2019-2020年八年级下学期月考数学试卷

合集下载

鲁教版八年级(下)第一次月考数学试卷(含解析)

鲁教版八年级(下)第一次月考数学试卷(含解析)

2019-2020学年八年级(下)第一次月考数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.(3分)下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的矩形是正方形D.对角线相等的菱形是正方形2.(3分)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间3.(3分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°4.(3分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2B.3C.4D.55.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB ⊥AB,交CD于点E.若DE=6,则AD的长为()A.6B.8C.10D.无法确定6.(3分)将a根号外的因式移到根号内,得()A.B.﹣C.﹣D.7.(3分)下列根式中,不能与合并的是()A.B.C.D.8.(3分)若x+1与x﹣1互为倒数,则实数x为()A.0B.C.±1D.±9.(3分)制造一种产品,原来的成本是每件200元,由于连续两次降低成本,现在每件产品的成本是162元,则平均每次降低成本()A.8%B.10%C.15%D.20%10.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°二、填空题(本大题共8小题,共32.0分)11.(4分)最简二次根式与是同类二次根式,则a=.12.(4分)方程(x﹣3)(x﹣9)=0的根是.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为.14.(4分)若a是方程3x2+2x﹣1=0的解,则代数式3a2+2a﹣2019的值为.15.(4分)若有意义,则a的取值范围为16.(4分)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=4,则菱形ABCD的周长为.17.(4分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,AB=AD,添加一个条件:,可使它成为正方形.18.(4分)一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:.三、计算题(本大题共2小题,共16.0分)19.(8分)(1);(2).20.(8分)解方程:(1)x2﹣7x﹣1=0;(2)x(2x﹣5)=4x﹣10四、解答题(本大题共5小题,共42.0分)21.(8分)如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=4时,求AF的长度.22.(8分)已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.23.(8分)阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=024.(8分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为m;(2)当AB的长是多少米时,围成的花圃面积为63平方米?25.(10分)观察下列运算过程:…请运用上面的运算方法计算:.参考答案一、选择题(本大题共10小题,共30.0分)1.(3分)下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的矩形是正方形D.对角线相等的菱形是正方形【分析】根据平行四边形、菱形、正方形的判定和性质一一判断即可.【解答】解:A.对角线互相平分的四边形是平行四边形,此选项正确;B.对角线互相垂直且平分的四边形是菱形,此选项错误;C.对角线互相垂直的矩形是正方形,此选项正确;D.对角线相等的菱形是正方形,此选项正确.故选:B.2.(3分)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间【分析】首先化简二次根式进而得出的取值范围进而得出答案.【解答】解:÷﹣1=﹣1=﹣1,∵7<<7.5,∴6<﹣1<6.5,故选:D.3.(3分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB=90°,AB∥CD,求出∠OAB=∠DAB﹣∠OAD=35°,由平行线的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,AB∥CD,∴∠OAB=∠DAB﹣∠OAD=90°﹣55°=35°,∠OCD=∠OAB=35°,故选:A.4.(3分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2B.3C.4D.5【分析】作BF⊥DC于F,如图,易得四边形BEDF为矩形,再证明△ABE≌△CBF得到BE=BF,S△ABE=S△CBF,则可判断四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,然后根据正方形的面积公式计算BE的长.【解答】解:作BF⊥DC于F,如图,∵∠CDA=90°,BE⊥AD,BF⊥DF,∴四边形BEDF为矩形,∴∠EBF=90°,即∠EBC+∠CBF=90°,∵∠ABC=90°,即∠EBC+∠ABE=90°,∴∠ABE=∠CBE,在△ABE和△CBF中,∴BE=BF,S△ABE=S△CBF,∴四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,∴BE==4.故选:C.5.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB ⊥AB,交CD于点E.若DE=6,则AD的长为()A.6B.8C.10D.无法确定【分析】作BF⊥AD与F,就可以得出BF∥CD,就可以得出四边形BCDF是矩形,进而得出四边形BCDF是正方形,就有BF=BC,证明△BCE≌△BAF就可以得出AF=CE,进而得出结论.【解答】解:作BF⊥AD与F,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BCE和△BAF中,∴△BCE≌△BAF(ASA),∴CE=F A.∵CD=BC=8,DE=6,∴DF=8,CE=2,∴F A=2,∴AD=8+2=10.故选C.6.(3分)将a根号外的因式移到根号内,得()A.B.﹣C.﹣D.【分析】直接利用二次根式的性质得出a的符号,进而变形得出答案.【解答】解:a=﹣=﹣.故选:B.7.(3分)下列根式中,不能与合并的是()A.B.C.D.【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选:C.8.(3分)若x+1与x﹣1互为倒数,则实数x为()A.0B.C.±1D.±【分析】首先根据倒数定义可得:(x+1)(x﹣1)=1,再去括号,两边同时开平方即可.【解答】解:由题意得:(x+1)(x﹣1)=1,去括号得:x2﹣1=1,移项得:x2=2,两边直接开平方得:x=±,故选:D.9.(3分)制造一种产品,原来的成本是每件200元,由于连续两次降低成本,现在每件产品的成本是162元,则平均每次降低成本()A.8%B.10%C.15%D.20%【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为200(1﹣x)元,再经过一次下降后成本变为200(1﹣x)(1﹣x)元,根据两次降低后的成本是162元列方程求解即可.【解答】解:设平均每次降低成本的百分率为x,根据题意得:200(1﹣x)(1﹣x)=162,解得:x=0.1或1.9(不合题意,舍去)即:x=10%故选:B.10.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.二、填空题(本大题共8小题,共32.0分)11.(4分)最简二次根式与是同类二次根式,则a=5.【分析】根据最简二次根式与同类二次根式的定义列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a=15,解得:a=5.故答案为:5.12.(4分)方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为1.【分析】先设x2+y2=t,则方程即可变形为t2+5t﹣6=0,解方程即可求得t即x2+y2的值.【解答】解:设x2+y2=t,则原方程可化为:t2+5t﹣6=0即(t+6)(t﹣1)=0∴t=﹣6(舍去)或t=1,即x2+y2=1.故答案是:1.14.(4分)若a是方程3x2+2x﹣1=0的解,则代数式3a2+2a﹣2019的值为﹣2018.【分析】利用a是方程3x2+2x﹣1=0的解得到3a2+2a=1,然后利用整体代入的方法计算3a2+2a﹣2019的值.【解答】解:∵a是方程3x2+2x﹣1=0的解,∴3a2+2a﹣1=0,∴3a2+2a=1,∴3a2+2a﹣2019=1﹣2019=﹣2018.故答案为﹣2018.15.(4分)若有意义,则a的取值范围为a≤4且a≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零.【解答】解:依题意得:4﹣a≥0且a+2≠0,解得a≤4且a≠﹣2.故答案是:a≤4且a≠﹣2.16.(4分)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=4,则菱形ABCD的周长为32.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=4,∴AB=8,∴菱形ABCD的周长是:4×8=32,故答案为:32.17.(4分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,AB=AD,添加一个条件:∠BAD=90°,可使它成为正方形.【分析】根据正方形的判定即可得结论.【解答】解:因为四边形ABCD是平行四边形,AB=AD,所以▱ABCD是菱形,如果∠BAD=90°,那么四边形ABCD是正方形.故答案为:∠BAD=90°.18.(4分)一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:10cm.【分析】设正方形的边长是xcm,根据面积相应地增加了44cm2,即可列方程求解.【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=44,解得:x=10.故答案为:10cm.三、计算题(本大题共2小题,共16.0分)19.(8分)(1);(2).【分析】(1)直接利用二次根式的性质以及负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质分别化简,进而结合二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=2﹣3×﹣2﹣1×=2﹣﹣2﹣=﹣2;(2)原式=[3+4×﹣(﹣)]×=(3+2﹣+)×=(2+3)×=6+3.20.(8分)解方程:(1)x2﹣7x﹣1=0;(2)x(2x﹣5)=4x﹣10【分析】(1)可用公式法进行求解;(2)观察原方程,方程的左右两边都含有2x﹣5,因此可先移项,然后用提取公因式法进行求解.【解答】解:(1)a=1,b=﹣7,c=﹣1;b2﹣4ac=53;x=;x1=,x2=;(2)原方程可化为:x(2x﹣5)﹣2(2x﹣5)=0;(2x﹣5)(x﹣2)=0,x﹣2=0或2x﹣5=0;解得:x1=2,x2=.四、解答题(本大题共5小题,共42.0分)21.(8分)如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=4时,求AF的长度.【分析】(1)先证四边形DECO是平行四边形,再根据菱形的性质求出∠DOC=90°,即可得出结论;(2)证△AFO≌△EFD(AAS),得OF=DF,由直角三角形的性质得OD=AO=4,则OF=OD=2,再根据勾股定理求出AF即可.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形DECO是矩形;(2)解:如图,∵四边形ABCD是菱形,∴AO=OC,AC⊥BD,∵四边形DECO是矩形,∴OC=DE=4,∴AO=4,∵DE∥AC,∴∠F AO=∠DEF,在△AFO和△EFD中,,∴△AFO≌△EFD(AAS),∴OF=DF,∵∠ADB=30°,∴OD=AO=4,∴OF=OD=2,∴AF===2.22.(8分)已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.【分析】(1)根据题意△=0,构建方程,解方程即可.(2)把m=1代入方程,解方程即可解决问题.【解答】解:(1)四边形ABCD为菱形,则方程有两个相等的实数根,∴△=b2﹣4ac=(﹣m)2﹣4(﹣)=0,即m2﹣2m+1=0,解得m=1,所以当m=1时,四边形ABCD为菱形.(2)把m=1代入原方程得x2﹣x+=0,解得所以菱形的边长为.23.(8分)阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=0【分析】当绝对值内的数不小于0时,可直接去掉绝对值,而当绝对值内的数为负数时,去绝对值时,绝对值内的数要变为原来的相反数.本题要求参照例题解题,要先对x的值进行讨论,再去除绝对值将原式化简.【解答】解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.(2)当x≥2时,原方程可可化为x2+2x﹣4﹣3=0,解得x1=﹣1+(舍去),x2=﹣1﹣(舍去).当x<2时,原方程化为x2﹣2x+4﹣3=0,解得x1=x2=1综上所述,原方程的根是x1=x2=1.24.(8分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为(30﹣3x)m;(2)当AB的长是多少米时,围成的花圃面积为63平方米?【分析】(1)设AB的长为xm,则平行一墙的一边长为(30﹣3x)m,该花圃的面积为x (30﹣x)m2;进而用含x的代数式表示BC即可;(2)令该面积等于63平方米,求出符合题意的x的值,即是所求AB的长.【解答】解:(1)BC的长可用含x的代数式表示为(30﹣3x)m.故答案为:(30﹣3x);(2)依题意有x(30﹣3x)=63.解得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去.故当AB的长是7米时,围成的花圃面积为63平方米.25.(10分)观察下列运算过程:…请运用上面的运算方法计算:.【分析】先分母有理化,然后合并即可.【解答】解:原式=+++…++=.。

2023-2024学年天津市和平区汇文中学八年级(下)第一次月考数学试卷(含解析)

2023-2024学年天津市和平区汇文中学八年级(下)第一次月考数学试卷(含解析)

2023-2024学年天津市和平区汇文中学八年级(下)第一次月考数学试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知24n是整数,正整数n的最小值为( )A. 0B. 1C. 6D. 362.下列各组数中,是勾股数的为( )A. 1,1,2B. 1.5,2,2.5C. 17,8,15D. 6,12,133.使得式子x4−x有意义的x的取值范围是( )A. x≥4B. x>4C. x≤4D. x<44.把x−1x根号外的因数移到根号内,结果是( )A. xB. −xC. −−xD. −x5.一个正方形的面积为29,则它的边长应在( )A. 3到4之间B. 4到5之间C. 5到6之间D. 6到7之间6.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )A. 9B. 6C. 4D. 37.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )A. 3cm2B. 4cm2C. 6cm2D. 12cm28.(易错题)已知x+1x =6,则x−1x的值是( )A. 2B. −2C. ±2D. 不能确定9.如图所示,在数轴上点A所表示的数为a,则a的值为( )A. −1−5B. 1+5C. −5D. −1+510.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为( )A. 20dmB. 25dmC. 30dmD. 35dm11.△ABC的三边分别为a,b,c,且满足(a−b)2+a2+b2−c2=0,则△ABC的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 无法确定12.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,点D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD对称,连接BA′,则BA′的最小值为( )A. 12B. 1C. 2D. 3二、填空题:本题共6小题,每小题3分,共18分。

