酶工程在现实方面的应用
酶工程在农产品加工上的应用
酶工程在农产品加工上的应用
酶工程在农产品加工上具有广泛的应用。
以下是其中一些常见的应用领域:
1. 食品加工:酶工程在食品加工领域广泛应用,例如在面包制作中使用面团酶来改善面团的膨胀性能和延长面包的保鲜期;利用纤维素酶来提高果汁的浸出率和果汁的澄清度;应用酶解蛋白酶来改善肉制品嫩化和口感等。
2. 酿酒业:酶工程在酿酒业中被广泛应用,如利用酶解淀粉酶将淀粉转化为可发酵的糖;应用葡萄糖氧化酶和葡萄糖酶来调节酒的甜度和酒精含量;使用β-葡萄糖苷酶来提高红葡萄酒中花青素的释放等。
3. 果蔬加工:酶工程在果蔬加工中具有重要应用价值,例如利用果胶酶来改善果蔬汁的澄清度和稳定性;应用纤维素酶来降低果蔬浆果浆的黏稠度;使用脂肪酶来提取油脂和蛋白质等。
4. 饲料工业:酶工程在饲料工业中被广泛应用,例如用淀粉酶来降解饲料中的淀粉,提高饲料的能量利用率;应用纤维素酶来降低饲料中纤维素的含量,增加饲料的消化率;使用蛋白酶来改善蛋白质的可利用性和饲料的营养价值等。
总之,酶工程在农产品加工上的应用能够提高产品的品质、增加生产效率、节约能源和原料、降低生产成本等,具有重要的经济和社会价值。
酶工程技术在工业中的应用与前景
酶工程技术在工业中的应用与前景酶工程技术是将生物酶应用于工业生产中的一种技术。
这种技术已经在许多工业领域中被广泛应用,如食品工业、制药工业、医药工业、石油化工、纺织业等。
随着生物技术的发展,酶工程技术也在不断地完善,并在各行业中发挥越来越重要的作用。
酶是一种催化剂,它能够在相对较温和的条件下促进化学反应的进行。
相较于其他化学催化剂来说,酶具有选择性强、催化效率高、反应条件温和等优点。
因此,酶工程技术能够制造更环保、更高效的产品,提高工业生产效率,促进工业的可持续发展。
在食品工业中,酶工程技术得到了广泛的应用。
例如,面包的生产中需要大量使用酵母菌发酵面团,以此来实现面包的松软口感和香味。
而在牛奶和奶制品的制造中,酶也被广泛应用于提高产品的质量和口感。
此外,酶还被应用于饮料、酒类、果汁等食品的生产过程中,以使产品更加口感丰富、营养更加丰富。
在制药工业中,酶工程技术也有着极其重要的作用。
目前,糖尿病、癌症、心血管疾病等疾病的治疗中,都需要使用酶工程技术制造特定的药物。
特别是一些高效、低成本的生物制药品,如蛋白质类药物,能够通过酶工程技术得到更好地制造。
除此之外,酶工程技术还在环保领域中有着重要的应用。
石油化工行业中,酶被应用于油污的降解和治理,可以降低有害化学品的排放。
在纺织工业中,酶工程技术被用于制造高品质的天然染料,使得衣物柔软、色彩鲜艳。
此外,酶工程技术还可以应用于污水处理和海水淡化等环保领域中来。
未来,随着生物技术的不断发展,酶工程技术在工业生产中的作用将会继续扩大。
尤其是在可持续发展的背景下,酶工程技术作为一种绿色、高效、低成本的技术,将更加得到重视。
从生物催化剂的研究、工程化设计、反应器的研究与开发、在酶反应下副反应的控制、生产过程的绿色设计等角度推进酶工程技术的应用,将有助于提升酶工程技术的发展水平。
总的来说,酶工程技术在工业生产中的应用已经取得了丰硕的成果,并被广泛应用于各行业中。
随着科技的不断发展,酶工程技术在未来将会有更加广泛和重要的应用前景。
酶工程生活中的应用
酶工程生活中的应用早上起来,阳光透过窗帘的缝隙洒在脸上,我迷迷糊糊地睁开眼,就听到老妈在厨房大喊:“赶紧起床,今天吃面包,再磨蹭可就没有新鲜的啦!”我伸了个懒腰,心里嘀咕着:这面包有啥特别的呀?还非得赶新鲜的。
走进厨房,就看到老妈正从烤箱里拿出一盘散发着诱人香气的面包。
那面包金黄金黄的,外皮酥脆,里面却松软得像云朵一样。
我迫不及待地伸手去拿,老妈笑着打了我的手一下,说:“小馋猫,先去洗手。
”我一边走向洗手池,一边问老妈:“这面包咋这么香呢?”老妈得意地说:“这可多亏了酶啊。
”我瞪大了眼睛,满脸疑惑:“酶?啥是酶啊?这玩意儿还能让面包变香?”老妈一边把面包放在盘子里,一边耐心地给我解释:“你看啊,这做面包的时候,面粉里得加酵母,酵母里就有酶呢。
这酶啊,就像是一个个小小的魔法师。
它们会把面粉里的淀粉分解成糖,然后糖又被分解,这个过程就会产生二氧化碳气体。
你想想,这些小气泡在面团里到处乱窜,就像在开派对一样,面团就慢慢膨胀起来了。
这样烤出来的面包啊,才会又松又软,还带着一股香味。
要是没有这些酶,那面包就会像石头一样硬邦邦的,你可就咬不动喽。
”我听着老妈的话,脑海里仿佛出现了一群小小的酶精灵在面团里欢快地忙碌着的画面,忍不住笑了起来。
吃完面包,我出门去超市帮老爸买啤酒。
到了超市的酒水区,我看着琳琅满目的啤酒,心里想:这啤酒的酿造是不是也和酶有关系呢?我好奇地拿出手机查了一下,还真是!啤酒酿造过程中,麦芽里的淀粉酶会把淀粉转化成糖,而酵母中的酶又会把糖转化成酒精和二氧化碳。
这就好比一场接力赛,淀粉酶先跑一棒,把淀粉变成糖这个“接力棒”传给酵母里的酶,然后它们再完成最后一棒,制造出酒精和二氧化碳。
如果没有这些酶在背后默默地努力,我们哪能喝到这么爽口的啤酒呢?回到家后,我看到老爸正在用加酶洗衣粉洗衣服。
我凑过去说:“爸,你也在用酶干活儿呢?”老爸愣了一下,然后笑着说:“是啊,这加酶洗衣粉可好用了。
你看我这衣服上的油渍和污渍,普通洗衣粉洗起来可费劲了,但是加酶洗衣粉里有专门分解油渍和污渍的酶,就像一群小小的清洁战士,能够把那些脏东西统统消灭掉。
简述酶工程的主要应用
简述酶工程的主要应用
酶工程是利用生物技术和分子生物学的手段对酶进行基因工程和蛋白工程的研究,目的是改良酶的性质和功能,以满足特定的工业生产需求。
酶工程的主要应用如下:
1. 生物催化剂:酶工程可以通过改变酶的结构和活性,将其应用于各种化学反应中,提高反应的速度和选择性,减少副产物的生成,从而降低生产成本。
2. 食品工业:酶工程可以应用于食品加工中,比如利用蛋白酶降解蛋白质以改善食品质量,或者利用淀粉酶和糖化酶来提高糖化效率和改善食品口感。
