集成运算放大器(3)
集成运算放大器相关知识
集成运算放大器相关知识集成运算放大器(Operational Amplifier,简称Op Amp)是一种电子设备,可以放大输入信号并输出放大后的信号。
它在电子电路中广泛应用,是现代电子技术的重要组成部分。
本文将介绍集成运算放大器的基本原理、特性和应用。
一、基本原理集成运算放大器是由多个晶体管和其他电子元件组成的集成电路芯片。
它的核心部分是差分放大器,由输入级、中间级和输出级组成。
差分放大器能够将输入信号放大并进行相位反转,使得放大后的信号与输入信号之间具有特定的幅度和相位关系。
集成运算放大器具有两个输入端和一个输出端。
其中,一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。
通过调节输入端的电压,可以控制输出端的电压。
当输入端的电压差为零时,输出端的电压为零;当输入端的电压差增大时,输出端的电压也相应增大。
二、特性1. 增益:集成运算放大器具有很高的增益。
通常情况下,它的增益可达几万甚至几十万倍。
这使得它能够将微弱的输入信号放大到足够大的幅度,以便进行后续处理或驱动其他设备。
2. 输入阻抗:集成运算放大器的输入阻抗很大,通常为几兆欧姆。
这意味着它可以接受来自外部电路的信号而对其产生很小的影响,从而保持信号的稳定性。
3. 输出阻抗:集成运算放大器的输出阻抗很小,通常为几十欧姆。
这意味着它能够提供足够大的输出电流,以驱动其他负载电路。
4. 带宽:集成运算放大器的带宽是指它能够放大的频率范围。
一般来说,带宽越大,放大器能够处理的高频信号越多。
常见的集成运算放大器的带宽在几百千赫至几百兆赫之间。
5. 偏置电压:集成运算放大器的输入端存在一个偏置电压。
当输入信号为零时,输出信号也不为零,而是存在一个偏置电压。
这是由于集成运算放大器内部元件的不匹配造成的。
三、应用1. 模拟电路:集成运算放大器常用于模拟电路中,如滤波器、放大器、振荡器等。
它可以对信号进行放大、滤波、调制等处理,使得信号能够适应不同的应用场景。
集成运算放大器
集成运算放大器什么是集成运算放大器?集成运算放大器(简称为“运放”)是一种高增益、高输入阻抗、低输出阻抗的电路器件。
它可以对输入信号进行放大、求和、减法、积分、微分和滤波等操作,因此在模拟电路中具有广泛的应用。
常用的集成运算放大器类型常用的集成运算放大器类型有若干种,下面介绍常用的几种类型。
1. 双运放双运放是在同一芯片上集成了两个独立的运放,它们共享电源和地线,但具有独立的输入和输出引脚。
而且,双运放的价格比两个单独的运放的价格要便宜,在一些应用中能够节省成本。
2. 四运放四运放是在同一芯片上集成了四个独立的运放,它们共享电源和地线,但具有独立的输入和输出引脚。
四运放可以实现多路信号处理、滤波、放大等功能,并具有更高的集成度和更小的尺寸。
3. 差分运放差分运放是一种仅有一对输入的运放,它的输出与两个输入端的差值成正比。
差分运放常用于模拟信号的放大、滤波、比较等应用场景。
4. 噪声取消运放噪声取消运放是一种特殊的差分运放,它可以通过特殊的布局和电路设计抵消输入信号中的共模噪声和交流噪声。
集成运算放大器的应用由于集成运算放大器在模拟电路中具有广泛的应用,因此在许多电子设备中都可以看到它们的身影。
下面列举几个常见的应用实例。
1. 电压跟随器电压跟随器是一种特殊的集成运放放大器,它的输出电压与输入电压完全相同。
它广泛用于多级放大器电路中,能够提高电路的输入阻抗,稳定电路的工作状态,并使信号传输更加精确和可靠。
2. 滤波电路集成运算放大器在滤波电路中起到关键作用。
利用其高增益、高输入阻抗以及差分运放的特性,可以设计出各种复杂的滤波电路,如低通滤波器、带通滤波器、带阻滤波器、高通滤波器等。