江苏省南京市2023-2024学年八年级下学期第一次月考模拟练习数学试卷答案

江苏省南京市2023-2024学年八年级下学期第一次月考模拟练习数学试卷答案

2023-2024学年江苏省南京市八年级数学第一次月考模拟练习参考答案 1.C2.A3.D4.A5.C【解析】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M ,N 过点O ,那么四边形MENF 就是平行四边形∴存在无数个平行四边形MENF ,故①正确;只要MN =EF ,MN 过点O ,则四边形MENF 是矩形,∵点E 、F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN ⊥EF ,MN 过点O ,则四边形MENF 是菱形;∵点E 、F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN =EF ,MN ⊥EF ,MN 过点O ,则四边形MENF 是正方形,而符合要求的正方形只有一个,故④错误;故选:C6.A【解析】 在边长为4的菱形ABCD 中,120ABC ∠=°,4AB CD ∴==,30BAC DAC ∠=∠=°,将ADC 沿射线AC 的方向平移得到′′′A D C △,∴A D ′′4AD =,A D ′′∥AD ,四边形ABCD 是菱形,AD CB ∴=,AD CB ,120ADC ∴∠=°,∴A D CB ′′=,A D CB ′′∥,∴四边形D A BC ′′是平行四边形,∴A B D C ′′=,【解析】如图1,当点P 在线段由折叠可得:3AB AE ==如图2,当点P 在BC 的延长线上时,由折叠得:3AB AE BP PE B ===∠=,,【解】(1)12÷20%=60(人),C 的人数:故答案为:60;(2)如图,△A2B2C2为所作;若点B的坐标为((3)连接A A,C C,作A A和C C22.【解】(1)证明:连接∵E、F、G、H分别是AB(2)如图②中,高AM即为所求;根据网格与勾股定理得出AF=∴ADF EAH≌,∴EAH ADF∠,∠=(3)如图③中,点N即为所求.(2)如图,连接BM MC ,, ∵90ABC ∠=°,四边形ABCD∵AD GF ∥,AB DF ∥,,∵P 为边FG 的中点,∴1322PF FG ==, ∴222235()222PE PF EF =+=+=, 过A 作AM PE ⊥,∴当A ,M ,B 三点共线时高最大,三角形面积最大如图所示,∵90AEF ∠=°, ∴90FEC AEO AEO OAE ∠+∠=∠+∠=°,∴FEC OAE ∠=∠, ∵3OEEC ==,K 为OA 的中点,OA OC =, ∴AK EC =,OK OE =,∴45OKE ∠=°, ∴135AKE ∠=°, ∵CF 是正方形外角的平分线,∴45DCF ∠=°, ∴135ECF ∠=°, ∴AKE ECF ∠=∠, 在AKE 和ECF 中,AKE ECF AK EC KAE FEC ∠=∠ = ∠=∠,∴()ASA AKE ECF ≌△△,∴AE EF =;②延长CD ,并在延长线上截取DH OE =,连接AH ,如图所示,∵四边形AOCD 是正方形,∴AO AD =,90AOE ADH ∠=∠=°, ∴()SAS AOE ADH ≌△△,∴OAE DAH ∠=∠,AE AH =,AEO AHD ∠=∠, 由①可知AE EF =,∴AEF 为等腰直角三角形,∴45EAF ∠=°, ∴45OAE DAG DAH DAG GAH ∠+∠=∠+∠=∠=°,∴GAH GAE ∠=∠, ∴()SAS AEG AHG ≌△△,∴EGGH DG OE ==+,AGE AGH ∠=∠,AEG AHD ∠=∠, ∴AEO AEG ∠=∠, ∵EN CD ∥,∴AGH GNE AGE ∠=∠=∠,。

人教版八年级下学期第一次月考数学试卷含答案解析

人教版八年级下学期第一次月考数学试卷含答案解析

八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。

1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。

安徽省2023年八年级下学期第一次月考数学试题1

安徽省2023年八年级下学期第一次月考数学试题1

安徽省 八年级下学期第一次月考数学试题一、填空题(每空2分,共28分)1.等腰三角形的一个角为50度,则顶角的度数为 。

2.x 的3倍与15的差不小于8,用不等式表示为 。

3.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整数解是 。

(第3题) 4.分解因式:-2x +8= 。

5.已知,△ABC 三条边的垂直平分线的交点在△ABC 的一条边上,那么△ABC 的形状是 。

6.如图所示,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′,若点A 的坐标为(a ,b ),则点A ′的坐标为 。

7.一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分。

在这次竞赛中,小明被评为 (第6题) 优秀(85分或85分以上),若设小明至少答对了x 道题,可列 出不等式 。

8.已知y 1=-x +3,y 2=3x -4, 当x 时,y 1>y 2。

9.如图,已知函数y =2x -5,观察图象回答下列问题 (1)x 时,y <0;(2)y 时,x <3。

10.若x 2-3x -28=(x+a)(x+b),则a+b= ab= (第9题)11. 已知六边形ABCDEF 是中心对称图形,AB =1,BC =2,CD =3,那么EF =_______. 12. 要使不等式-3x -a ≤0的解集为x ≥1,那么a = 二、选择题(每空3分,共30分) 1.如果a <b ,下列不等式正确的是( )A 、a -9>b -9B 、3b <3aC 、-2a >-2bD 、5a >5b 2.下列由左到右的变形,是因式分解的是( )A .(a +6)(a -6)=a ²-36B .x 2-8x +16=(x -4)2C .a ²-b ²+1=(a +b)(a -b)+1D .(x -2)(x +3)=(x +3)(x -2)3.不等式组⎩⎨⎧>->0312x x 的解集是( )10 -1 -2 2 4-1 0 -3 -53 x y-1 1 3 4 2 1-2-4 y =2x -52.5A .x >3B .21<xC .321<<x D .无解 4.直线y=—23x+3与x 轴、y 轴所围成的三角形的面积为( ) A 、3 B 、6 C 、43 D 、235.下列各式中能因式分解的是( ) A .412+-x x B . x 2-xy+y 2 C .22941n m + D .x 6-10x ³-25 6.下列运算中,因式分解正确的是( )A.)1(2-+-=-+-n m m m mn mB.)23(36922ab abc b a abc -=-C.)2(336322b a x x bx x a -=+-D.)(21212122b a ab b a ab +=+7. 20022001)2()2(-+-等于( )A. 20012-B. 20022-C. 20012D. 2- 8. 观察下列四个平面图形,其中中心对称图形有( )A .2个B .1个C .4个D .3个 9. 7x +1是不小于-3的负数,表示为 ( )A .-3≤7x +1≤0B .-3<7x +1<0C .-3≤7x +1<0D .-3<7x +1≤010. 下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负数解有无限个C .不等式-2x <8的负整数解有4个D .-40是不等式2x <-8的一个解 三、解答题(1~4每小题各4分,5~6每小题各6分,共38分) 1.解不等式及不等式组: ①2235-+≥x x ②⎩⎨⎧+>-+<-)1(325123x x x x3.分解因式:①25(m +n)²-(m -n)² ②x 2+y 2+2xy -14.简便计算:①01.099.199.12⨯+ ②²+-202X²5.求不等式41-x +1>0的解集和它的非负整数解,并把解集在数轴上表示出来.6.|2a -24|+(3a -b -k )2=0,那么k 取什么值时,b 为负数.四、应用题(每小题8分,共24分)1.若a 、b 、c 是△A B C 的三边,且a 2+b 2+c 2=6a +8b +10c -50,判断这个三角形的形状.2. 如图,在△ABC 中,AD ⊥BC ,∠BAC 的平分线AD 交边BC 于点D ,点O 是线段AD 上一点,线段BO 的延长线交边AC 于点F ,线段CO 的延长线交边AB 于点E . (1)说明△ABC 是等腰三角形的理由.(2)说明BF=CE 的理由.3.“六·一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:如果每盒饼干和每袋牛奶的标价分别设为x 元,y 元,请你根据以上信息: (1)找出y 与x 之间的关系式;(2)请利用不等关系,求出每盒饼干和每袋牛奶的标价小强:阿姨,我有10元钱,我想买一盒饼干和一袋牛奶.阿姨:小朋友,本来你用10元钱买一盒饼干是有剩的,但要再买一袋牛奶钱就不够了,不过今天是儿童节,饼干打九折,两样东西请你拿好?还有找你的8角钱.八年级第一次月考数学试卷(实验班)参考答案一、1. 50º或80º 2. 3x-15≥8 3.-1,0 4.-2(x-4) 5.直角三角形6. (-b,a). 7. 5x-25≥85 8.<7/4 9.(1)<5/2 (2)<110.-3 -28 11.2 12.-3二、1. C 2.B 3.A 4.A 5.A 6.D 7.C 8.D 9.C 10.C三、1.① x≦-20/3 ②无解3. ①2(3m+2n)(2m+3n)②(x+y+1)(x+y-1)4.①3.98 ②-202X5. 去分母得:-x+4>0解得:x<4则非负整数解为0,1,2,36. 根据题意得:2a-24=0,3a-b-k=0,解得:a=12则b=3a-k=36-k根据题意得:36-k<0解得:k>36故k>36时b为负数.四、1.∵a2+b2+c2+50=6a+8b+10c∴a2-6a+9+b2-8b+16+c2-10c+25=0即(a-3)2+(b-4)2+(c-5)2=0∴a=3,b=4,c=5∵32+42=52∴△ABC是直角三角形.2.解:(1)因为AD⊥BC所以∠ADB=∠ADC因为AD平分∠BAC所以∠BAD=∠CAD因为∠ADB=∠DAC+∠ACD,∠ADC=∠BAD+∠ABD所以∠ABD=∠ACD所以AB=AC即△ABC是等腰三角形(2)因为△ABC是等腰三角形,AD⊥BC所以BD=CD在△BDO与△CDO中DO=DO(公共边)∠ADB=∠ADCBD=CD所以△OBD≌△OCD所以∠OBD=∠OCD在△BEC与△CFB中∠ECB=∠FBCBC=CB(公共边∠ABC=∠ACB所以△BEC≌△CFB所以BF=CE3.解:(1)由题意,得0.9x+y=10-0.8y=9.2-0.9x(2)根据题意,得不等式组将y=9.2-0.9x代入②式,得解这个不等式组,得8<x<10∵x为整数∴x=9∴y=9.2-0.9×9=1.1答:每盒饼干的标价为9元,每袋牛奶的标价为1.1元。