3. 制药工业:酶工程可以用于制药行业的药物合成、分解和修饰等方面。
通过改变酶的特性,可以提高药物的生物利用度和活性,改变药物代谢途径和降低不良反应的发生。
4. 生物燃料工业:酶工程可以用于生物质能源的转化和生物燃料的合成,通过改变酶的特性和效率,提高生物质能源的利用效率和生物燃料的产量。
5. 环境工程:酶工程可以用于环境治理和资源回收方面。
比如利用酶降解有机废弃物、去除水污染物,或者利用酶提取珍贵金属和重要化合物等。
综上所述,酶工程的主要应用领域包括生物催化剂、食品工业、制药工业、生物燃料工业和环境工程等。
通过改变酶的性质和
功能,可以提高生产效率、降低成本、改善产品质量,同时也能为环境保护和可持续发展做出贡献。
酶的应用及酶工程的研究进程
酶的应用及酶工程的研究进程第一部分:酶的应用酶是生物催化剂,可以加速化学反应的速率,并在温和条件下进行。
由于其高效、选择性和环境友好性等特点,酶在许多领域都有广泛的应用。
以下是一些常见的酶应用:一、食品工业:酶在食品加工中起到重要作用。
例如,淀粉酶可将淀粉分解为糖类,增加产品甜度;蛋白酶可用于肉类嫩化或乳制品凝固等。
是的,酶在食品工业中发挥着重要作用。
以下是一些常见的酶在食品加工中的应用:1.淀粉酶:淀粉酶可以将复杂的淀粉分子降解为较简单的糖类,如葡萄糖和麦芽糖。
这种转化过程被广泛应用于面包、啤酒、乳制品和果汁等产品中,以增加甜度、改善口感或促进发酵。
2.蛋白酶:蛋白质水解酶可以将肉类中较大分子量的蛋白质分解成更小的片段。
这种嫩化处理可使肉质变得更加柔软,并提高其口感和咀嚼性。
3.凝固剂:某些特定类型的微生物产生了能够凝结牛奶或豆浆等液体的特殊凝固剂(例如拉丁语"rennet")。
这些凝固剂主要含有胰凝乳素(chymosin),它可以水解牛奶中存在的一种叫做κ- 链球菌素(k-casein) 的蛋白质,在此过程中形成凝固物。
4.果汁澄清酶:果汁中的浑浊物质可以通过果汁澄清酶来降解和去除。
这种酶能够分解果胶、纤维素等多糖类,从而使果汁更加透明和清澈。
这些是食品工业中常见的一些酶应用,它们帮助改善产品的口感、稳定性和质量,并提高生产效率。
二、制药工业:许多药物合成过程需要使用特定的酶来催化关键步骤。
此外,生产抗体、激素和维生素等也需要借助酶。
在制药工业中,酶的应用非常广泛。
以下是一些常见的酶在制药工业中的应用:1.合成酶:许多药物的生产需要使用特定的酶来催化关键步骤。
例如,通过利用氨基转移酶和脱水氢化酶等,可以合成抗生素、激素和维生素等重要药物。
2.抗体生产:单克隆抗体是治疗和诊断许多疾病所需的重要工具。
在抗体生产过程中,将目标蛋白注射到动物或人体内后,通过特定细胞分泌出相应抗体。
酶工程技术在生产中的应用
酶工程技术在生产中的应用酶工程技术是一种先进的生物技术,其应用在生产中已呈现出广泛的应用和重要的作用。
酶工程技术有很多种应用,比如在生物化学制品、制药和食品等行业中,均有着非常重要的作用。
一、酶工程技术在食品生产中的应用众所周知,食品是每个人日常所必需的物品,而酶工程技术在食品生产中,尤其是在发酵食品和罐头食品的生产中,有着非常重要的应用。
比如像大家所熟知的酱油、豆腐、醋等发酵食品,在其制造中均使用了酶催化反应的方法,这种方法可以使得产品质量更加稳定、纯度更高、口感更加鲜美。
此外,酶催化反应也在罐头食品的生产中得到了广泛应用。
在罐头食品生产中,酶催化反应不仅可以加速食品的制造,同时还可以提高其品质和卫生性,从而更好地满足了人们对食品的需求。
二、酶工程技术在制药中的应用制药是一门很重要的医药学科,而酶工程技术在其中的应用更是引起了人们的广泛关注。
在制药领域中,酶工程技术可以用于药物的生产、分离和纯化,并且其可以使得药物的制造过程更加简单、高效和准确。
具体来讲,酶工程技术可以用于药物生产中的各个环节,比如筛选萃取酶、合成酶等,甚至还可以用于药物生产中的后期分离和纯化过程。
不仅如此,在药物的质量控制和质量检测过程中酶工程技术也有着至关重要的作用。
三、酶工程技术在生物化学制品中的应用生物化学制品是一种比较新兴的产业,但是其作用和功能却十分的广泛和重要,而酶工程技术在其中的应用也显得特别重要。
在生物化学制品的生产环节中,酶工程技术可以加速产品的生产速度、提高产品的质量和稳定性。
酶工程技术在生物化学制品的生产中,主要通过以下几个环节来进行:首先是筛选合适的酶催化反应酶,其次是将酶催化反应搬运到大规模生产环节中,进而再将生产出来的产品进行分离、固定、纯化等过程。
总之,酶工程技术在生产中的应用范围非常的广泛,其可以用于许多不同的领域和行业,有着极为重要的作用。
由于酶工程技术的特殊性质和功能,它在生产中不断得到了人们的关注和追捧,相信在未来其还将会有更加广泛和深刻的应用。
酶工程技术在食品工业中的应用
3、拓展应用领域:酶工程技术的运用领域将不断扩大,除了传统的食品加工 和制造领域外,还将在保健品、医药、环保等领域得到更广泛的应用。
4、食品安全与质量控制:利用酶工程技术建立更加快速、准确、灵敏的食品 安全检测方法和技术,提高食品质量安全水平。
5、适应环保要求:在酶工程技术的运用过程中,应注重环保和可持续发展, 减少对环境的污染和资源浪费。
谢谢观看
关键词:酶工程技术、食品工业、食品加工、食品改性、质量检测、蛋白质工 程技术、基因工程技术。
酶工程技术在食品工业中的应用
1、食品加工
酶工程技术在食品加工方面具有广泛的应用。例如,在奶制品行业,酶工程技 术可以用来水解乳糖,降低乳糖含量,使产品更加适合糖尿病患者食用。此外, 在肉类加工中,酶工程技术可以嫩化肉质,提高产品的口感和品质。
应用前景展望
随着科技的不断进步和人们健康意识的提高,酶工程技术在食品工业中的应用 前景十分广阔。未来,酶工程技术将在以下几个方面得到进一步发展:
1、开发新的酶制剂:随着生物技术的不断发展,将会有更多具有特殊功能的 酶被发现和开发出来,为食品工业提供新的加工助剂和添加剂。