3. 比较器比较器是一种将输入信号与参考电压进行比较后输出正弦波的器件。
利用集成运算放大器的高增益和差分运放的特性,可以设计出高精度、高稳定性、高速度的比较器电路,常用于电压比较、波形识别、开关控制等领域。
4. 稳压电源集成运算放大器可以应用于稳压电源的反馈回路中,通过对反馈信号进行处理,使输出电压稳定,而不受输入电压和负载变化的影响。
集成运算放大器
A/D转换方法
– 计数法 速度慢 – 双积分式A/D转换器 精度高、干扰小 速度慢 – 逐次逼近式A/D转换器 原理同计数式相似,只是从最高位开始,通过试探值来计数。
例1:ADC0804 (8位,100us,转换精度 ±1LSB,内带可控三态门)。
例2:ADC570 (输入电压:0~10V 或 -5V~+5V)
例3. 8位以上A/D转换器和系统连接。 ADC1210:12位,100us,启动端SC,结束转换CC。
例4. ADC0809: 逐次逼近式8通道8位ADC。
同时有模拟电路和数字电路的系统中地 线的连接
模拟电路 ADC DAC 数字电路
模拟电路 AGND
数字电路 DGND
模拟地
公共接地点
if RF
R1 R2
R3 RP
- +
u0
ui 1 ui 2 ui 3 uo R1 R2 R3 Rf 可得: uo R f ( ui 1 ui 2 ui 3 ) R1 R2 R3 若R1=R2=R3=R,则 u R f ( u u u ) o i1 i2 i3 R
集成运算放大器
1.集成运算放大器概述
集成运算放大器是一种高电压增益、高输入电阻和低输出 电阻的多级直接耦合放大电路,一般由四部分组成:
输入级:一般是差动放大 器,利用其对称特性可以 提高整个电路的共模抑制 比和电路性能,输入级有 反相输入端“-”、同相 输入端“+”两个输入端; 中间级:的主要作用是
3、差动比例运算电路
R1=R2,R’=RF Uo=-RF/R1(Ui1-Ui2)
差动比例运算电路 又称减法运算电路
集成运算放大器的组成以及各组成部分的特点
集成运算放大器的组成以及各组成部分的特点集成运算放大器(Integrated Operational Amplifier,简称Op Amp)是一种常用的集成电路芯片,是现代电子电路中不可或缺的基础组件之一、它主要由差分放大器、电压放大器、恒流源、输出级等几个主要组成部分构成,并具有高放大倍数、高输入阻抗、低输出阻抗、宽频带等特点。
在电子电路设计和实际应用中,集成运算放大器应用广泛,被广泛应用于放大、滤波、积分、微分、比较和运算等许多各种电路。
一、差分放大器:差分放大器是集成运算放大器的核心部分,它由两个共射放大器组成的,具有以输入信号差模态进行放大的功能。
差分放大器的特点主要有以下几点:1.高增益:差分放大器的增益是非常高的,通常可以达到几万倍以上,可以在输入信号很弱的情况下放大到足够的幅度。
2.共模抑制比较高:差分放大器可以抑制输入信号的共模干扰,使得只有差模信号被放大,提高了系统的稳定性和抗干扰能力。
3.输入阻抗较高:差分放大器的输入阻抗一般在几十到几百兆欧之间,可以将输入信号的阻抗影响降到最低,不会对源产生较大的负载。
4.低失调电压:差分放大器的失调电压很小,通常只有几微伏,可以保证输出信号的准确性和稳定性。
二、电压放大器:电压放大器是集成运算放大器的主要功能之一,它可以将小信号放大到较大的幅度。
电压放大器具有以下几个特点:1.高增益:电压放大器的增益通常在几千倍到几万倍之间,可以放大输入信号的幅度,以适应后续电路的要求。
2.输入阻抗高:电压放大器的输入阻抗较高,通常在几百兆欧或以上,可以减少对源电路的负载,避免信号失真。