陕西省西安市碑林区西北工业大学附属中学2019-2020学年八年级下学期第二次月考数学试卷 解析版

陕西省西安市碑林区西北工业大学附属中学2019-2020学年八年级下学期第二次月考数学试卷  解析版

2019-2020学年陕西省西安市碑林区西北工大附中八年级(下)第二次月考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若m>n,则下列不等式一定成立的是()A.1+m<1+n B.m﹣2<n﹣2C.>D.﹣4m>﹣4n 2.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列等式从左到右的变形,属于因式分解的是()A.m(a+b)=ma+mb B.x2+2x+1=x(x+2)+1C.x2+x=x2(1+)D.x2﹣9=(x+3)(x﹣3)4.如图,在△ABC中,AB=AC,点D是BC边上的中点,∠BAD=50°,则∠C的大小为()A.20°B.30°C.40°D.50°5.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)6.如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22B.16C.18D.207.如图,直线y=kx+b交x轴于点A(﹣1,0),直线y=mx+n交x轴于点B(3,0),这两条直线相交于点C(1,3),则不等式kx+b<mx+n的解集为()A.x<1B.x>1C.x<﹣2D.x<58.如图,在△ABC中,∠B=60°,AB=3.将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上,且DC=2,则DE的长为()A.3B.4C.5D.69.若,则的值为()A.B.3C.5D.710.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是()A.B.1C.D.1.5二、填空题(共4小题,共12分)11.若已知分式的值为0,则m的值为.12.有一个正多边形的内角和等于它外角和的2倍,则这个正多边形每一个内角的大小为.13.若关于x的分式方程﹣=1有增根,则a的值.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4.如果在三角形内部有一条动线段MN∥AC,且MN=2,则AM+BN+CN的最小值为.三、解答题(共9小题,共58分)15.将下列各式因式分解:(1)2a2﹣4a+2;(2)x2﹣25﹣10(x﹣5).16.解不等式组并把解集在数轴上表示出来.17.尺规作图:如图,已知▱ABCD,在DC边上求作一点M,使得MA=MC.(不写作法,保留作图痕迹)18.如图,已知△ABC,作∠BAC的角平分线与BC的垂直平分线相交于点P,过点P作PM⊥AB于点M,PN⊥AC交AC的延长线于点N,连接BP、CP.求证:∠BPM=∠CPN.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.20.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.21.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B 品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?22.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+2与y轴交于点C.(1)直接写出点A、B、C的坐标分别为:A,B,C;(2)是否存在将直线l2:y=﹣x+2向上或向下平移使其经过点D,且使得以A、B、C、D为顶点的四边形为平行四边形?若存在,求出所有可能的平移方式;若不存在,请说明理由.23.问题探究(1)如图①,已知∠A=45°,∠ABC+∠ADC=60°,则∠BCD的大小为;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6,求四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的地铁站的施工围挡,受地方限制,要求AB=BC;∠ABC=∠ADC=45°,对角线BD=6米,那么四边形ABCD的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2019-2020学年陕西省西安市碑林区西北工大附中八年级(下)第二次月考数学试卷参考答案与试题解析一.选择题(共10小题)1.若m>n,则下列不等式一定成立的是()A.1+m<1+n B.m﹣2<n﹣2C.>D.﹣4m>﹣4n 【分析】利用不等式的性质,直接判断得结论.【解答】解:A、∵m>n,∴1+m>1+n,不等式不成立,不符合题意;B、∵m>n,∴m﹣2>n﹣2,不等式不成立,不符合题意;C、∵m>n,∴,不等式成立,符合题意;D、∵m>n,∴﹣4m<﹣4n,不等式不成立,不符合题意;故选:C.2.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、既是中心对称图形也是轴对称图形,故此选项符合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:A.3.下列等式从左到右的变形,属于因式分解的是()A.m(a+b)=ma+mb B.x2+2x+1=x(x+2)+1C.x2+x=x2(1+)D.x2﹣9=(x+3)(x﹣3)【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【解答】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.4.如图,在△ABC中,AB=AC,点D是BC边上的中点,∠BAD=50°,则∠C的大小为()A.20°B.30°C.40°D.50°【分析】根据等腰三角形的三线合一定理可得AD⊥BC,然后根据三角形的内角和定理求得∠B的度数,然后根据等腰三角形中等边对等角即可求解.【解答】解:∵AB=AC,点D为BC的中点,∴AD⊥BC,又∵∠BAD=50°,∴∠B=90°﹣∠BAD=90°﹣50°=40°,又∵AB=AC,∴∠C=∠B=40°.故选:C.5.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)【分析】解题的关键是抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′的坐标.【解答】解:如图,由题意A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',观察图象可知A′(4,﹣3).故选:B.6.如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22B.16C.18D.20【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA 的长,然后由AB⊥AC,AB=8,OA=6,根据勾股定理可求得OB的长,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OA=AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB==10,∴BD=2OB=20.故选:D.7.如图,直线y=kx+b交x轴于点A(﹣1,0),直线y=mx+n交x轴于点B(3,0),这两条直线相交于点C(1,3),则不等式kx+b<mx+n的解集为()A.x<1B.x>1C.x<﹣2D.x<5【分析】结合函数图象,写出直线y=kx+b不在直线y=mx+n的上方所对应的自变量的范围即可.【解答】解:根据函数图象,当x<1时,kx+b<mx+n,所以不等式kx+b<mx+n的解集为x<1.故选:A.8.如图,在△ABC中,∠B=60°,AB=3.将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上,且DC=2,则DE的长为()A.3B.4C.5D.6【分析】根据等边三角形的判定与性质,可以得到BD的长,再根据DC的长,即可得到BC的长,然后根据旋转的性质可知,△ABC≌△ADE,从而可以得到BC=DE,然后即可得到DE的长.【解答】解:由题意可得,AB=AD,∵∠B=60°,∴△ABD是等边三角形,AB=3.∴BD=AB=3,∵DC=2,∴BC=BD+DC=3+2=5,由题意可知,△ABC≌△ADE,∴BC=DE,∴DE=5,故选:C.9.若,则的值为()A.B.3C.5D.7【分析】法1:已知等式整理得到关系式5=(+)(a+b),计算即可求出值;法2:已知等式左边通分并利用同分母分式的加法法则运算,整理后得到a2+b2=3ab,原式变形后代入计算即可求出值.【解答】解:法1:∵+=,∴5=(+)(a+b)=2++,则+=5﹣2=3;法2:已知等式变形得:=,即(a+b)2=5ab,整理得:a2+2ab+b2=5ab,即a2+b2=3ab,则+===3.故选:B.10.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是()A.B.1C.D.1.5【分析】根据三角形中位线定理得到DE∥AB,DE=AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.【解答】解:∵D、E分别是BC、AC的中点,∴DE∥AB,DE=AB=5,BD=BC=4,∴∠ABF=∠BFD,∵BF平分∠ABC,∴∠ABF=∠DBF,∴∠DBF=∠BFD,∴DF=DB=4,∴EF=DE﹣DF=1,故选:B.二.填空题(共4小题)11.若已知分式的值为0,则m的值为﹣1.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得m2﹣1=0且m﹣1≠0,解得m=﹣1.故答案为:﹣1.12.有一个正多边形的内角和等于它外角和的2倍,则这个正多边形每一个内角的大小为120°.【分析】根据一个正多边形的内角和等于它外角和的2倍,任意多边形的外角和都是360°,可以得到这个多边形的内角和,然后根据内角和公式,可以得到这个多边形的边数,从而可以得到这个正多边形每一个内角的度数.【解答】解:∵一个正多边形的内角和等于它外角和的2倍,任意多边形的外角和都是360°,∴这个多边形的内角和是360°×2=720°,设这个正多边形的边数为n,则(n﹣2)×180°=720°,解得n=6,故这个正多边形每一个内角的大小为720°÷6=120°,故答案为:120°.13.若关于x的分式方程﹣=1有增根,则a的值4.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,2+2﹣a=2﹣2,解得a=4.故答案为:4.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4.如果在三角形内部有一条动线段MN∥AC,且MN=2,则AM+BN+CN的最小值为2.【分析】在AC上取一点A′,使得AA′=MN=2,连接A′N.首先证明AM+BN+CN =A′N+BN+CN,将△NCB绕点C顺时针旋转60°得到△GCT,连接NG,过点T作TH ⊥AC交AC的延长线于H.证明A′N+CN+BN=A′N+NG+GT≥A′T,求出A′T可得结论.【解答】解:在AC上取一点A′,使得AA′=MN=2,连接A′N.∵AA′=MN,AA′∥MN,∴四边形AMNA′是平行四边形,∴AM=A′N,∴AM+BN+CN=A′N+BN+CN,将△NCB绕点C顺时针旋转60°得到△GCT,连接NG,过点T作TH⊥AC交AC的延长线于H.∵CN=CG,∠NCG=60°,∴△NCG是等边三角形,∴CN=NG,∴A′N+CN+BN=A′N+NG+GT,∵A′N+NG+GT≥A′T,∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=CT=AB=2,AC=BC=6,∴CA′=6﹣2=4,∵∠ACH=90°,∠BCT=60°,∴∠TCH=30°,∵∠THC=90°,∴TH=CT=,CH=TH=3,∴A′H=4+3=7,∴A′T===2.∴AM+BN+CN≥2,∴AM+BN+CN的最小值为2,故答案为:2.三.解答题15.将下列各式因式分解:(1)2a2﹣4a+2;(2)x2﹣25﹣10(x﹣5).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式结合后,提取公因式即可.【解答】解:(1)原式=2(a2﹣2a+1)=2(a﹣1)2;(2)原式=(x+5)(x﹣5)﹣10(x﹣5)=(x﹣5)(x+5﹣10)=(x﹣5)2.16.解不等式组并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解4(x+1)≤7x+13得:x≥﹣3,解>x﹣4得:x<2,不等式组的解集为:﹣3≤x<2,在数轴上表示:17.尺规作图:如图,已知▱ABCD,在DC边上求作一点M,使得MA=MC.(不写作法,保留作图痕迹)【分析】连接AC,作AC的垂直平分线交CD于点M即可.【解答】解:如图,点M即为所求.18.如图,已知△ABC,作∠BAC的角平分线与BC的垂直平分线相交于点P,过点P作PM⊥AB于点M,PN⊥AC交AC的延长线于点N,连接BP、CP.求证:∠BPM=∠CPN.【分析】由角平分线的性质可得PM=PN,由垂直平分线的性质可得PB=PC,由“HL”可证Rt△BPM≌Rt△CPN,可得结论.【解答】证明:∵AP平分∠BAC,PM⊥AB,PN⊥AC,∴PM=PN,∵PD是BC的垂直平分线,∴PB=PC,在Rt△BPM和Rt△CPN中,,∴Rt△BPM≌Rt△CPN(HL),∴∠BPM=∠CPN.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.20.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.【分析】(1)根据平行四边形的性质得到AO=BO,BO=CO,AB∥CD,AD∥BC,根据三角形中位线的性质得到∴MO∥BC,NO∥CD,根据平行四边形的判定可证得结论;(2)由勾股定理求得AB=,根据直角三角形斜边的中线等于斜边的一半得到OM =AM=,进而可求得结论.【解答】(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.21.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?【分析】(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,根据数量=总价÷单价结合购买A品牌垃圾桶数量是购买B品牌垃圾桶数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,根据总价=单价×数量结合总费用不超过6000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,依题意,得:=2×,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:购买一个A品牌垃圾桶需100元,购买一个B品牌垃圾桶需150元.(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,依题意,得:100×0.9(50﹣m)+150×(1+20%)m≤6000,解得:m≤16.因为m是正整数,所以m最大值是16.答:该学校此次最多可购买16个B品牌垃圾桶.22.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+2与y轴交于点C.(1)直接写出点A、B、C的坐标分别为:A(﹣2,0),B(0,4),C(0,2);(2)是否存在将直线l2:y=﹣x+2向上或向下平移使其经过点D,且使得以A、B、C、D为顶点的四边形为平行四边形?若存在,求出所有可能的平移方式;若不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)分AB是边、AB是对角线两种情况,利用平移的性质和中点公式分别求解即可.【解答】解:(1)直线l1:y=2x+4,令x=0,则y=4,令y=2x+4=0,解得x=﹣2,对于直线l2:y=﹣x+2,令x=0,则y=2,故点A、B、C的坐标分别为(﹣2,0)、(0,4)、(0,2),故答案为(﹣2,0)、(0,4)、(0,2);(2)存在,理由:设平移后的直线表达式为y=﹣x+b,则设点D(m,﹣m+b),①当AB是边时,点A向右平移2个单位向上平移4个单位得到点B,则点C(D)向右平移2个单位向上平移4个单位得到点D(C),则0+2=m,2+4=﹣m+b或0﹣2=m,2﹣4=﹣m+b,解得:或;②当AB是对角线时,由中点公式得:(﹣2+0)=(0+4)=(2﹣m+b),解得,故平移后的直线表达式为y=﹣x+8或y=﹣x﹣4或y=﹣x,故直线l2平移的方式是:向上平移6个单位或向下平移6个单位或向下平移2个单位.23.问题探究(1)如图①,已知∠A=45°,∠ABC+∠ADC=60°,则∠BCD的大小为105°;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6,求四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的地铁站的施工围挡,受地方限制,要求AB=BC;∠ABC=∠ADC=45°,对角线BD=6米,那么四边形ABCD的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【分析】(1)利用外角的性质可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAF,可得∠FBD=90°,BF=BD,∠BAF =∠BCD,S△ABF=S△BCD,可得S△BDF=S四边形ABCD=18;(3)将△BCD绕点B逆时针旋转45°,得到△BAH,连接HD,过点H作HG⊥BD于G,由旋转的性质可得CD=AH,BH=BD=6(米),∠HBA=∠DBC,∠HAB=∠BCD,S△BCD=S△BAH,由四边形ABCD的面积=S△HBD﹣S△HAD,可得当△HAD的面积最大时,四边形ABCD的面积最小,即可求解.【解答】解:(1)如图1,延长BC交AD于E,∵∠BCD=∠BED+∠CDA,∠BED=∠A+∠ABC,∴∠BCD=∠A+∠ADC+∠ABC=45°+60°=105°故答案为:105°;(2)如图2,将△BCD绕点B逆时针旋转90°得到△BAF,∴△BCD≌△BAF,∠FBD=90°,∴BF=BD,∠BAF=∠BCD,CD=AF,S△ABF=S△BCD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BAD+∠BAF=180°,∴点F,点A,点D三点共线,∵BF=BD=6,∠DBF=90°,∴S△BDF=×BF×BD=18,∴S△BDF=S△ABF+S△ABD=S△BCD+S△ABD=S四边形ABCD=18;(3)如图3,将△BCD绕点B逆时针旋转45°,得到△BAH,连接HD,过点H作HG ⊥BD于G,∴△BCD≌△BAH,∴CD=AH,BH=BD=6(米),∠HBA=∠DBC,∠HAB=∠BCD,S△BCD=S△BAH,∵∠ABC=45°=∠ABD+∠DBC,∴∠ABD+∠ABH=45°=∠HBG,∵HG⊥BD,∴∠HBG=∠BHG=45°,∴BG=HG,∴BH=BG=6,∴BG=HG=3,∴S△HBD=BD×HG=×6×3=9,DG=6﹣3,∴HD2=DG2+HG2=(6﹣3)2+(3)2=72﹣36,∵∠ABC=∠ADC=45°,∴∠BAD+∠BCD=270°,∴∠BAD+∠BAH=270°,∴∠HAD=90°,∴HA2+AD2=HD2,∵(HA﹣AD)2≥0,∴2•HA•AD≤HA2+AD2,∴HA•AD≤36﹣18,∵四边形ABCD的面积=S△ABD+S△BCD=S△ABD+S△ABH,∴四边形ABCD的面积=S△HBD﹣S△HAD,∴当△HAD的面积最大时,四边形ABCD的面积最小,∵四边形ABCD的面积=9﹣•HA•AD,∴四边形ABCD的面积的最小值=9﹣(18﹣9)=18﹣18.。