2、提高生产效率:通过基因工程等手段对酶进行改造和优化,提高其催化效 率和稳定性,降低生产成本,从而提高酶工程技术的生产效率和经济效益。
2、食品改性
酶工程技术还可以用于食品改性。例如,通过使用特定的酶,可以破坏食物中 的某些成分,从而改变食物的口感、营养价值等。此外,酶还可以将果蔬加工 成具有特殊风味的食品,如柑橘类水果罐头中添加柚皮苷酶,可降解果胶,提 高产品的口感和透明度。
3、食品质量检测
酶工程技术也可以应用于食品质量检测。例如,在食品安全检测方面,酶联免 疫分析技术(ELISA)利用酶与抗体或抗原的反应,可快速检测食品中残留的 农药、兽药、毒素等有害物质。
蛋白质工程和酶工程在现代工艺中的应用
蛋白质工程和酶工程在现代工艺中的应用06120801 20081903 付婷钰摘要:蛋白质工程[1],是指在基因工程的基础上,结合蛋白质结晶学,计算机辅助设计和蛋白质化学等多学科的基础知识通过对基因的人工定向改造等手段,对蛋白质进行修饰,改造和拼接以生产出能满足人类需要的新型蛋白质;酶作为一种生物催化剂,已广泛地应用于轻工业的各个生产领域。
近几十年来,随着酶工程不断的技术性突破,在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。
关键词:蛋白质工程酶工程应用正文:一、蛋白质工程的应用1、在医药方面[2]许多蛋白质工程的目标是设法提高蛋白质的稳定性。
在酶反应器中可延长酶的半衰期或增强其热稳定性,也可以延长治疗用蛋白质的贮存寿命或重要氨基酸抗氧化失活的能力。
在这个领域已取得了一些重要研究成果。
用蛋白质工程来改造特殊蛋白质为制造特效抗癌药物开辟了新途径。
如人的β- 干扰素和白细胞- 2 是两种抗癌作用的蛋白质。
但在它们的分子结构中,有一个不成对的基因,是游离的,因而很不稳定,会使蛋白质失去活性。
当通过蛋白质工程修饰这种不稳定的结构就可以提高这两种抗癌物质的生物活性。
美国的Cetus 公司成功地修饰了这两种治疗癌瘤的蛋白质,大大提高了它们的稳定性,已用于临床试验并取得了良好的效果。
具有抗癌作用的蛋白质工程产品免疫球蛋白质是一种高效治癌药物,它能成为征服癌症的“生物导弹”,即具有对准目标杀死特定癌细胞而不伤害正常细胞的特效。
近年来,澳大利亚医学科学研究所的一个微生物研究课题组经过多年的研究后发现了激发基因开始或停止产生癌细胞的蛋白质。
这种蛋白质在癌细胞生长过程中对癌基因起着开通或关闭的作用。
这个发现,对于通过蛋白质工程研制鉴别与控制多种类型的血液癌、固体癌的蛋白质有很好的作用,并为诊断和治疗癌症提供了新的方法。
目前,应用蛋白质工程研究开发抗癌及抗艾滋病等重大疑难病症等方面,均取得了重大进展。
酶工程的应用及其发展趋势
酶工程的应用及其发展趋势
酶工程是利用生物技术方法对酶进行改造和优化,以满足工业生产的需求。
它在各个领域都有广泛的应用,包括医药、食品、化学等。
以下是几个酶工程的应用及其发展趋势:
1. 医药领域:酶被广泛应用于药物合成和制药过程中。
例如,通过酶工程可以改进药物合成的效率和产量,减少副产物的生成,提高纯度和质量。
此外,酶还可以用于制造生物药物,包括蛋白质药物、抗体药物等。
未来的发展趋势是开发更多的酶药物,并提高制药过程的效率和环保性。
2. 食品工业:酶在食品工业中有广泛的应用,包括面包、啤酒、酸奶等食品的制作过程中。
通过酶工程可以改善食品的质地、口感和保鲜性。
此外,酶还可以用于食品添加剂的开发,用于改善食品的营养价值和功能性。
未来的发展趋势是开发更多的专用酶用于食品加工,提高食品的品质和安全性。
3. 环境保护:酶工程在环境保护领域有重要的应用。
例如,酶可以用于处理工业废水和污染物,降解有机废弃物和重金属污染物。
此外,酶还可以用于制备生物柴油和生物降解塑料等可再生能源和环保材料。
未来的发展趋势是开发更多具有高效降解性和低成本的酶用于环境治理和再生资源的利用。
4. 新型酶的发现和优化:酶工程的发展趋势是发现和利用新型酶及其应用。
随着生物技术的不断发展,越来越多的新酶被发现和鉴定,可以应用于各种工业过
程。
此外,通过基因工程和代谢工程的方法,可以对酶进行定向进化和改造,提高其催化活性、稳定性和特异性。
未来的发展趋势是开发更多的新型酶和创新技术,提高工业生产的效率和可持续性。
现代生物化工中酶工程技术研究与应用
现代生物化工中酶工程技术研究与应用【摘要】现代生物化工中酶工程技术是一门重要的研究领域,具有广泛的应用前景。
本文首先介绍了酶工程技术的背景和研究意义,阐明了其在现代生物化工中的重要性。
然后详细介绍了酶的优势和特点,以及酶工程技术的研究现状。
接着探讨了酶工程技术在现代生物化工中的应用,包括酶在医药、食品、能源等领域的作用。
展望了酶工程技术的未来发展方向,指出其在生物化工领域的广阔应用前景。
现代生物化工中酶工程技术不仅具有重要意义,而且有着巨大的发展潜力,为推动生物化工领域的进步和创新提供了新的可能性。
【关键词】酶工程技术、现代生物化工、研究、应用、优势、特点、研究现状、未来发展、重要性、应用前景、总结、展望1. 引言1.1 背景介绍酶工程技术的发展起源于上世纪70年代,随着基因工程技术的不断进步,人们可以通过改造酶的基因序列来提高其催化活性和稳定性。
通过对酶的结构和功能进行深入研究,人们可以设计出更具有特定功能的酶,满足不同工业生产的需求。
在生物医药、农业、食品加工等领域,酶工程技术已经得到广泛应用。
某些药物的合成可以通过酶催化来实现,不仅提高了合成效率,还降低了原料和能源消耗。
酶在食品加工中也发挥着重要作用,如面包的发酵、酒的酿造等。
随着生物技术的不断创新和进步,酶工程技术将继续发挥重要作用,在现代生物化工领域中展现出巨大的潜力和应用前景。
1.2 研究意义现代生物化工中酶工程技术研究的意义主要表现在以下几个方面:1. 提高生产效率:利用酶工程技术可以设计出高效、特异性强的酶,能够加速生物反应速度,降低生产成本,提高生产效率。
