4】如图2-4-8所示,一球A夹在竖直墙与三角劈B的斜面之间,三角形劈的重力为G,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的,问欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)解析:本题两物体均处于静止状态,故需分析好受力图示,列出平衡方程求解.用正交分解法,对球和三角劈分别进行受力分析,如图甲、乙所示.由于三角劈静止,故其受地面的静摩擦力.F≤F max=μF N B.由平衡条件有:1对球有:GA=F Ncos 45°①F N A=F Nsin 45°②2对三角劈有F N B=G+F N′sin 45°③F=F N′cos 45°④F≤μF N B,⑤∵F N=F N′⑥由①~⑥式解得:GA≤G.答案:球的重力不得超过G变式4-1如图2-4-9所示,两个质量均为m的小环套在一水平放置的粗糙长杆上,两根长度均为l的轻绳一端系在小环上,另一端系在质量为M的木块上,两个小环之间的距离也为l,小环保持静止.试求:(1)小环对杆的压力;(2)小环与杆之间的动摩擦因数μ至少为多大?解析:(1)整体法分析有:2F N=(M+2m)g,即F N=Mg+mg由牛顿第三定律得:小环对杆的压力F N′=Mg+mg.(2)研究M得2F Tcos 30°=Mg临界状态,此时小环受到的静摩擦力达到最大值,则有F Tsin 30°=μF N′解得:动摩擦因数μ至少为μ=答案:(1) Mg+mg(2)专题训练2.如图,电灯悬挂于两墙之间,更换水平绳OA使连结点A向上移动而保持O点的位置不变,则A点向上移动时()A.绳OA的拉力逐渐增大B.绳OA的拉力逐渐减小C.绳OA的拉力先增大后减小A OD.绳OA的拉力先减小后增大3.如图,用细绳将重球悬挂在竖直光滑墙上,当绳伸长时()A.绳的拉力变小,墙对球的弹力变大B.绳的拉力变小,墙对球的弹力变小C.绳的拉力变大,墙对球的弹力变小D.绳的拉力变大,墙对球的弹力变大4.如图,均匀光滑的小球放在光滑的墙壁与木板之间,图中 30=θ,当将θ角缓慢增大至接近 90的过程中( )A .小球施于木板的压力不断增大B .小球施于墙的压力不断减小C .小球对墙壁的压力始终小于mgD .小球对木板的压力始终大于mg5.在共点力的合成实验中,如图,使弹簧秤b 按图示的位置开始顺时针方向缓慢转 90角,在这个过程中,保持O 点位置不动,a 弹簧秤的拉伸方向不变,则整个过程中关于a 、b 弹簧的读数变化是( )A .a 增大,b 减小B .a 减小,b 减小C .a 减小,b 先减小后增大D .a 先减小后增大7.如图,小球被轻质绳系着,斜吊着放在光滑劈上,球质量为m ,斜面倾角为θ,在水平向右缓慢推动劈的过程中( )A .绳上张力先增大后减小B .绳上张力先减小后增大C .劈对球的支持力减小D .劈对球的支持力增小8.如图,轻绳的一端系在质量为m 的物体上,别一端系在一个圆环上,圆环套在粗糙的水平横杆MN 上,现用水平力F 拉绳上一点,使物体处在图中实线位置,然后改变F 的大小,使其缓慢下降到图中虚线位置,圆环仍在原来位置不动,则在这一过程中,水平力F 、环与横杆的摩擦力f 和环对杆的压力N 的变化情况是( )A .F 逐渐增大,f 保持不变,N 逐渐增大B .F 逐渐增大,f 逐渐增大,N 保持不变C .F 逐渐减小,f 逐渐增大,N 逐渐减小 θ FθD .F 逐渐减小,f 逐渐减小,N 保持不变练习题:1.如图1--33所示,把球夹在竖直墙面和木板之间,不计摩擦,在将板逐渐放至水平的过程中,墙对小球的弹力________, 板对小球的弹力_______。