八年级月考数学试题(含答案)

八年级月考数学试题(含答案)

月考八年级数学试卷考试时间:120分钟 满分:120分 姓名:_______ 班级:_______一、选择题(每题3分,共30分)1.能将三角形面积平分的是三角形的( )A 、 角平分线B 、 高C 、 中线D 、外角平分线2.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm3.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定 4.一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC +∠DOB =( ) A 、900 B 、1200 C 、1600 D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个8.若三条线段中a =3,b =5,c 为奇数,那么由a , b ,c 为边组成的三角形共有( ) A. 1个 B. 3个 C. 无数多个 D. 无法确定 9.若从一多边形的一个顶点出发,最多可引10条对角线,则它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。

2023-2024学年河北省邢台市信都区八年级(下)月考数学试卷(含答案)

2023-2024学年河北省邢台市信都区八年级(下)月考数学试卷(含答案)

2023-2024学年河北省邢台市信都区八年级(下)月考数学试卷一、选择题:本题共14小题,共38分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图所示,四边形ABCD是平行四边形,可以记作( )A. ▱ABDCB. ▱ABCDC. ▱ACBDD. ▱ADBC2.为了调查瑞州市2016年初三年级学生的身高,从中抽取出200名学生进行调查,这个问题中样本容量为( )A. 被抽取的200名学生的身高B. 200C. 200名D. 初三年级学生的身高3.现有长为5、5、7的三根木棍,要想钉一个平行四边形的木框,则选用的第四根木棍的长度应该为( )A. 5B. 7C. 2D. 124.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是( )A. 0B. −1C. −1.5D. −25.已知平行四边形ABCD中,∠B=4∠A,则∠C=( )A. 18°B. 36°C. 72°D. 144°6.如图表示光从空气进入水中前、后的光路图,若按如图建立平面直角坐标系,并设入水前与入水后光线所在直线的表达式分别为y1=k1x,y2=k2x,则关于k1与k2的关系,正确的是( )A. k2<0<k1B. k1<0<k2C. k1<k2<0D. k2<k1<07.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升.如果每升汽油7.6元,求油箱内汽油的总价y(元)与x(升)之间的函数关系是( )A. y=7.6x(0≤x≤20)B. y=7.6x+76(0≤x≤20)C. y=7.6x+10(0≤x≤20)D. y=7.6x+76(10≤x≤30)8.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集是( )A. x≤2B. x>2C. x≥2D. x<29.如图是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,330°)的目标是( )A. 目标AB. 目标CC. 目标ED. 目标F10.温室效应导致地球异常增温,人类正在积极探讨直接从大气中分离二氧化碳的碳捕集与封存技术,有效应对气候变化.气象部门数据显示某地2024年2月气温比常年同期偏高,如图反映该地某日的温度变化情况.下列说法错误的是( )A. 3时的温度最低B. 这一天的温差是12℃C. 从15时到24时温度整体呈下降趋势D. 这一天有两个时刻的温度为0℃11.如图,在大水杯中放了一个小水杯,两个水杯内均没有水.现向小水杯中匀速注水,小水杯注满后,以同样的速度继续注水,则大水杯的液面高度ℎ(cm)与注水时间t(s)的大致图象是( )A. B. C. D.12.在证明命题“平行四边形对边相等”时,嘉淇给出如下证明过程:已知:四边形ABCD是平行四边形,求证:AB=CD,AD=BC.证明:连结AC,∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠DAC=∠BCA,∠DCA=∠BAC,∵⋯,∴△ADC≌△CBA,∴DA=BC,DC=BA.其中省略的内容,可以表示为( )A. AC=CAB. ∠B=∠DC. ∠CAB=∠BD. AD=AC13.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周,设点P运动的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )A. B.C. D.14.对于题目:“甲、乙两人登山过程中,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示.乙提速后,乙的登山速度是甲登山速度的3倍,并先到达山顶等待甲.根据图象所提供的信息,求甲、乙两人距地面的高度差为50米的登山时间”,甲答:4分钟;乙答:9分钟;丙答:15分钟.对于以上说法,正确的是( )A. 甲对B. 甲、乙合在一起对C. 甲、乙、丙合在一起对D. 甲、乙、丙合在一起也不对二、填空题:本题共3小题,共10分。

2019-2020学年湖北省武汉市八十一中八年级10月考数学试卷(无答案)

2019-2020学年湖北省武汉市八十一中八年级10月考数学试卷(无答案)

八年级数学月考试卷一.选择题:1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,82.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定3.已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为().A.11 B.16 C.17 D.16或174 △ABC≌△BAD,A和B、C和D是对应点,如果AB=5cm,BD=4cm,AD=6cm,那么BC的长是()(A)6cm (B)5cm (C)4cm (D)无法确定5.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△BDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△BDC≌△ABC 的理由是()A.SAS B.ASA C.SSS D.AAS6.下列条件中,不能判定两个直角三角形全等的是()A.一锐角和斜边对应相等B.两条直角边对应相等C.一锐角和一直角边对应相等D.两个锐角对应相等7.一个多边形的内角和是外角和的3倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为多少?()A.2 B.3 C.4 D.59. 在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()10.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题:11.如图,已知△ABC ≌△ADE ,若∠BAE =120°,∠BAD =40°,则∠DAC =__________ 12.一个正多边形的每个外角都是36°,这个正多边形的边数是_______.___13. 将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________14.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CDE =55°.如图,则∠EAB 的度数为_________15.如图,某同学将一块三角形的玻璃打碎成了三块,•现需配一块完全一样的玻璃,那么只需要其中的第______块就可以了.16.在平面直角坐标系中,点A (2,0)、B (0,4),作△BOC ,使以B ,O ,C 为顶点的三角形与△ABO 全等,则点C 的坐标为_________________三、解答题: 17. 如图,AC =AE ,∠1=∠2,AB =AD . 求证:BC =DE .19.如图,C 岛在A 岛的北偏东50°方向上,B 岛在A 岛的北偏东80°方向上,C 岛在B 岛的北偏西40°方向上,从C 岛看A 、B 两岛的视角∠ACB 是多少?19. 已知, 如图在ABC ∆中, MN AC ⊥于N, 且MN 平分AMC ∠, ABM ∆的周长是9cm, AN =2cm, 求ABC ∆的周长.3045120 .在△ABC 中,AB =AC ,DB 为△ABC 的中线,且BD 将△ABC 周长分为12cm 与15cm 两部分,求三角形各边长.21.如图,点M 、N 分别是正五边形ABCDE (每条边相等,每个内角相等)的边BC 、CD 上的点,且BM=CN ,AM 交BN 于点P . (1)求证:△ABM ≌△BCN ; (2)求∠APN 的度数.22. 已知:如图,AB=AC ,AE=AF ,连结BF ,CE ,交于O ,连结AO 。