在很多生物化工过程中,酶催化反应具有高效、温和、选择性好等优点,能够大幅度提高产品的产量和质量。
2. 减少环境污染:相比传统化学工艺,酶工程技术可以在较低温度、常压下进行生产,减少了对环境的污染。
而且酶反应一般是以水为溶剂,减少了有机溶剂使用和废弃物排放。
3. 拓展产品范围:通过酶工程技术,可以生产更多种类的化合物,拓展了产品的范围。
酶工程的发展状况及其应用前景
酶工程的发展状况及其应用前景(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--酶工程的发展状况及其应用前景摘要:酶在现代生物生产中扮演着重要角色,酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,以及酶工程不断的技术性突破,使得酶在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。
关键词:酶工程生物催化剂酶的固定正文:随着酶生产的不断发展,酶的应用越来越广泛。
现在,酶工程已在医药、食品工业、农业、饲料、环保、能源、科研等领域广泛应用。
成为基因工程、细胞工程、蛋白质工程等新技术领域的科学研究和技术开发中不可取代的工具。
一、酶工程的发展及应用现状(一)国内外酶制剂的发展现状BCC最新研究报告显示,未来 4 年全球工业酶制剂市场价值将以%的复合年增长率继续增长,由2011年的39亿美元增加至 2016 年的约61亿美元。
该报告将工业酶市场细分成3个部分:生物酶、食品和饮料酶以及其他酶制剂。
2011 年生物酶的市场价值达12 亿美元,预计还将以%的复合年增长率继续增长,2016年达17亿美元。
2011年食品和饮料活性酶的市场价值接近13亿美元,未来 4 年还将以%的年均复合增长率增长,预计2016年达21 亿美元。
2011年其他酶制剂的市场价值为 15 亿美元,预计还将以%的复合年增长率增长,到2016年市场价值将达到22亿美元①。
我国酶制剂工业面经过近几十年的发展,初步具有一定的规模,取得了很大的进步。
但是,国外酶制剂公司仍然处于绝对的领先地位,特别是一些比较出色的公司,例如,诺和诺德公司(Novo Nordisk)、丹尼斯克公司(Danisco)等②。
(二)酶工程的应用现状一、酶工程技术在医药工业中的应用1、酶的固定化技术酶的固定化(enzyme immobilization)是指采用有机或无机固体材料作为载体(carrier or support),将酶包埋起来或束缚、限制于载体的表面和微孔中,使其仍具有催化活性,并可回收及重复使用的酶化学方法与技术。
现代生物化工中酶工程技术研究与应用
现代生物化工中酶工程技术研究与应用酶工程技术是一种重要的现代生物化工技术,它在生物制药、食品加工、环境保护等方面都有广泛的应用。
酶是一种高效的催化剂,能够在温和的条件下加速反应速率,降低反应能量,从而提高反应效率和产物纯度。
酶工程技术的研究和应用不断推动现代生物化工技术的发展和进步。
酶工程技术的基本原理是通过改变酶的结构和性质,来实现酶在产物合成、酶催化反应和代谢调节等方面的应用。
酶的催化活性是与其活性中心的空间构象密切相关的,因此,通过分子生物学、蛋白质工程等手段,可以对酶进行结构改造,从而使得其催化性能得到提高。
酶工程技术主要包括以下几个方面:(1)基因工程:基因工程是酶工程技术的基础。
通过基因重组、基因突变等技术,可以改变酶的基因序列,进而改变酶的结构和性质。
例如,通过基因工程技术,可以改变酶的糖基化状态,提高其稳定性和活性。
(2)蛋白质结构改造:蛋白质结构改造是酶工程技术的关键。
通过合成不同的突变蛋白和蛋白质群体,可以改变酶的空间构象,进而改变其催化性能。
例如,通过引入不同的氨基酸残基,可以构建出新的催化中心,使酶具有更强的催化活性。
(3)酶催化反应:酶催化反应是酶工程技术的核心。
通过选择合适的基质和底物,运用酶的催化力,可以将复杂的化学反应转化为高效、温和的生物反应。
例如,利用酶对纤维素、淀粉等生物废弃物进行降解,将有机废弃物转化为有用的生物质和生物能源。
(4)代谢调节:代谢调节是酶工程技术的重要应用方向。
通过调节酶基因的表达水平和酶活性,可以实现代谢调节,提高生物产物的产量和质量。
例如,利用代谢调节技术,可以大幅提高酒精、乳酸等生物产物的产量和纯度。
总之,现代生物化工中酶工程技术研究和应用已经成为推动生物工程技术发展的重要驱动力之一。
未来,酶工程技术将进一步深入发展,广泛应用于新药研发、食品加工、环境保护等领域,为人们创造更加安全、便利、环保的生活和工作条件。
酶工程技术在食品生产中的应用
酶工程技术在食品生产中的应用一、酶工程介绍酶工程为一门基于生物技术的学科,是指利用生物催化剂—酶或微生物、真菌等代谢过程扩大应用范围的一种新型技术。
随着酶的广泛应用,酶工程也逐渐从理论研究转化为应用研究并逐步发展成为实用技术,目前,酶工程技术已经广泛应用于许多生物科技领域,包括食品生产领域。
二、酶在食品生产中的应用酶是一种催化剂,其作用是加速化学反应,从而促进化学反应的进行。
在食品生产领域中,酶被广泛应用于各种食品及其制品的加工和处理中,从而提高食品的品质和口感。
1. 乳制品领域乳制品是一类含有丰富营养的食品,其中最常见的就是牛奶和奶酪。
在乳制品制造过程中,酶常被用来酶解牛奶蛋白和乳糖,这样可以大大提高乳制品的品质和口感。
同时,酶还可以在制作奶酪时用来对牛奶进行发酵和凝固,从而促进奶酪的形成。
2. 面食领域面食是我国传统的主食之一,其主要成分为面粉、水和食盐。
在面食的制作过程中,酶被广泛应用于酶解面粉中的淀粉和蛋白质。
这样可以使面团更软、更有弹性,面食口感更佳。
此外,酶还可以用于改良黏性韧性面团,可塑性好,耐压力强,更耐拓展性,从而增强面团的稳定性和机械性能。