3.输出阻抗低:电压放大器的输出阻抗很低,通常在几十欧姆以内,可以提供较大的输出电流,提高系统的稳定性和抗干扰能力。
4.宽频带:电压放大器的带宽很宽,可以在较高的频率范围内放大信号,使得系统的传输速度更快。
三、恒流源:恒流源是集成运算放大器的重要组成部分,它主要用于提供恒定的电流源,供电放大器工作。
电子技术基础第五章集成运算放大器
2.差模交流信号分析 :
2.差模交流信号分析 : 画出对差模交流信号的交流通路
理想的直流电压源短路 关键是此处对Ree的处理。 在以前画交流通路时,线性电阻在交流通路中保留,阻值 为线性电阻的交流电阻,因为是线性的,所以交流电阻与 直流电阻相等。
A u c(单 u u o ic ) c 1 1 (b R rb )e 2 R c ()1 e R e2 -R R e ce
4 对任意信号的分析方法
ui1=uic+uid/2 ui2=uic-uid/2 uic = (ui1+ui2)/2 uid=ui1-ui2 uid1= -uid2= uid /2
差模信号和共模信号
• 差模信号:有用的信号,包含着信息,要进行 放大的。
• 共模信号:人为引入的一个信号,不是要放大 的,而是用来描述零漂的大小。直接描述、测 量零漂很麻烦,要先后测量两种不同的环境温 度下的静态工作点,求取它们的差值。从另外 一个角度:在同样的环境温度下,在输入端施 加共模信号,测量输出端的信号,求取共模放 大倍数。
2.1差模输入双端输出
某瞬间的真实方向
uid = uid1-uid2 uid1= -uid2
Ree上交流压降为0。 因此,画差模交流信号交流通路时,Ree可视为短路,
即两管的发射极直接接地。
由uc1= -uc2可知RL两端电位一端为正,一端为负,RL的中点应 是地电位,即每管对地的负载电阻为RL/2.
(5)不能制造电感,如需电感,也只能外接。
(6)一般无二极管,用三极管代替(B、C 极接在一起)。
集成运放的组成:输入级
集成运算放大电路
功耗
描述放大电路在工作过程 中消耗的能量,包括静态
电流、动态功耗等。
参数与性能指标的测试方法
01
02
03
输入阻抗测试
通过测量输入电压和电流 的比值来计算输入阻抗。
输出阻抗测试
通过测量输出电压和电流 的比值来计算输出阻抗。
开环增益测试
通过测量放大电路在不同 频率下的电压增益来计算 开环增益。
参数与性能指标的测试方法
描述放大电路对电源的需求和 功耗特性,包括电源电压、静 态电流等。
主要性能指标
线性度
描述放大电路输出信号与输 入信号之间的线性关系,包 括失真度、线性范围等。
精度
描述放大电路输出信号的 精度和稳定性,包括失调
电压、失调电流等。
带宽
描述放大电路在不同频率下 的响应速度和带宽范围,包 括通频带、增益带宽积等。
集成运算放大电路
目录
• 集成运算放大电路概述 • 集成运算放大电路的应用 • 集成运算放大电路的参数与性能指标 • 集成运算放大电路的设计与实现 • 集成运算放大电路的发展趋势与展望
集成运算放大电路概
01
述
定义与特点
定义
集成运算放大电路是一种将差分 输入的电压信号转换成单端输出 的电压信号,并实现电压放大的 集成电路。
特点
具有高放大倍数、高输入电阻、 低输出电阻、低失真度、低噪声 等优点,广泛应用于信号放大、 运算、滤波等领域。
工作原理
差分输入
集成运算放大器采用差分输入方式, 将两个输入端之间的电压差作为输入 信号。
放大与输出
反馈机制
集成运算放大器采用负反馈机制,通 过反馈网络将输出信号的一部分反馈 到输入端,以改善电路的性能。
实验3集成运算放大器的应用
四、实验原理集成运算放大器是一个集成化的高放大倍数的直接耦合放大电路。
接入深度负反馈后可构成各种信号运算电路,如比例、加法、减法、积分、微分等运算电路。