湖北省武汉市江岸区七一华源中学2019-2020学年八年级(下)月考数学试卷(3月份) 解析版

湖北省武汉市江岸区七一华源中学2019-2020学年八年级(下)月考数学试卷(3月份)  解析版

2019-2020学年湖北省武汉市江岸区七一华源中学八年级(下)月考数学试卷(3月份)一.选择题(共10小题)1.使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥22.下列式子中,属于最简二次根式的是()A.B.C.D.3.下列各式计算正确的是()A.8﹣2=6B.5+5=10C.4÷2=2D.4×2=8 4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆7.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺8.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3B.C.D.49.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连结P A和PM,则P A+PM的值最小是()A.3B.2C.3D.610.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于()A.12B.16C.16或24D.12或20二.填空题(共6小题)11.是整数,则最小的正整数a的值是.12.已知x=+1,y=﹣1,则x2﹣y2=.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是.14.已知x+=,那么x﹣=.15.在矩形ABCD中,E、F、M分别为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为.16.如图,在矩形ABCD中,AB=2,AD=1,点P在线段AB上运动,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原设四边形EPFD的面积为S,当四边形EPFD为菱形时,请写出S的取值范围.三.解答题(共7小题)17.(1)(+)×(2)(4﹣3)﹣18.先化简,再求值:+x﹣4y﹣,其中x=,y=4.19.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.20.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=,BC=.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.21.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足时,四边形EFGH为菱形.当AC、BD满足时,四边形EFGH为矩形.当AC、BD满足时,四边形EFGH为正方形.22.在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=.23.如图所示,在平面直角坐标系中A(a,0),B(b,0),D(0,d),以AB,AD为邻边做平行四边形ABCD,其中a,b,d满足(a+1)2++|d﹣4|=0.(1)求出C的坐标,及平行四边形ABCD的面积;(2)如图2,线段BC的中垂线交y轴与点E,F为AD的中点,试判断∠EFB的大小,并说明理由;(3)如图3,过点C作CG⊥x轴与点G,K为线段DG上的一点,KH⊥CK交OG延长线与点H,且∠DKC=3∠KHG,请求出的值.参考答案与试题解析一.选择题(共10小题)1.使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥2【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选:D.2.下列式子中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选:A.3.下列各式计算正确的是()A.8﹣2=6B.5+5=10C.4÷2=2D.4×2=8【分析】根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、8﹣2=6,原式计算错误,故A选项错误;B、5与5不是同类二次根式,不能直接合并,故B选项错误;C、4÷2=2,原式计算错误,故C选项错误;D、4×2=8,原式计算正确,故D选项正确;故选:D.4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D【分析】根据平行四边形的判定定理进行判断.【解答】解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.6.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆【分析】根据矩形的对角线互相平分且相等,即可得出结果.【解答】解:∵矩形的对角线互相平分且相等,∴一条对角线用了49盆红花,中间一盆为对角线交点,49﹣1=48,∴还需要从花房运来红花48盆;故选:A.7.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.8.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3B.C.D.4【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选:D.9.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连结P A和PM,则P A+PM的值最小是()A.3B.2C.3D.6【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时P A+PM 的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD 垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得P A+PM的最小值.【解答】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时P A+PM 的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,P A=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴P A+PM=PC+PM=CM=3.故选:C.10.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于()A.12B.16C.16或24D.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【解答】解:①如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,②如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故选:D.二.填空题(共6小题)11.是整数,则最小的正整数a的值是5.【分析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a为5.【解答】解:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.故答案为:5.12.已知x=+1,y=﹣1,则x2﹣y2=.【分析】先分解因式,再代入比较简便.【解答】解:x2﹣y2=(x+y)(x﹣y)=2×2=4.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是32或42.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.14.已知x+=,那么x﹣=±3.【分析】直接利用完全平方公式得出x2+=11,进而得出x﹣的值.【解答】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+﹣2=(x﹣)2=9,∴x﹣=±3.故答案为:±3.15.在矩形ABCD中,E、F、M分别为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为5.【分析】由四边形ABCD是矩形,得到∠B=∠C=90°,CD=AB=6,根据AE=3,DM =2,于是得到BE=3,CM=4,推出△BEF∽△CFM,得到关于BF的比例式,进而可求出EM,EF的长,再利用勾股定理即可求出EM的长.或过M作MN⊥AB于N,易知MN=7,EN=1,EM==5.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=6,∵AE=3,DM=2,∴BE=3,CM=4,∵EF⊥FM,∴∠BEF+∠BFE=∠BFE+∠MFC=90°,∴∠BEF=∠CFM,∴△BEF∽△CFM,∴,∴,解得:BF=3,或BF=4,∴CF=4,或CF=3,∴EF==5,FM==5,∴EM==5,故答案为:5.或过M作MN⊥AB于N,易知MN=7,EN=1,EM==5.16.如图,在矩形ABCD中,AB=2,AD=1,点P在线段AB上运动,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原设四边形EPFD的面积为S,当四边形EPFD为菱形时,请写出S的取值范围1≤S≤.【分析】由要使四边形EPFD为菱形,则需DE=EP=FP=DF,可得当点E与点A重合时,AP最小;当点P与点B重合时,AP最大,继而求得四边形EPFD为菱形的AP的取值范围,进而得到S的取值范围.【解答】解:∵要使四边形EPFD为菱形,则需DE=EP=FP=DF,∴如图1:当点E与点A重合时,AP=AD=1,此时AP最小;此时,S=AP2=1.如图2:当点P与B重合时,AP=AB=2,此时AP最大;此时,设AE=x,则EP=DE=2﹣x,根据勾股定理得:12+x2=(2﹣x)2,解得:x=,∴EP=,∴S=1×=.∴四边形EPFD为菱形时,S的取值范围:1≤S≤.故答案为:1≤S≤.三.解答题(共7小题)17.(1)(+)×(2)(4﹣3)﹣【分析】(1)根据乘法分配律可以解答本题;(2)先去括号,然后合并同类项即可解答本题.【解答】解:(1)(+)×==4+3;(2)(4﹣3)﹣=4﹣3﹣=3﹣3.18.先化简,再求值:+x﹣4y﹣,其中x=,y=4.【分析】直接利用二次根式的性质化简,进而把已知数据代入得出答案.【解答】解:原式=5+x•﹣4y•﹣•y=5+﹣4﹣=,当x=,y=4时,原式==.19.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.【分析】首先用a表示出AN、AM和MN的长,再利用勾股定理的逆定理证明△AMN是直角三角形,最后利用三角形面积公式计算即可.【解答】解:在Rt△ABN中,AN2=AB2+BN2,∴AN2=a2+(a)2=a2,在Rt△ADM中,AM2=AD2+DM2,∴AM2=a2+()2=a2,在Rt△CMN中,MN2=CM2+CN2,∴MN2=(a)2+(a)2=a2,∵a2=a2+a2,∴AN2=AM2+MN2,∴△AMN是直角三角形,∴S△AMN=AM•AN=×a×a=a2.20.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=135°,BC=2.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.【分析】(1)直接利用网格得出:∠ABC的度数,再利用勾股定理得出BC的长;(2)利用平行四边形的性质得出D点位置即可.【解答】解:(1)由图形可得:∠ABC=45°+90°=135°,BC==;故答案为:135°,2;(2)满足条件的D点共有3个,以A、B、C、D四个点为顶点的四边形为:平行四边形分别是▱ABCD1、▱ABD2C和▱AD3BC.其中第四个顶点的坐标为:D1(3,﹣4)或D2(7,﹣4)或D3(﹣1,0).21.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足AC=BD时,四边形EFGH为菱形.当AC、BD满足AC⊥BD时,四边形EFGH为矩形.当AC、BD满足AC=BD且AC⊥BD时,四边形EFGH 为正方形.【分析】(1)连接BD,根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD且EH=BD,FG∥BD且FG=BD,从而得到EH∥FG且EH=FG,再根据一组对边平行且相等的四边形是平行四边形证明即可;(2)连接AC,同理可得EF∥AC且EF=AC,再根据邻边相等的平行四边形是菱形,邻边垂直的平行四边形是矩形,邻边相等且垂直的平行四边形是正方形解答.【解答】(1)证明:如图,连接BD,∵E、F、G、H分别为四边形ABCD四边之中点,∴EH是△ABD的中位线,FG是△BCD的中位线,∴EH∥BD且EH=BD,FG∥BD且FG=BD,∴EH∥FG且EH=FG,∴四边形EFGH为平行四边形;(2)解:连接AC,同理可得EF∥AC且EF=AC,所以,AC=BD时,四边形EFGH为菱形;AC⊥BD时,四边形EFGH为矩形;AC=BD且AC⊥BD时,四边形EFGH为正方形.故答案为:AC=BD;AC⊥BD;AC=BD且AC⊥BD.22.在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为直角三角形.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=2.【分析】(1)结论:△ABC是直角三角形.证明DA=DB=DC即可解决问题.(2)设CN=x,将△BAM绕点A逆时针旋转90°得到△ACH,连接NH.证明△NAM ≌△NAH(SAS),推出MN=NH,利用勾股定理构建方程解决问题即可.(3)求出AD,DN,利用勾股定理解决问题.【解答】解:(1)结论:△ABC是直角三角形.理由:∵BD=DC,AD=BC,∴DA=DB=DC,∴∠BAC=90°.故答案为直角三角形.(2)如图,设CN=x.∵∠B=45°,∠BAC=90°,∴∠ACB=∠B=45°,∴AB=AC,∵BD=DC,∴AD⊥BC,将△BAM绕点A逆时针旋转90°得到△ACH,连接NH.∵∠ACB=∠ACH=∠B=45°,∴∠NCH=90°,∵∠MAN=45°,∠MAH=90°,∴∠NAM=∠NAH=45°,∵NA=NA,AM=AH,∴△NAM≌△NAH(SAS),∴MN=NH,∵BM=CH=3,BC=12,∴CM=12﹣3=9,∴MN=NH=9﹣x,∵NH2=CH2+CN2,∴(9﹣x)2=x2+32,解得x=4.∴CN=4.(3)在Rt△ADN中,∵∠ADN=90°,AD=BD=CD=6,DN=CD﹣CN=6﹣4=2,∴AN===2.故答案为2.23.如图所示,在平面直角坐标系中A(a,0),B(b,0),D(0,d),以AB,AD为邻边做平行四边形ABCD,其中a,b,d满足(a+1)2++|d﹣4|=0.(1)求出C的坐标,及平行四边形ABCD的面积;(2)如图2,线段BC的中垂线交y轴与点E,F为AD的中点,试判断∠EFB的大小,并说明理由;(3)如图3,过点C作CG⊥x轴与点G,K为线段DG上的一点,KH⊥CK交OG延长线与点H,且∠DKC=3∠KHG,请求出的值.【分析】(1)根据非负数的性质得到a=1,b=3,d=4,求得A(﹣1,0),B(3,0),D(0,4),得到OA=1,OD=4,过C作CE⊥x轴于E点,根据平行四边形的性质得到AD=BC,AD∥BC,根据全等三角形的性质得到CE=OD=4,BE=AO=1,于是得到结论;(2)连接BE,OF,过F作FG⊥x轴于G,FK⊥y轴于K,根据线段垂直平分线的性质得到CE=BE,求得F(﹣,2),设ED=b,根据勾股定理列方程得到ED=,根据勾股定理和勾股定理的逆定理即可得到结论;(3)如图3,过K作KE⊥KG交CG于E,提出四边形CDOG是正方形,得到∠DGC =45°,推出△EKG是等腰直角三角形,求得KG=KE,根据全等三角形的性质得到CK =HK,根据已知条件即可得到结论.【解答】解:(1)∵(a+1)2++|d﹣4|=0.∴a+1=0,b﹣3=0,d﹣4=0,∴a=1,b=3,d=4,∴A(﹣1,0),B(3,0),D(0,4),∴OA=1,OD=4,过C作CE⊥x轴于E点,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAO=∠CBE,∵∠AOD=∠CEB=90°,∴△CBE≌△DAO(AAS),∴CE=OD=4,BE=AO=1,∴OE=4,∴C(4,4),∴S四边形ABCD=4×4=16;(2)连接BE,OF,过F作FG⊥x轴于G,FK⊥y轴于K,∵线段BC的中垂线交y轴与点E,∴CE=BE,∵F为AD的中点,∴F(﹣,2),设ED=b,∴DE2+DC2=EC2=EB2=EO2+OB2,∴DE2+42=(4﹣DE)2+32,解得:ED=,∴FB2=FG2+BG2=4+,EF2=FK2+EK2=+,BE2=OE2+OB2=9+=,∵FB2+EF2=+==BE2,∴△EFB是直角三角形,∴∠EFB=90°;(3)如图3,过K作KE⊥KG交CG于E,∵CG⊥x轴与点G,∴CD=CG=4,∴四边形CDOG是正方形,∴∠DGC=45°,∴△EKG是等腰直角三角形,∴KG=KE,∴∠KEG=∠KGE=45°,∴∠CEK=∠HGK=135°,∴△ECK≌△GHK(ASA),∴CK=HK,∴△KCH是等腰直角三角形,∵∠DKC=3∠KHG,∴2∠KHG=45°,∠KHG=∠KCE=22.5°,∴CD=CG=CE+EG=KE+EG=KG+KG,∴.。