3. 果蔬领域果蔬制品是我国饮食中不可或缺的食品,其主要成分为水和膳食纤维。
在果蔬制品加工过程中,酶被广泛应用于果汁的提取和澄清、果泥的制作以及蔬菜的加工等环节。
通过使用适当的酶,可以有效地去除果汁中的浊物和悬浮物,使得果汁口感更佳。
此外,酶还可以用来防止果蔬的褐变和质变,延长果蔬的保质期。
4. 饮料领域饮料是指各种口感好的、含有丰富营养成分的饮品。
在饮料的制作过程中,酶被广泛应用于饮料的发酵、澄清和浓缩等环节。
通过使用适当的酶,可以有效地促进饮料中的发酵,使得饮料口感更加醇厚。
此外,酶还可以用来澄清饮料中的浊物和悬浮物,并进行浓缩操作,提高饮料的品质和口感。
总之,酶工程技术在食品生产领域中的应用十分广泛,通过合理选择和应用酶,可以有效提高食品的品质和口感,同时促进食品的发酵、酶解、澄清和浓缩等过程,从而实现食品加工的自动化和高效化。
酶工程在医药工业中实际实际应用
1.技术路线
固定化细胞法生产6-氨基青霉烷酸的技术 路线
2.工艺过程
• (1) 大肠杆菌培养
• (2) E.coli 固定化 • (3) 固定化E.coli反应堆制备
• (4) 转化反应 • (5) 6-APA的提取
青霉素酰化酶转化流程图
• 1. 酶反应器;2.pH凋节罐;3.热水罐;4.碱液罐; • 5. 热水循环泵;6.裂解液循环泵; 7.流量计; • 8. 自动pH计;9.自动记录温度计;10.反应器温
• 规模通气搅拌培养。培养结束后用高速管 式离心机离心收集菌体,备用。
E.coli 固定化
• 取E. coli 湿菌体100 kg,置于40℃反应 罐中,在搅拌下加入50 L 10%明胶溶液, 搅拌均匀后加入25%戊二醛5L,再转移 至搪瓷盘中,使之成为3~5cm厚的液层, 室温放置2 h,再转移至4℃冷库过夜;
• 酶促反应的专一性强,反应条件温和。酶 工程的优点是工艺简单、效率高、生产成 本低、环境污染小,而且产品收率、纯度 高,还可制造出化学法无法生产的产品。 以下重点介绍固定化酶技术在制药工业中 生产抗生素、核苷酸和氨基酸的应用。
• 1. 固定化细胞法生产6-氨基青霉烷酸 • 2. 固定化酶法生产5’-复合单核苷酸 • 3. 固定化酶法生产L-氨基酸
• 取下层水相,加1% g/mL活性炭于70℃搅 拌脱色 30 min,滤除活性炭;滤液用 6 mol/L盐酸调pH至左右,5℃放置结晶过 夜;次日滤取结晶,用少量冷水洗涤,抽 干,115℃烘2~3h,得成品6-APA。按青 霉素G计,收率一般为70%~80%。
2. 固定化酶法生产5’-复合单核苷 酸
• 4种5’-复合单核苷酸注射液可用于治疗白 血球下降、血小板减少及肝功能失调等疾 病。核糖核酸(RNA)经5’-磷酸二酯酶作用 可分解为腺苷、胞苷、尿苷及鸟苷的一磷 酸 化 合 物 , 即 AMP、 CMP 、 UMP , 及 GMP。
酶工程学技术在食品与药物生产中的应用
酶工程学技术在食品与药物生产中的应用酶是一种生物催化剂,它可以加速化学反应的发生速率,而不消耗自身。
应用酶工程学技术,可以大大提高酶的效率和稳定性,为食品和药物生产带来了诸多便利。
本文将概述酶工程学技术在食品和药物生产中的应用。
一、食品生产中的应用1. 果汁加工许多果汁中含有多种活性氧化酶,如多酚氧化酶和过氧化氢酶,它们会使果汁发生褐变和酸败。
通过酶工程学技术,可以制备出抗氧化酶,抑制活性氧化酶的作用,使果汁的口感和颜色得到改善。
2. 面包加工在传统的面包制作中,需要使用酵母菌来促进面团的发酵。
但是,使用酵母菌可能会导致一些人对面包过敏。
通过酶工程学技术,可以制备出蛋白酶,它可以替代酵母菌,促进面团的发酵,同时减少对人体的过敏反应。
3. 奶制品加工在奶制品中,酶技术主要用于乳酸菌的生产。
通过酶工程学技术,可以制备出乳酸菌酶,帮助加速奶中的发酵过程,大大提高奶制品的生产效率和品质。
二、药物生产中的应用1. 多肽药物生产多肽药物是治疗许多疾病的重要药物类别。
通过酶工程学技术,可以制备出多肽酶,它可以作为水解酶,在体外水解大分子蛋白质,产生多肽药物。
这项技术可以大大提高多肽药物的产量和纯度。
2. 靶向药物生产靶向药物是一种能够更精确作用于靶分子,减少对人体其他器官的损伤的药物。
通过酶工程学技术,可以制备出能够与反应物结合的酶,用于靶向药物的制备。
这项技术可以大大提高药物的效果和减少不良反应。
3. 酶替代治疗一些疾病会导致身体内某种酶的活性下降或消失,从而导致身体无法正常代谢某些物质。
通过酶工程学技术,可以制备出替代酶,帮助身体代谢这些物质。
这项技术已被广泛应用于治疗糖尿病、肾上腺皮质功能不全等疾病。
三、结语总之,酶工程学技术在食品和药物生产中具有重要的应用价值。
通过这项技术,我们可以制备出更加高效、稳定和安全的酶,为人类的生产和健康带来更多的便利和福祉。
现代酶工程技术的应用与发展
现代酶工程技术的应用与发展现代酶工程技术是利用基因工程与生物工程的手段,对酶进行改造和优化,以提高其催化性能和稳定性。
这项技术已经在许多领域得到广泛应用,并且正在不断发展和创新。
以下是现代酶工程技术的一些应用与发展:1. 医药工业:酶工程技术可应用于制药过程中的催化反应,包括合成活性药物、生产抗生素和蛋白质药物,以及制备药物中间体等。
通过改造酶的催化活性和特异性,可以提高药物合成的效率和纯度,并减少副产物的生成。
2. 食品工业:酶工程技术可应用于食品加工中的酶解、发酵和调味等过程,例如制作酶解食品、面团添加剂和酿造食品等。
通过改造酶的催化性能和稳定性,可以提高食品加工的效率和质量,并增加产品的附加值。
3. 生物能源产业:酶工程技术可应用于生物质转化和生物燃料生产过程,例如提取可再生能源、生物乙醇和生物柴油等。
通过改造酶的底物特异性和反应温度范围,可以提高生物能源转化的效率和可持续性。
4. 环境保护:酶工程技术可应用于水处理、废弃物处理和土壤修复等环境工程领域。
通过改造酶的催化剂和降解特性,可以减少有机污染物和重金属离子等环境污染物的排放,从而实现环境保护和可持续发展。
目前,现代酶工程技术正朝着以下方向发展:1. 高效催化剂的设计和优化:通过分子模拟和结构改造等手段,探索更高效的酶催化反应机制,并优化酶的结构和活性位点,以提高催化效率和底物转化率。
2. 多功能酶的构建和应用:通过基因融合和蛋白工程等手段,将不同酶的催化活性和特异性整合到一起,构建具有多功能性的酶,并应用于复杂反应体系和细胞环境中。
3. 精准调控酶的表达和分泌:通过基因调控和信号传导等机制,实现对酶的高效表达和分泌,以提高酶的产量和纯度,并降低生产成本。
4. 纳米酶的设计和制备:通过纳米材料与酶的相互作用,实现酶的定向固定和增强其在特定反应中的稳定性和活性,以扩展酶工程技术在纳米材料制备和催化领域的应用。
总的来说,现代酶工程技术的应用和发展,有助于提高化学合成、生物转化和环境保护等行业中酶的效率和可持续性,为人类的生产和生活带来更多价值和福祉。
酶工程在农业上的应用
酶工程在农业上的应用1 酶工程概述酶工程是利用酶的生物催化作用和酶的分子结构等特殊性质进行的一种生物技术手段。
它主要研究的是如何在工业上、农业上、医学上或其他相关领域中,利用酶的活性和特异性来实现特定的产品或生产过程。
在农业上的应用方面,酶工程主要涉及到农产品加工、粮食酿造、畜禽养殖等方面。
2 酶工程在农产品加工上的应用2.1 果汁加工在果汁加工过程中,酶是一个重要的催化剂。
它能够帮助水果的糖类、酸类等成分在加工过程中被分解,使得果汁味道更加浓郁、营养更加丰富。
比如,在橙汁加工中,可利用酶对果肉中的草酸进行分解,避免果汁中出现涩味。
2.2 蔬菜采后保鲜蔬菜采后容易腐烂,而有些腐烂是由微生物引起的。
可利用酶来抑制腐烂性微生物的生长,保持蔬菜的新鲜度。
比如,在土豆的储藏中,可以使用多酚氧化酶来抑制土豆的黑斑病菌。
3 酶工程在粮食酿造上的应用3.1 啤酒酿造啤酒酿造中需要使用大量的酵母进行发酵反应。
而为了提高酵母的发酵效率,可以利用葡萄糖异构酶将淀粉分解成葡萄糖,为酵母提供更好的营养条件。
3.2 酱油酿造在酱油酿造中,可利用蛋白酶对豆类将蛋白质分解成简单的氨基酸,使得酱油口感更加鲜美。
4 酶工程在畜禽养殖上的应用4.1 饲料添加在畜禽饲料中添加一定量的酶类,可帮助畜禽更好地消化食物中的淀粉、蛋白质等成分,提高饲料利用率。
比如,在猪饲料中加入纤维素酶可以更好地分解纤维素,提高饲料的含能量。
4.2 肉品加工在肉品加工中,可利用蛋白酶帮助肉类软化,使得口感更加鲜美。
同时,利用抗菌酶或氧化酶也可以帮助提高肉制品的保鲜性。
比如,在香肠加工中,可以利用抗菌酶降低香肠中菌落的数量,延长香肠的保质期。
5 结语酶工程是一项非常重要的生物技术手段,对于农业生产、农产品加工、粮食酿造、畜禽养殖等领域都有着重要的应用价值。
相信在不久的将来,随着技术的进一步发展,酶工程的应用将会越来越广泛。
酶在生产和生活中的应用
酶在生产和生活中的应用自19世纪末德国生物学家毕希纳(Edward Buchner)证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶的名称以来,人类已经发现并鉴定出3000多酶。
酶作为一种催化剂,已被广泛地应用于轻工业的各个生产领域。
近几十年来,随着酶工程的迅猛发展,酶在生物工程、生物传感器、环保、医药等方面的应用也日益扩大,可以说酶已成为国民经济中不可缺少的一部分,现实生活中,人们的衣、食、住、行及其他方面的新技术几乎都离不开酶。
常见的酶在生产和生活中的应用洗涤剂工业:(加酶洗衣粉等)碱性蛋白酶类易于洗去衣物上的血渍、奶渍等污渍,加酶洗衣粉不能用于丝、毛等天然蛋白质纤维类织品的洗涤。
淀粉酶类餐厅洗碗机的洗涤剂,用于去除难溶的淀粉残迹等烘烤食品:真菌产生的a一淀粉酶催化淀粉降解成可被酵母利用的糖,面包等食品制作等蛋白酶类(饼干松化剂)制作饼干过程中,水解面粉中的蛋白质;乳制品生产中,水解乳清蛋白。
有利于食品中蛋白类营养的消化吸收。
酿酒工业:麦芽中的淀粉酶、蛋白酶、葡聚糖酶。
将酿酒原料淀粉和蛋白质降解成能被酵母利用的单糖、氨基酸和肽,从而提高乙醇的产量。
β一葡聚糖酶分解β-葡聚糖,降低麦汁粘度,加快麦汁过滤速度,避免因β-葡聚糖引起的啤酒混浊。
木瓜蛋白酶去除啤酒储存过程中生成的混沌物肉类烹饪:木瓜蛋白酶(嫩肉粉)菠萝蛋白酶分解肉的胶原蛋白,使肉类嫩滑。
木瓜蛋白酶的最适宜温度为600C,适宜pH7-7.5,不要在高温和酸性环境下使用。
乳制品工业:凝乳酶奶酪生产的凝结剂,并可用于分解蛋白质。
乳糖酶降解乳糖为葡萄糖和半乳糖,获得没有乳糖的牛乳制品,有利于乳品的消化吸收。
果汁生产:果胶酶、纤维素酶。
处理果肉,提高出汁率、缩短出汁时间、提高果汁质量。
制糖工业:淀粉酶等将淀粉转化为葡萄糖及各类糖浆葡萄糖异构酶用于将葡萄糖转化为甜度高的果糖,生产高果糖浆。
纺织工业:淀粉酶广泛地应用于纺织品的褪浆,其中细菌淀粉酶能忍受100~110℃的高温操作条件。
酶工程技术在实践中的应用
酶工程技术在实践中的应用酶是一种生物催化剂,其具有高效、选择性和易于控制等特点,因此在许多行业有着广泛的应用。
其中,酶工程技术是将现代生物技术和传统工艺相结合,通过对酶的活性、稳定性、选择性等性质进行改进,提高了酶的产量和效率,并将酶应用于工业生产中,从而实现了许多传统工艺无法达到的目标。
酶工程技术在实践中的应用非常广泛,下面我将分几个方面介绍一下。
一、食品工业酶在食品工业中的应用曾经只是一种辅助手段,在加工中添加一些天然酶,来改善某些产品的特性。
但是,随着酶工程技术的不断提升,如今许多食品的制造直接依赖于酶的作用。
例如,乳制品领域中常会应用到凝乳酶、乳糖酶、乳酸菌酶等酶来变性、分解或转化乳制品中的组分,以制造出不同口感、不同功能性的产品。
此外,面包、面条、饼干等多种面食制品在生产过程中,常会利用酶类添加剂改善色泽、口感和保质期等方面的品质。