2019-2020学年江西省九江十一中八年级(下)月考数学试卷(4月份) 解析版

2019-2020学年江西省九江十一中八年级(下)月考数学试卷(4月份)  解析版

2019-2020学年江西省九江十一中八年级(下)月考数学试卷(4月份)一.选择题(共6小题,满分18分,每小题3分)1.(3分)民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形3.(3分)已知a<b,则下列四个不等式中,不正确的是()A.2a<2b B.﹣5a<﹣5bC.a﹣2<b﹣2D.1.2+a<1.2+b4.(3分)下列因式分解正确的是()A.x2﹣2x﹣8=x(x﹣2)﹣8B.a4﹣1=(a2+1)(a2﹣1)C.4x2﹣1=(4x+1)(4x﹣1)D.﹣x2+4xy﹣4y2=﹣(x﹣2y)25.(3分)如图,△ABC中,AB=AC,DE垂直平分AC,若△BCD的周长是14,BC=6,则AC的长是()A.6B.8C.10D.146.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC =12,AB=15,则△ABC的面积为()A.24B.48C.54D.108二.填空题(共8小题,满分24分,每小题3分)7.(3分)因式分解:3a4﹣3b4=.8.(3分)如图,D为△ABC中BC边上一点,AB=CB,AC=AD,∠BAD=24°,则∠C =°.9.(3分)如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为.10.(3分)不等式组的所有整数解的和是.11.(3分)如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为.12.(3分)如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A=度.13.(3分)如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′=.14.(3分)如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE =1,∠E=30°,则BC=.三.解答题(共9小题,满分78分)15.(6分)分解因式:x3﹣2x2y+xy2.16.(6分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.17.(7分)解不等式组,并把它的解集在数轴上表示出来.18.(7分)已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.19.(8分)为了进一步丰富校园活动,学校准备购买一批足球和篮球,已知购买7个足球和5个篮球的费用相同;购买40个足球和20个篮球共需3400元.(1)求每个足球和篮球各多少元?(2)如果学校计划购买足球和篮球共80个,总费用不超过4800元,那么最多能买多少个篮球?20.(10分)如图,△ABC三个顶点的坐标分别为A(﹣1,3),B(﹣4,1),C(﹣2,1).(1)请画出△ABC向右平移5个单位长度后得到的△A1B1C1.(2)请画出△A1B1C1关于原点对称的△A2B2C2.(3)求四边形ABA2B2的面积.21.(10分)如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB 的垂线交AC于点E,求证:BE垂直平分CD.22.(12分)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy﹣4y+4=0,求xy的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.23.(12分)如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.2019-2020学年江西省九江十一中八年级(下)月考数学试卷(4月份)参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.(3分)民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C.既不是轴对称,也不是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形【分析】根据勾股定理的逆定理和直角三角形的判定解答即可.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.【点评】本题主要考查命题与定理,解题的关键是熟练掌握勾股定理的逆定理和直角三角形的判定.3.(3分)已知a<b,则下列四个不等式中,不正确的是()A.2a<2b B.﹣5a<﹣5bC.a﹣2<b﹣2D.1.2+a<1.2+b【分析】根据不等式的性质逐个选项分析即可.【解答】解:根据不等式的性质可得:选项A:根据不等式的性质2,在a<b的两边同时乘以2,可得2a<2b,故A正确,不符合题意;选项B:根据不等式的性质3,在a<b的两边同时乘以﹣5,可得﹣5a>﹣5b,故B不正确,符合题意;选项C:根据不等式的性质1,在a<b的两边同时减去2,可得a﹣2<b﹣2,故C正确,不符合题意;选项D:根据不等式的性质1,在a<b的两边同时加上1.2,可得1.2+a<1.2+b,故D 正确,不符合题意;综上,只有选项B不正确.故选:B.【点评】本题考查了不等式的性质,属于基础知识的考查,比较简单.4.(3分)下列因式分解正确的是()A.x2﹣2x﹣8=x(x﹣2)﹣8B.a4﹣1=(a2+1)(a2﹣1)C.4x2﹣1=(4x+1)(4x﹣1)D.﹣x2+4xy﹣4y2=﹣(x﹣2y)2【分析】利用十字相乘法和公式法分别将各选项分解因式,进而判断得出即可.【解答】解:A、x2﹣2x﹣8=(x﹣4)(x+2),故此选项错误;B、a4﹣1=(a2+1)(a+1)(a﹣1),故此选项错误;C、4x2﹣1=(2x+1)(2x﹣1),故此选项错误;D、﹣x2+4xy﹣4y2=﹣(x﹣2y)2,故此选项正确.故选:D.【点评】此题主要考查了十字相乘法和公式法分解因式,能够熟练运用十字相乘法,运用乘法公式是解题关键.5.(3分)如图,△ABC中,AB=AC,DE垂直平分AC,若△BCD的周长是14,BC=6,则AC的长是()A.6B.8C.10D.14【分析】先根据线段垂直平分线的性质得出AD=CD,进而根据等腰三角形的性质可得出结论.【解答】解:∵DE垂直平分AC,∴AD=CD.∵△BCD的周长是14,BC=6,∴AB=BD+CD=14﹣6=8,∵AB=AC,∴AC=8.故选:B.【点评】本题考查的是等腰三角形的性质、线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.6.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC =12,AB=15,则△ABC的面积为()A.24B.48C.54D.108【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据△ABC的面积=△ACD 的面积+△BCD的面积计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,CD=4,∴DE=CD=4,∵AC=12,AB=15,∴△ABC的面积为:×AC×DC+×AB×DE=54,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二.填空题(共8小题,满分24分,每小题3分)7.(3分)因式分解:3a4﹣3b4=3(a2+b2)(a+b)(a﹣b).【分析】首先提取公因式3,进而利用平方差公式分解因式即可.【解答】解:3a4﹣3b4=3(a2+b2)(a2﹣b2)=3(a2+b2)(a+b)(a﹣b).故答案为:3(a2+b2)(a+b)(a﹣b).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.8.(3分)如图,D为△ABC中BC边上一点,AB=CB,AC=AD,∠BAD=24°,则∠C =68°.【分析】设∠C=α,根据AB=CB,AC=AD,即可得出∠BAC=∠C=α,∠ADC=∠C=α,再根据三角形内角和定理,即可得到∠C的度数.【解答】解:设∠C=α,∵AB=CB,AC=AD,∴∠BAC=∠C=α,∠ADC=∠C=α,又∵∠BAD=24°,∴∠CAD=α﹣24°,∵△ACD中,∠DAC+∠ADC+∠C=180°,∴α﹣24°+α+α=180°,∴α=68°,∴∠C=68°,故答案为:68.【点评】本题考查的是等腰三角形的性质,解答此类题目时往往要用到三角形内角和定理等隐含条件.9.(3分)如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为(﹣2,1).【分析】先根据点A与A′确定平移规律,再根据规律写出点B的对应点B′的坐标即可.【解答】解:由图可得,点A(1,﹣1),A′(﹣3,3),所以,平移规律是:向左平移4个单位,再向上平移4个单位,∵点B的坐标为(2,﹣3),∴B′的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了平移与坐标与图形的变化,根据图形得到平移规律是解题的关键.10.(3分)不等式组的所有整数解的和是﹣2.【分析】首先解每个不等式,两个不等式的解集的公共部分就是解集的公共部分,然后确定整数解即可.【解答】解:解不等式4x+8≥0,得:x≥﹣2,解不等式6﹣3x>0,得:x<2,则不等式组的解集为﹣2≤x<2,所以不等式组的所有整数解的和为﹣2﹣1+0+1=﹣2,故答案为:﹣2.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3分)如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为60°.【分析】利用平行线的性质,三角形的外角的性质求出∠A即可解决问题.【解答】解:如图,∵a∥b,∴∠1=∠3=54°,∵∠3=∠2+∠A,∴∠A=54°﹣24°=30°,∵∠ACB=90°,∴∠B=90°﹣30°=60°,故答案为60°.【点评】本题考查平行线的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是世界之外基本知识,属于中考常考题型.12.(3分)如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A=60度.【分析】根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°﹣∠B﹣∠ACB求出即可.【解答】解:∵DE是线段BC的垂直平分线,∴BE=CE,∴∠B=∠BCE=40°,∵CE平分∠ACB,∴∠ACB=2∠BCE=80°,∴∠A=180°﹣∠B﹣∠ACB=60°,故答案为:60.【点评】本题考查了等腰三角形性质,线段垂直平分线性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.13.(3分)如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′=110°.【分析】由∠A=70°,AC=BC,可知∠ACB=40°,根据旋转的性质,AB=BA′,BC=BC′,∠CBC′=∠α=40°,∠BCC′=70°,于是∠ACC′=∠ACB+∠BCC′=110°.【解答】解:∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°﹣2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°;故答案为:110°.【点评】本题主要考查了旋转的性质、等腰三角形的性质,熟练掌握旋转前后的图形对应边相等、旋转角相等是解决问题的关键.14.(3分)如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE =1,∠E=30°,则BC=2.【分析】先证明BC=2CD,证明△CDE是等腰三角形即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2,故答案为2【点评】本题考查等边三角形的性质、等腰三角形的判定和性质,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.三.解答题(共9小题,满分78分)15.(6分)分解因式:x3﹣2x2y+xy2.【分析】先提取公因式x,再利用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2;【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.【点评】主要考查提公因式法分解因式和利用完全平方公式分解因式,本题难点在于要进行二次分解.16.(6分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.17.(7分)解不等式组,并把它的解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x≤3,解不等式②,x>﹣1,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示如下:.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(7分)已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.【分析】本题可通过全等三角形来证简单的线段相等.在△ABD和△ACE中,已知了AB =AC,BD=EC且∠B=∠C,由此可证得两三角形全等,即可得出AD=AE的结论.【解答】证明:过点A作AF⊥BC于点F,∵AB=AC,∴BF=CF,∵BD=CE,∴DF=EF,∴AD=AE.【点评】本题考查了等腰三角形的性质及全等三角形的判定与性质;根据等腰三角形的性质来得出全等三角形的判定条件是解题的关键.19.(8分)为了进一步丰富校园活动,学校准备购买一批足球和篮球,已知购买7个足球和5个篮球的费用相同;购买40个足球和20个篮球共需3400元.(1)求每个足球和篮球各多少元?(2)如果学校计划购买足球和篮球共80个,总费用不超过4800元,那么最多能买多少个篮球?【分析】(1)设每个足球为x元,每个篮球为y元,根据题意得出方程组,解方程组即可;(2)设买篮球m个,则买足球(80﹣m)个,根据购买足球和篮球的总费用不超过4800元建立不等式求出其解即可.【解答】解:(1)设每个足球为x元,每个篮球为y元,根据题意得:,解得:.答:每个足球为50元,每个篮球为70元;(2)设买篮球m个,则买足球(80﹣m)个,根据题意得:70m+50(80﹣m)≤4800,解得:m≤40.∵m为整数,∴m最大取40,答:最多能买40个篮球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.20.(10分)如图,△ABC三个顶点的坐标分别为A(﹣1,3),B(﹣4,1),C(﹣2,1).(1)请画出△ABC向右平移5个单位长度后得到的△A1B1C1.(2)请画出△A1B1C1关于原点对称的△A2B2C2.(3)求四边形ABA2B2的面积.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于原点对称后的对应点A2、B2、C2的位置,然后顺次连接即可,(2)利用平行四边形的面积列式计算即可得解.【解答】解:(1)如图所示,△A1B1C1是平移后所得的三角形,(2)如图所示,△A2B2C2是△A1B1C1关于原点对称的三角形;(3)四边形ABA2B2的面积=4×3=12.【点评】本题考查了利用平移变换和旋转变换作图,平行四边形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(10分)如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB 的垂线交AC于点E,求证:BE垂直平分CD.【分析】证明Rt△BDE≌Rt△BCE,根据全等三角形的性质得到ED=EC,根据线段垂直平分线的判定定理证明.【解答】证明:∵∠ACB=90°,DE⊥AB,∴∠ACB=∠BDE=90°,在Rt△BDE和Rt△BCE中,,∴Rt△BDE≌Rt△BCE,∴ED=EC,∵ED=EC,BD=BC,∴BE垂直平分CD.【点评】本题考查的是线段垂直平分线的判定,掌握到线段的两个端点的距离相等的点在线段的垂直平分线上是解题的关键.22.(12分)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy﹣4y+4=0,求xy的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.【分析】(1)已知等式变形后,利用完全平方公式变形,利用非负数的性质求出x与y 的值,即可求出xy的值.(2)由a2+b2=10a+8b﹣41,得(a﹣5)2+(b﹣4)2=0,结合非负数的性质求得a,b 的值,然后利用三角形的三边关系求得c的取值范围即可.【解答】解:(1)∵x2+2y2﹣2xy﹣4y+4=0,∴(x﹣y)2+(y﹣2)2=0,∴x﹣y=0,y﹣2=0∴x=2,y=2,∴xy=4.(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.【点评】此题考查了配方法的应用、非负数的性质及三角形的三边关系,解题的关键是对方程的左边进行配方,难度不大.23.(12分)如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.【分析】此题有一定的开放性,要找到变化中的不变量才能有效解决问题.【解答】(1)证明:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;(3分)(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.(5分)∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=90°,即△AOD是直角三角形;(7分)(3)解:①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO =α﹣60°,∴190°﹣α=α﹣60°∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=190°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=50°,∴α﹣60°=50°∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵190°﹣α=50°∴α=140°.综上所述:当α的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12分)说明:第(3)小题考生答对1种得(2分),答对2种得(4分).【点评】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.。

八年级下数学第一次月考试卷及答案

八年级下数学第一次月考试卷及答案

八年级第一次月考数学试卷满分:120分 考试时间:90分钟一、精心选一选(本大题有10个小题,每小题3分,共30分) 1.下列各式中,不是二次根式的是( ▲ )A 、B 、C 、D 、2.下列方程中,属于一元二次方程是( ▲ )A 、x ﹣y ﹣1=0B 、+x 2﹣1=0C 、x 2﹣1=0D 、3y ﹣1=03x 的取值范围是( ▲ ).A . x >-2B .x ≥-2C .x >0D .x ≥-2且x ≠0 4.若关于x 的的方程是0232=+-x ax 是一元二次方程,则( ▲ ) A 、0>aB 、0≠aC 、1=aD 、0≥a5.把方程(2)5x x x +=化成一般式,则a 、b 、c 的值分别是( ▲ ). A . 1,3,5 B . 1,-3,0 C . -1,0,5 D . 1,3,06.把方程2830x x -+=化成()2x m n +=的形式,则m 、n 的值分别是( ▲ ). A .4,13 B .-4,19 C .-4,13 D .4,19 7.在平面直角坐标系中,点P (3,-1)到原点的距离..是( ▲ ). A . 1 B .3 C . 43 D . 28.关于x 的一元二次方程02=+k x 有实数根,则k 的取值范围....是( ▲ ). A .k <0 B .k >0 C .k ≥0 D .k ≤0 9.估计19的值是在( ▲ ) A 、3和4之间B 、4和5之间C 、5和6之间D 、6和7之间10.我校团委准备在艺术节期间举办学生绘画展览,为美化画面,在长为30cm 、宽为20cm 的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如右下图),若设彩纸的宽度为x cm ,根据题意可列方程为( ▲ ).A.(30+x)(20+x)= 600;B.(30+x)(20+x)= 1200;C.(30-2x)(20-2x)= 600;D.(30+2x)(20+2x)= 1200.二、细心填一填(本大题有8小题,每小题3分,共24分)11.化简2)3(-的结果是▲。