另外,用于调味品、饮料等方面的酶也在不断开发和应用中。
二、制药工业制药工业是酶工程技术应用领域之一。
一些新型的生物制剂在制药工业中得到了广泛的应用,在治疗癌症、糖尿病等疾病和生产抗生素、激素等方面有着重要的作用。
酶工程技术也被广泛应用于蛋白质药物的制造过程中。
传统的制造方法常常需要使用化学物质来进行反应,但是酶能够帮助蛋白质产生有序的结构,从而改善其生物活性。
例如,制造活血通络的注射剂时,通过将注射用胶原酶等酶添加到药品中,可以帮助胶原蛋白变成合适的分子结构,从而提高其效力。
三、环境工程酶工程技术在环境工程方面的应用也越来越广泛。
一些酶可以分解肉类、蔬菜及其它有机物质,将其转化为更有利于环境的无害物质,是受到绿色环保业界的重视。
此外,酶也可用来处理家庭垃圾、废水、废弃物等,取代传统的高污染方式。
利用酶处理废水可以使水质有较大的改善,使污染物浓度下降到可以接受的范围内,且处理速度快,不会像传统处理方法那样产生大量有害气体和废弃物质,更加环保。
总之,酶工程技术虽然相对于其他生物技术的发展尚有不足,但其在实践中的应用效果已经得到大量验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶工程在现实生活的应用学院:生命科学与食品工程学院姓名:沈峰学号:5602209078 班级:生工092摘要:酶是催化特定化学反应的蛋白质、RNA或其复合体。
是生物催化剂,能通过降低反应的活化能加快反应速度,但不改变反应的平衡点。
绝大多数酶的化学本质是蛋白质。
具有催化效率高、专一性强、作用条件温和等特点。
酶工程技术与我们生活息息相关,比如酿酒,制药工业等等。
Abstract:The enzyme is a specific protein, RNA or its complex which isused to catalytic specific chemical reaction.it's biological catalyst .It can accelerate reaction velocity by reduce the activation energy of reaction ,without changing the point of balance. The vast majority of enzyme's chemical nature is protein.so it have lots of Characteristics as high catalytic efficiency, high specificity, mild conditions and so on.The enzyme engineering is closely linked with our life ,for example,making winepharmaceutical industry and so on.关键字:酶工程酶啤酒制药酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。
它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。
酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。
如果要了解酶工程在现实生活方面的应用的话,首先先要知道什么是酶,什么是酶工程,和哪些酶可以在起作用及酶的特性有哪些。
首先酶是催化特定化学反应的蛋白质、RNA或其复合体。
目前已发现有2000 多种。
分子量在数万至数十万之间。
生物体内的含量一般极少,它能参与生物体的各种生理生化活动,起催化剂的作用。
酶的种类众多,而在酿酒等工业方面方面应用的酶也不少。
比如,曲霉,根霉,红曲霉,拟内孢霉,木霉,青霉,等等。
所以没对于现实生活有着广而深的影响,对于酶的特性的了解也就十分必要。
酶工程:酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。
酶的特性主要四点:1、酶具有高效率的催化能力;其效率是一般无机催化剂的10的7次幂~~10的13次幂。
2、酶具有专一性;(每一种酶只能催化一种或一类化学反应。
)3、酶在生物体内参与每一次反应后,它本身的性质和数量都不会发生改变(与催化剂相似);4、酶的作用条件较温和。
一酶工程在酿酒制造业的作用总所周知,现实生活中的许多家庭每天都或多或少会在酒的方面消费,还有社交应酬,聚会派对酒是必不可少的,所以一个国家的酒制造业对国家的经济也起着不容忽视的作用。
而酿酒离不开酶工程的作用,所以了解酿酒的酶工程技术也是必不可少的。
1.酿酒工艺的基本原理微生物是利用酿酒原料中的糖分转变成酒的。
所以原则上凡是含糖的原料都可以用来酿酒。
糖分多糖和单糖。
正是酒曲中的酵母菌利用单糖转化成酒,这叫发酵。
但大米、高粱、玉米中含的是多糖叫淀粉,酵母菌不能直接利用。
所以酒曲中还含有叫霉菌的一类微生物,能把多糖切割成单糖供酵母菌利用,这就叫糖化。
然而一般多糖都结合很紧密,所以需要通过高温蒸煮使多糖变松散才有利于霉菌的作用,这就叫糊化。
通过以上几个步骤就产生酒了,但酒和糟是混在一起的。
所以有的就把酒糟通过高温加热使酒变成酒蒸汽再冷凝成酒液,从而使酒从糟中分离出来,这叫蒸馏;而有的是通过压榨使酒液与糟分离这叫压榨。
无论是蒸馏还是压榨,刚出的酒很冲,口感不好。
通过存放一段时间酒就会变得柔顺谐调了,这叫陈酿老熟。
陈酿后的酒虽然口感变好了。
但每次酿的酒口感质量都有所差别,要使常年的出厂产品口感质量都保持一致,就需要通过勾兑调配了。
即酿酒全过程就是:酿酒原料前处理(粉碎或整粒浸泡);高温蒸煮(专业术语叫糊化);加曲糖化发酵;蒸馏或压榨;陈酿老熟;勾兑调配;包装出厂。
这就是酿酒企业的生产工艺流程了。
2 啤酒的制造由于啤酒在现实生活中比较广泛,所以着重讲啤酒。