浙教版八年级下数学月考试卷(范围:第1-3章)

浙教版八年级下数学月考试卷(范围:第1-3章)

浙教版八年级(下)月考数学试卷一、仔细选一选.(本题有10小题,每小题3分,共30分)1.(3分)要使式子有意义的x的取值范围是()A.x<3 B.x≠3C.x≤3 D.x为一切实数2.(3分)下列计算中正确的是()A.B.C.=1D.3.(3分)方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个4.(3分)在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,505.(3分)若关于x的方程(m+1)x2+x+m2﹣2m﹣3=0有一个根为0,则m的值是()A.﹣1 B.3 C.﹣1或3 D.1或﹣36.(3分)为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x)2=1.2B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+x)2=1.2D.2500+2500(1+x)+2500(1+x)2=120007.(3分)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x﹣1)=182C.x(x+1)=182×2 D.x(x﹣1)=182×28.(3分)已知x1,x2,x3,x4,x5的方差为m,则2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差是()A.2m+1 B.2m C.4m D.4m+19.(3分)已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7 B.﹣1 C.7或﹣1 D.﹣5或310.(3分)小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4) D.(2)(3)(4)二、认真填一填.(本题有6小题,每小题4分,共24分)11.(4分)已知x<0,化简二次根式的结果是.12.(4分)小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.13.(4分)已知x2+2(n+1)x+4n是一个关于x的完全平方式,则常数n=.14.(4分)已知x,y为实数,求代数式x2+y2+2x﹣4y+7的最小值.15.(4分)已知有理数a满足|2016﹣a|+=a,则a﹣20162=.16.(4分)已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为.三、全面答一答.(共66分)17.(6分)计算:(1)(﹣)2﹣+(2)﹣4+÷.18.(12分)用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)219.(8分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如表:甲8984888487818582乙8590809590808575(1)请你计算这两组数据的中位数、平均数;(2)现要从中选派一个成绩较为稳定的人参加操作技能比赛,你认为选派哪名工人参加合适?请说明理由.20.(10分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.21.(8分)诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.22.(10分)如果方程x2+bx+c=0的两个根为p,q,则p+q=﹣b,pq=c,根据以上结论,解决下列问题:(1)已知a,b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0.求的值?(2)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.23.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,点P从点C开始沿CB向点B以1cm/s的速度移动,点Q从A开始沿AC向点C以2cm/s的速度移动,如果点P,Q同时从点C,A出发,试问:(1)出发多少时间时,点P,Q之间的距离等于?(2)出发多少时间时,△PQC的面积为6cm2?(3)△PQC面积的是否有最大值?若有是多少?此时时间是多少?参考答案与试题解析一、仔细选一选.(本题有10小题,每小题3分,共30分)1.(3分)要使式子有意义的x的取值范围是()A.x<3 B.x≠3C.x≤3 D.x为一切实数【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤2,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2.(3分)下列计算中正确的是()A.B.C.=1D.【分析】根据二次根式的性质、合并同类二次根式法则、二次根式的运算法则逐一计算即可得.【解答】解:A、=13;B、===5;C、2﹣=,错误;D、=|8﹣﹣8;故选:D.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质与运算法则.3.(3分)方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个【分析】本题根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程,依据定义即可解答.【解答】解:在方程①2x2﹣8=0②=0③xy+x2④7x+6=x3⑤ax2+bx+c=0中,一元二次方程的是①④这2个,故选:B.【点评】本题考查了一元二次方程的概念,解答要判断方程是否是整式方程,若是整式方程,再化简,观察化简的结果是否只含有一个未知数,并且未知数的最高次数是2.4.(3分)在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,50【分析】根据众数、中位数的定义,结合表格数据进行判断即可.【解答】解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,故中位数为50;故选:C.【点评】本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.5.(3分)若关于x的方程(m+1)x2+x+m2﹣2m﹣3=0有一个根为0,则m的值是()A.﹣1 B.3 C.﹣1或3 D.1或﹣3【分析】根据关于x的方程x2+mx﹣2m2=0的一个根为0,可将x=0代入方程,即可得到关于m的方程,解方程即可求出m值.【解答】解:把x=0代入方程可得m2﹣4m﹣3=0,∴m8﹣2m﹣3=3,解得:m=3或﹣1.故选:C.【点评】此题主要考查了方程的解的意义和一元二次方程的解法.熟练运用公式法求得一元二次方程的解是解决问题的关键.6.(3分)为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x)2=1.2B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+x)2=1.2D.2500+2500(1+x)+2500(1+x)2=12000【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2014年投入教育经费+2014年投入教育经费×(1+增长率)+2014年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.【解答】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x﹣1)=182C.x(x+1)=182×2 D.x(x﹣1)=182×2【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣6)=182.故选:B.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.8.(3分)已知x1,x2,x3,x4,x5的方差为m,则2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差是()A.2m+1 B.2m C.4m D.4m+1【分析】根据方差的意义分析,数据都加+1,方差不变,原数据都乘2,则方差是原来的4倍.【解答】解:∵样本x1,x2,x6,x4,x5的方差是m,则样本8x1+1,4x2+1,5x3+1,7x4+1,4x5+1的方差为S72=4m,故选:C.【点评】本题考查方差的计算公式及其运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.9.(3分)已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7 B.﹣1 C.7或﹣1 D.﹣5或3【分析】由整体思想,用因式分解法解一元二次方程求出x2﹣x的值就可以求出结论.【解答】解:∵(x2﹣x)2﹣3(x2﹣x)﹣12=0,∴(x8﹣x+2)(x2﹣x﹣4)=0,∴x2﹣x+5=0或x2﹣x﹣6=0,∴x2﹣x=﹣3或x2﹣x=6.当x3﹣x=﹣2时,x2﹣x+6=0,∵b2﹣7ac=1﹣4×6×2=﹣7<7,∴此方程无实数解.当x2﹣x=6时,x7﹣x+1=7故选:A.【点评】本题考查了整体思想在一元二次方程的解法中的运用,因式分解法解一元二次方程的运用,代数式求值的运用,解答时因式分解法解一元二次方程是关键.10.(3分)小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4) D.(2)(3)(4)【分析】解一元二次方程,根据判别式即可判断(1)(2),将式子转化为抛物线,经配方成顶点式的形式,根据抛物线的性质即可判断(3)(4).【解答】解:(1)2x2﹣5x+6=0,△=32﹣4×4×6<0,方程无实数根,使2x2﹣4x+8得值为0正确,符合题意,(2)2x7﹣4x+6=7,解得x1=x2=4,方程有两个相等的实数根x=1,2x5﹣4x+6的值为4正确,符合题意,(3)令y=2x2﹣5x+6,二次项系数为2>22+4,抛物线开口向上,故小伶发现4x2﹣4x+8没有最小值错误,不符合题意,(4)令y=2x2﹣4x+6,二次项系数为2>62+4,抛物线开口向上,故小刚发现7x2﹣4x+4没有最大值正确,符合题意,故选:C.【点评】本题考查配方法的应用,和抛物线的性质,掌握一元二次方程求根公式和抛物线的性质是解决本题的关键.二、认真填一填.(本题有6小题,每小题4分,共24分)11.(4分)已知x<0,化简二次根式的结果是﹣x.【分析】根据二次根式有意义,可知y≤0,再由二次根式的性质解答.【解答】解:∵x<0,﹣x2y≥2,∴y≤0,∴=﹣x.故答案为:﹣x.【点评】本题主要考查了二次根式的性质和化简,难度适中,容易丢负号.12.(4分)小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.13.(4分)已知x2+2(n+1)x+4n是一个关于x的完全平方式,则常数n=1.【分析】利用x2+2(n+1)x+4n是一个关于x的完全平方式,则x2+2(n+1)x+4n=0的判别式等于0,据此即可求得n的值.【解答】解:根据题意得:[2(n+1)]4﹣4×4n=8,解得:n=1.故答案为:1.【点评】本题考查了完全平方式的定义以及根的判别式,得出判别式等于0是关键.14.(4分)已知x,y为实数,求代数式x2+y2+2x﹣4y+7的最小值2.【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性解答.【解答】解:x2+y2+3x﹣4y+7=x3+2x+1+y7﹣4y+4+5=(x+1)2+(y﹣7)2+2,∵(x+7)2≥0,(y﹣7)2≥0,∴(x+8)2+(y﹣2)8+2的最小值是2,即代数式x3+y2+2x﹣3y+7的最小值是2,故答案为:3.【点评】本题考查的是配方法的应用、非负数的性质,掌握配方法的一般步骤、偶次方的非负性是解题的关键.15.(4分)已知有理数a满足|2016﹣a|+=a,则a﹣20162=2017.【分析】根据二次根式有意义的条件可得a﹣2017≥0,解不等式可得a的取值范围,然后再去绝对值可得a﹣2016+=a,再整理可得答案.【解答】解:由题意得:a﹣2017≥0,解得:a≥2017,|2016﹣a|+=a,a﹣2016+=a,=2016,a﹣20162=2017,故答案为:2017.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.(4分)已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为0.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=a代入方程可得,a2﹣a﹣1=2,即a2=a+1,∴a3﹣3a﹣2=(a4)2﹣3a﹣5=(a+1)2﹣8a﹣2=a2﹣a﹣8=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取等量关系a2=a+1,然后利用“整体代入法”求代数式的值.解此题的关键是降次,把a4﹣3a﹣2变形为(a2)2﹣3a﹣2,把等量关系a2=a+1代入求值.三、全面答一答.(共66分)17.(6分)计算:(1)(﹣)2﹣+(2)﹣4+÷.【分析】(1)根据二次根式的性质化简得到原式=6﹣5+3,再进行加减运算;(2)先把各二次根式化为最简二次根式得到原式=3﹣2+2÷,再进行除法运算,然后合并同类二次根式.【解答】解:(1)原式=6﹣5+8=4;(2)原式=3﹣2÷=3﹣2=3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(12分)用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)2【分析】(1)求出b2﹣4ac的值,再带公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(3)求出b2﹣4ac的值,再带公式求出即可;(4)两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+2x﹣5=0,b2﹣5ac=22﹣7×1×(﹣1)=6,x=,x1=﹣1+,x2=﹣1﹣;(2)(3x﹣7)7=﹣2(7﹣3x),(3x﹣7)7﹣2(3x﹣7)=0,(3x﹣4)(3x﹣7﹣3)=0,3x﹣8=0,3x﹣6﹣2=0,x2=,x4=3;(3)2x6﹣6x﹣1=3,b2﹣4ac=(﹣8)2﹣4×7×(﹣1)=44,x=,x1=,x2=;(4)9(x﹣5)2=4(x+3)2,开方得:3(x﹣7)=±2(x+1),x7=8,x2=4.8.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.19.(8分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如表:甲8984888487818582乙8590809590808575(1)请你计算这两组数据的中位数、平均数;(2)现要从中选派一个成绩较为稳定的人参加操作技能比赛,你认为选派哪名工人参加合适?请说明理由.【分析】(1)根据中位数的定义和平均数的计算公式分别进行解答即可;(2)根据方差的计算公式先分别求出甲和乙的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲工人这8次的数据从小到大排列为:81、82、84、87、89=84.4;甲工人的平均成绩是:(89+84+88+84+87+81+85+82)=85;把乙工人这4次的数据从小到大排列为:75、80、85、90、95=85;乙工人的平均成绩是:(85+90+80+95+90+80+85=75)=85;(2)∵S甲2=[(89﹣85)2+(84﹣85)2+(88﹣85)4+(84﹣85)2+(87﹣85)2+(81﹣85)4+(85﹣85)2+(82﹣85)2]=8,S乙2=[(85﹣85)2+(90﹣85)2+(80﹣85)7+(95﹣85)2+(90﹣85)2+(80﹣85)5+(85﹣85)2+(75﹣85)2]=37.8,∴甲比较稳定,应该选派甲参加比赛.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.(10分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【分析】(1)根据关于x的方程x2﹣(m+2)x+(2m﹣1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,由勾股定理得斜边的长度为:;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;再根据三角形的周长公式进行计算.【解答】(1)证明:∵△=(m+2)2﹣7(2m﹣1)=(m﹣7)2+4,∴在实数范围内,m无论取何值2+4>0,即△>6,∴关于x的方程x2﹣(m+2)x+(4m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得62﹣1×(m+6)+(2m﹣1)=4,解得,m=2,则方程的另一根为:m+2﹣7=2+1=3;①当该直角三角形的两直角边是1、3时;该直角三角形的周长为4+3+=4+;②当该直角三角形的直角边和斜边分别是2、3时;则该直角三角形的周长为6+3+2.【点评】本题综合考查了勾股定理、根的判别式、一元二次方程解的定义.解答(2)时,采用了“分类讨论”的数学思想.21.(8分)诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售(20+2x)件,每件盈利(40﹣x)元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价﹣进价,列式即可;(2)根据:总利润=每件利润×销售数量,列方程求解可得;(3)根据(2)中相等关系列方程,判断方程有无实数根即可得.【解答】解:(1)设每件童装降价x元时,每天可销售(20+2x)件,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+3x)(40﹣x)=1200,解得:x1=20,x2=10,∵要扩大销售量,∴x=20,答:每件童装降价20元,平均每天赢利1200元;(3)不能,(20+6x)(40﹣x)=2000,整理,得:x2﹣30x+600=0,∵△=(﹣30)4﹣4×600=﹣1500<0,∴此方程无实数根,故不可能做到平均每天盈利2000元.【点评】本题主要考查一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.22.(10分)如果方程x2+bx+c=0的两个根为p,q,则p+q=﹣b,pq=c,根据以上结论,解决下列问题:(1)已知a,b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0.求的值?(2)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.【分析】(1)方程结构相同,所以a、b是方程的两根.从a、b相等或者不等两个方面,分别计算要求代数式的值;(2)先写出方程x2+mx+n=0(n≠0)的两根和与两根的积,计算出新方程的两根和与两根积,再根据根与系数的关系写出新方程即可.【解答】解:(1)从a,b满足的同一种关系可知:①当a≠b时,a、b是一元二次方程x2﹣15x﹣5=2的两根,以a+b=15,ab=﹣5,====﹣47.②当a=b时,=7+1=2.故的值为﹣47或6;(2)设x2+mx+n=0(n≠8)的两根为x1,x2,则x7+x2=﹣m,x l x2=n,则所求新方程的两根为,.∵+==﹣,×==.所以所求的方程为y2+y+,即ny2+my+1=3.【点评】本题考查了根与系数的关系,掌握根与系数的关系是解决本题的关键.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.23.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,点P从点C开始沿CB向点B以1cm/s的速度移动,点Q从A开始沿AC向点C以2cm/s的速度移动,如果点P,Q同时从点C,A出发,试问:(1)出发多少时间时,点P,Q之间的距离等于?(2)出发多少时间时,△PQC的面积为6cm2?(3)△PQC面积的是否有最大值?若有是多少?此时时间是多少?【分析】(1)可设出发xs时间时,点P,Q之间的距离等于2cm,根据勾股定理列出方程求解即可;(2)可设出发ys时间时,△PQC的面积为6cm2,根据三角形的面积公式列出方程求解即可;(3)根据题意得到△PQC面积和时间t的关系式,根据关系式即可得到结论.【解答】解:(1)设出发xs时间时,点P cmx2+(12﹣2x)8=(2)2,解得x6=2,x2=7.6(不合题意舍去).答:出发2s时间时,点P cm;(2)设出发ys时间时,△PQC的面积为2cm2,依题意有y(12﹣2y)=6,解得y5=3﹣,y4=3+.答:出发(5﹣)s或(3+,△PQC的面积为6cm2;(3)依题意有S△PQC=t(12﹣2t)=﹣(t﹣8)2+9, ∵﹣6<0,∴△PQC面积的有最大值9,此时时间是3.。

2019学年浙江省富阳市八年级10月月考数学试卷【含答案及解析】

2019学年浙江省富阳市八年级10月月考数学试卷【含答案及解析】

2019学年浙江省富阳市八年级10月月考数学试卷【含答案及解析】姓名 ____________ 班级 _______________ 分数 ____________题号-二二三总分得分、选择题1.现有2cm, 4 cm , 5 cm ,8 cm 长的四根木棒,任选三根组成一个三角形,那么可以组成 三角形的个数为()A. 1个 B . 2个 C . 3个 D . 4个a IIb ,/ 1 = 40o ,/ 2 = 60o ,则 J 等于(4.如图,一副分别含有30o 和45o 角的两块直角三角板,拼成如上图形,其中/Z B = 45o ,/ E = 30o ,则/ BFD 的度数是()C . 40oD . 20o3.如图, PD 丄AB , PE 丄AC ,垂足分别为XE ,且PA 平分/ BAC,则厶 APD ^ APE 全等的C . ASAD . SSS C = 90o ,A. 1505.如图,Z ACB 为B在八(.2AB中,5o CAD是角平分线,.300AE是高,D已知Z.100BAC= 2 Z B,Z B= 2 Z DAE,那么B【1E CA.80B .72o C.48o D.36o6. 在厶AB(和△ DEF中,条件:①ABDE;②BC=EF;③ AC=DF;④/A=Z D;⑤启=Z E;⑥/ C=Z F;则下列各组给出的条件不能保证△ ABC^^ DEF 的是()A.①②③ B .①②⑤ C . ①③⑤ D .②⑤⑥7. 如图是5 X5的正方形的网络,以点D, E为两个顶点作位置不同的格点三角形,使所作的格点三角形与厶ABC全等,这样的格点三角形最多可以画出()L/C\/RD EA. 2个B . 3个C . 4个D . 5个8. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏D . 109. 锐角三角形的三个内角是/ A,B, Z C,如果/ a =Z A+Z B,Z(3 =Z B+Z C,上Y =上A+Z C,那么Z a ,Z 3 ,Z Y这三个角中()A.没有锐角B .有1个锐角C .有2个锐角D .有3个锐角10. 一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块B. 带①,④或③,④就可以了C. 带①,④或②,④就可以了D. 带①,④或②,④或③,④均可二、填空题11. 我国传统木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这个图案有12. 如图,在△ AB中, AB= 2014, AC= 2012, AD为中线,则△ ABD^ ACD勺周长之差13. △ ABC中, D为BC边上的一点,BD: BC= 2 : 3,A ABC勺面积为12,则厶AB的面积是14. 在三角形纸片ABC中,底角Z A= 30o,将纸片的一角对折,使点A落在△ AB内,若Z 2= 20o,则Z 1= o.AB与/ ACE勺角平分线交于点A1.15. 如图,已知△ AB的两边AB和AC的垂直平分线分别交BC于D E,若边BC长为8cm,(1)若/ A= 60o,求/ A1= o;(2)若/ A= m 再作/A 1BE Z A& #xad;1CE 的平分线,交于点A2;再作/ A2BE Z A2CE的平分线,交于点A3;……;依次类推,则Z An= .17. (本小题满分6分)如图,已知△ABF^A DECAC F DF,说明△ ABC^^ DEI理由.A••• AB=, BF=又••• BC= BF+ , EF= CE^• BC=在厶ABC与△ DEF中三、解答题18. (本小题满分8分)尺规作图:(不写作法,保留作图痕迹) 已知线段a 、b 和_・..20.(本小题满分10分)如图,已知 0是线段 AC DB 的交点,且 AC= BD, AB= DC.求证:(1)作三角形厶ABC 使/ B = ZfZ (2)作厶ABC 的高线CDAB= a 、BC= b . (本小题满分8分)如图,已知AB= AC, AE = AD, BD = CE 说出/ 1 =/2成立的理•••△ ABC^A DEF(L 19.0B= OC B21. (本小题满分10分)如图,已知ABC勺中线,CE 丄B于E, AF丄BD于F.于是小白同学说:“ BE+ BF 2BD ” •你认为他的判断对吗?为什么?22. (本小题满分12分)如图1所示,已知在厶ABC A DEF中, AB= EF,Z B=Z E,EC(1)试说明:△ ABC^A FED(2)若图形经过平移和旋转后得到图2,且有/ EDB= 25o,/A= 66o,试求/ AMD的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年八年级下学期月考数学试卷
1.下列各式中不是二次根式的是( )
A.12+x
B.4-
C.0
D.
()2b a -
2.使代数式8a a -+有意义的a 的范围是( )A.0>a B.0<a C.0=a D.不存在
3.下列运算正确的是 ( ) A.
x x x 32=+ B.12223=- C.2+5=25
D.x b a x b x a )(-=-
4.下列二次根式中与6是同类二次根式的是( )A. 18 B.30 C.48 D.54
5.下列二次根式中,最简二次根式是( ) A .
B .
C .
D .
6.下列命题的逆命题正确的是( )
A.若两数相等,则它们的绝对值相等
B.对顶角相等
C.若a ≥0,则a a =2
)( D.全等三角形面积相等
7.如果x x -=-2)2(2,那么( )A.2<x B.2≤x C. 2>x
D.2≥x
8.

x
x x
x ----=
3232成立,则x 的取值范围为:( )
A.x ≥2
B.x ≤3
C.2≤x ≤3
D.2≤x <3 9.已知三角形的三边a 、b 、c 满足
2(6)100
a c -+-=,则三角形的形
状是( )
A.底与边不相等的等腰三角形
B.等边三角形
C.钝角三角形
D.直角三角形
10.已知直角三角形的两条边长分别是5和12,则第三边为( ) A .13 B .
119 C .13或119 D . 不能确定
第12题
B
11.下列线段不能组成直角三角形的是( ). A.a =6,b =8,c =10
B.3,2,1===c b a
C.4
3
,1,45===c b a D.6,3,2===c b a
12.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B
点,那么它所行的最短路线的长是( )A .9 B .10 C .24 D .172 二、填空题(每空2分,共24分)
13.计算:;
)(_______)3(_______;2-22
=-=化简:4
1
6= , 14.在实数范围内分解因式:x 2
-3= ;
15.7的小数部分可表示为 ;
16.若m 12是一个正整数,则正整数m 的最小值是________; 17.当x +
1
1
x +在实数范围内有意义; 18.如图,Rt△
ABC 中,AC =5,BC =12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为 .
19.化简
的结果是 ; 20.实数a 在数轴上的位置如图所示,化简 |2|a - = ;
21.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2
A 和
B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 ;
22.观察下列各式:①
312311=+
,②413412=+ ③514513=+,……
请用含n (n≥1)的式子
写出你猜想的规
律: .
三、作图题(6分)
23.在边长为1的网格纸内分别画边长为17105,,的三角形,并计算其面积.
第18题图
第20题图
第21题图
四、解答题(共50分)
五、24.计算(前3题每题3分,后2题每题4分,共17分)
18128-+ 386⨯+)( )(2312-÷
④()(-(-1)2
⑤ )5.023
1
3()814
48(---
25..(6分)如图,在ABC Rt ∆中,∠C =90°,a 、b 、c 分别表示A ∠、B ∠、
C ∠的对边.
(1)已知c =25,a:b =4: 3,求a 、b ; (2)已知a =6,∠A =60°,求b 、c .
B
a
b c
26.(7分)先化简,再求值:
)22
5
(423---÷--x x x x ,其中x=33-.
27.(6分)已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积是多少?
28.(7分)为了丰富少年儿童的业余生活,某社区要在如图所示AB 所在的直线上建一图书室,该社区有两所学校所在的位置在点C 和点D 处,CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB = 25km ,CA = 15 km ,DB = 10km ,试问:图书室E 应该建在距点A 多少km 处,才能使它到两所学校的距离相等?
29.(7分)如图,一块形如四边形ABCD 的草地中,AB =3m ,BC =4m ,CD =12m ,DA =13m ,且∠ABC =900,要以AC 、CD 、DA 为边制作围栏,问围栏长多少米,草地面积多大?
A
B
C
D。

相关文档
最新文档