(1)啤酒制造原料大麦小麦等糖类材料,酒花,水,酵母等。
(2)啤酒制造过程有以下5道工序。
主要是糖化﹑发酵﹑贮酒後熟3个过程。
原料粉碎﹕将麦芽﹑大米分别由粉碎机粉碎至适于糖化操作的粉碎度。
糖化﹕将粉碎的麦芽和淀粉质辅料用温水分别在糊化锅﹑糖化锅中混合﹐调节温度。
糖化锅先维持在适于蛋白质分解作用的温度(45~52℃)(蛋白休止)。
将糊化锅中液化完全的醪液兑入糖化锅後﹐维持在适于糖化(β-淀粉和α-淀粉)作用的温度(62~70℃)(糖化休止)﹐以制造麦醪。
麦醪温度的上升方法有浸出法和煮出法两种。
蛋白﹑糖化休止时间及温度上升方法﹐根据啤酒的性质﹑使用的原料﹑设备等决定用过滤槽或过滤机滤出麦汁後﹐在煮沸锅中煮沸﹐添加酒花﹐调整成适当的麦汁浓度後﹐进入回旋沉淀槽中分离出热凝固物﹐澄清的麦汁进入冷却器中冷却到5~8℃。
发酵﹕冷却後的麦汁添加酵母送入发酵池或圆柱锥底发酵罐中进行发酵﹐用蛇管或夹套冷却并控制温度。
进行下面发酵时﹐最高温度控制在8~13℃﹐发酵过程分为起泡期﹑高泡期﹑低泡期﹐一般发酵5~10日。
发酵成的啤酒称为嫩啤酒﹐苦味犟﹐口味粗糙﹐CO2含量低﹐不宜饮用。
後酵﹕为了使嫩啤酒後熟﹐将其送入贮酒罐中或继续在圆柱锥底发酵罐中冷却至0℃左右﹐调节罐内压力﹐使CO2溶入啤酒中。
贮酒期需1~2月﹐在此期间残存的酵母﹑冷凝固物等逐渐沉淀﹐啤酒逐渐澄清﹐CO2在酒内饱和﹐口味醇和﹐适于饮用。
过滤﹕为了使啤酒澄清透明成为商品﹐啤酒在-1℃下进行澄清过滤。
对过滤的要求为﹕过滤能力大﹑质量好﹐酒和CO2的损失少﹐不影响酒的风味。
过滤方式有硅藻土过滤﹑纸板过滤﹑微孔薄膜过滤等。
二酶工程在制药方面的应用酶在制药工业中的作用主要是催化前体物质转化为药物,另外固定化酶膜或者酶管也广泛应用于制药过程的参数检测与测量,特别是生物制药过程。
下面以一个典型的应用为例进行叙述。
青霉素酰化酶在新型抗生素生产中的应用青霉素酰化酶能以青霉素或头孢霉素为原料,可以分别在青霉素的6位或者头孢霉素的7位催化酰氨键的形成与断裂。
典型的应用顺序为首先催化青霉素或头孢霉素酰氨键的断裂,获得半合成抗生素的直接底物6-氨基青霉烷酸(6-APA)或7-氨基头孢霉烷酸(7-ACA);然后在其他酰基供体存在的条件下催化形成新的酰氨键,从而获得具有全新侧链的新型抗生素。
天然发酵生成的青霉素有两种,一为青霉素G,另一为青霉素V。
通过青霉素酰化酶催化下进行酰基置换反应,用新的酰基供体置换苯乙酰基,则可以获得许新型的半合成青霉素。
比如用¢氨基苯乙酰置换原来的苯乙酰基,可以获得氨苄西林。
羟氨苄西林、羧苄西林和磺氨苄西林等也都是采用酶催化半合成的方法通过青霉素的酰基置换反应获得的。
天然发酵生成的头孢霉素是头孢霉素C,头孢霉素C在青霉素酰化酶催化下,首先水解生成7-ACA,再与侧链羧酸衍生物反应形成各种新型头孢霉素。
例如:头孢利定、头孢噻吩、头孢氨苄等。
虽然青霉素酰化酶既可以催化酰氨键的形成,也可以催化其水解,具有催化正逆两个反应的能力。
但催化水解反应和催化合成反应时所要求的条件存在较大差异,特别是最优催化pH相差较大。
常用的催化水解反应的pH为7.0~8.0,而催化合成反应的pH应降低到5.0~7.0。
因此应采用两个连续但独立的反应器顺序进行水解和合成反应。
药物对人类的生活不可或缺人类自诞生以来就与周围的各种病菌做斗争,在人类历史上,天花和黑死病、霍乱,鼠疫等瘟疫都留下了惊人的死亡数字一百八十年前,英国发明了预防天花病的牛痘疫苗。
天花病患者的死亡率仍高达三分之一。
后来,发达国家逐步控制了这种疾病,但非洲农村仍有流行。
自一九六七年开始进行最后一次大规模消灭天花的活动。
鼠疫远在2000年前即有记载。
在世界历史上,鼠疫曾发生三次大流行,死亡人数数以千万计。
第一次发生在公元6世纪,从地中海地区传入欧洲,死亡近1亿人;第二次发生在14世纪,波及欧、亚、非;第三次是18世纪,传播32个国家。
14世纪大流行时波及中国。
仅仅天花鼠疫两种病毒就在人类历史上抹上了不可磨灭的伤痕,如此多人死亡可见其对人类的伤害。
况且,周围环境中,病毒细菌数不胜数,种类也是极其之多。
如2003年的非典,夺走了多少人的生命。
所以人类需要能够抑制或杀死病菌的东西-----药物。
各种各样的疫苗令人类克服了天花,让人类能够更好的生活在这个世界上。
三酶工程在食品方面的作用酶用于乳品加工(1)干酪生产全世界生产干酪所耗牛奶达1亿多吨,占牛奶总产量的1/4。
干酪生产的第一步是将牛奶用乳酸菌发酵制成酸奶,然后加凝乳酶水解K-酪蛋白,在酸性条件下,钙离子使酪蛋白凝固,再经切块加热压榨熟化而成。
(2)分解乳糖牛奶中含有4.5%的乳糖。
乳糖是一种缺乏甜味且溶解度很低的双糖,难于消化。
有些人饮奶后常发生腹泻、腹痛等病,其原因即在于此。
而且由于乳糖难溶于水,常在炼乳、冰淇琳中呈砂状结晶析出,从而影响食品风味。
将牛奶用乳糖酶处理,使奶中乳糖水解为半乳糖和葡萄糖即可解决上述问题。
3)黄油增香乳制品特有香味主要是加工时所产生的挥发性物质(如脂肪酸、醇、醛、酮、酯以及胺类等)所致。
乳品加工时添加适量的脂肪酶可增加干酪和黄油的香味。
将增香黄油用于奶糖、糕点等食品,可节约黄油用量,提高风味(4)婴儿奶粉人奶与牛奶区别之一在于溶菌酶含量的不同。
奶粉中添加卵清溶菌酶可防止婴儿肠道感染。
四酶工程在污水处理方面的作用污水处理的意义随着的发展,城市水资源短缺的压力越来越大,追究城市水危机的根本原因,人们越来越认识到,是水的社会循环超出了水的自然循环可承载的范围。
因此,只有充分尊重水的自然运动规律,合理地使用水资源,使上游地区的用水循环不影响下游水域的水体功能、社会循环不损害自然循环的客观规律,从而维系或恢复城市乃至流域的良好水环境,才是水资源可持续利用的有效途径。
这就要求我们从“取水-输水-用户-排放”的单向开放型的用水模式转变为“节制地取水-输水-用户-再生水”的反馈式循环流程,提高水的利用效率。