信号运算电路是集成运算放大器典型的线性应用电路。
1.反相比例运算电路,如图5.1所示。
i fo u RR u -= 2.同相比例运算电路,如图5.2所示。
i fo u RR u )1(+=3.反相加法运算电路,如图5.3所示。
)(2211fi f i o u R R u R R u +-= 4.差动运算电路,如图5.4所示。
)()1(1212i i fi f i f f f o u u RR u R R u R R R R R u -=-++= 5.积分运算电路,如图5.5所示。
dt u RC u i o ⎰-=1。
图5.2 同相比例运算电路 图5.3 反相加法运算电路 10k Ω10k Ω100k Ω10k Ω图5.4 差动运算电路10k Ω10k Ω100k Ω100k Ω当积分电路输入矩形波时,在矩形波的高电平期间,电容器恒流充电,输出电压线性下降,在矩形波的低电平期间,电容器先放后充,电流恒定,输出电压线性上升,又因为电容上电压不能突变,所以积分电路可以方便地完成矩形波与三角波的转换。
当输入电压是正弦波时,则输出波形与输入波形有90o 的相位差。
6. 微分运算电路,如图5.6所示。
dtduRC u i o -=。
当微分电路输入矩形波时,输出是对应于输入矩形波前后沿的尖脉冲,当输入电压是正弦波时,则输出波形与输入波形有90o 的相位差。
五、实验预习1.计算图5.1,5.2,5.3,5.4电路输出电压的理论值,并填入相应的表格中; 2. 写出图5.5和图5.6中输出电压与输入电压的关系式;并定性画出输入为矩形波和正弦波时对应的输出电压波形图。
六、实验内容与步骤(一)基本实验任务1. 反相比例运算电路测试。
根据图5.1所示电路连接反相比例运算电路。
第3章集成运算放大器
5/12/2014
Basic of Basic
1
3.1 集成运算放大器的简单介绍
集成电路: 将整个电路的各个元件及连线均制造在
同一块半导体基片上,形成一个不可分 割的整体。
集成电路的优点:
工作稳定、使用方便、体积小、 重量轻、功耗小。
集成电路的分类:
模拟集成电路、数字集成电路; 小、中、大、超大规模集成电路;
放大倍数与负载无关。分析 多个运放级联组合的线性电路 时可以分别对每个运放进行。
(16-16)
运放工作在饱和区的特点
uo Auo (u u )
虚短路不成立:
u u
i i 0 虚开路成立
5/12/2014 (16-17)
ቤተ መጻሕፍቲ ባይዱ
2、分析运放组成的线性电路的依据
u–
i–
_
+
+UCC
uo
反相端 u-
u+ 同相端
T3 T1 T2
T5
IS -UEE
输入级
中间级 输出级
主要提高带负载能力,给出足够的输出 电流 5/12/2014io ,输出阻抗 ro小。
(16-10)
运放特点:
ri 大: 几十k 几百 k KCMRR 很大
理想运放: ri KCMRR ro 0 Ao
4. 二极管一般用晶体管的发射结构成。
5/12/2014 (16-4)
集成运放电路的组成
偏置电路:为各级放大电路设置合适的静态工作点。多 采用恒流源电路。 输 入 级:常为差分放大电路。要求Ri大, Ad大, Ac小, 输入端耐压高。它有同相和反相两个输入端。 中 间 级:主放大级,常为共射放大电路,多采用复合 管。要求有足够的放大能力。 输 出 级:功率级,多采用互补功放电路或射极输出器。 要求Ro小,最大不失真输出电压尽可能大。 5/12/2014
运算放大器(3)
稳定相位裕度
由上式可以看出: 由上式可以看出:
上式的值大于1,即表示在ω 当PM<60°时,上式的值大于 ,即表示在 = ω1处系统的闭环频率响应存在一个尖峰,这表示该 处系统的闭环频率响应存在一个尖峰, 系统稳定,但可能还存在减幅振荡。 系统稳定,但可能还存在减幅振荡。 上式的值为1, 当PM=60°时,上式的值为 ,表明此时在系统 的闭环频率响应中频率峰值已不存在。 的闭环频率响应中频率峰值已不存在。这表示反馈 系统的阶跃响应出现小的减幅振荡现象, 系统的阶跃响应出现小的减幅振荡现象,系统稳定 而且快速。所以通常认为PM=60°是最合适的相 而且快速。所以通常认为 位裕度。 位裕度。 系统虽然很稳定, 当PM>60°时,系统虽然很稳定,但是其时间响 应速度减慢了。 应速度减慢了。
频率补偿
补偿方法概述
根据系统稳定的条件可以得到补偿的两种方法: 根据系统稳定的条件可以得到补偿的两种方法:
使系统总的相移减至最小, 使系统总的相移减至最小,即使∠FA达到-180°的频 达到 率值增大,即在电路设计时要求尽量减少系统的极点数, 率值增大,即在电路设计时要求尽量减少系统的极点数, 也即尽量减少放大器的级数,因此会降低增益、 也即尽量减少放大器的级数,因此会降低增益、限制输 出摆幅。 出摆幅。 降低环路增益,使其幅值|FA|减小,从而减小 减小, 降低环路增益,使其幅值 减小 从而减小|FA|为 为 零时的频率,这种方法保持了低频增益和输出摆幅, 零时的频率,这种方法保持了低频增益和输出摆幅,但 在更低频率时增益下降、带宽减小。 在更低频率时增益下降、带宽减小。
在运放的实际设计中选用频率补偿方法: 在运放的实际设计中选用频率补偿方法:
首先在满足运放的其它指标下尽量减少运放的极点数。 首先在满足运放的其它指标下尽量减少运放的极点数。 然后如不能达到系统稳定工作的条件, 然后如不能达到系统稳定工作的条件,则必须进行频率 补偿,以使 为零时的频率减小。 补偿,以使|FA|为零时的频率时的闭环增 益为|Y/X|≈1/F,所以有: ,所以有: 益为
集成运算放大器的分类与参数
按照集成运算放大器的参数来分,集成运算放大器可分为如下几类。
1.通用型运算放大器通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广 ,其性能指标能适合于一般性使用。
例μA741(单运放)、LM358 (双运放)、LM324 (四运放)及以场效应管为输入级的LF356 都属于此种。
它们是目前应用最为广泛的集成运算放大器。
2.高阻型运算放大器这类集成运算放大器的特点是差模输入阻抗非常高, 输入偏置电流非常小 ,一般 rid >1G Ω~1T Ω ,IB 为几皮安到几十皮安。
实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。
用 FET 作输入级 ,不仅输入阻抗高 ,输入偏置电流低 ,而且具有高速、宽带和低噪声等优点 ,但输入失调电压较大。
常见的集成器件有 LF355 、LF347(四运放)及更高输入阻抗的CA3130 、 CA3140 等。
3.低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。
低温漂型运算放大器就是为此而设计的。
目前常用的高精度、低温漂运算放大器有 OP07、 OP27、 AD508 及由 MOSFET 组成的斩波稳零型低漂移器件ICL7650 等。
4.高速型运算放大器在快速 A/D 和 D/A 转换器、视频放大器中,要求集成运算放大器的转换速率SR 一定要高 ,单位增益带宽BWG 一定要足够大 ,像通用型集成运放是不能适合于高速应用的场合的。
高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318 、μA715 等 ,其 SR=50~70V/ms,BWG >20MHz 。
5.低功耗型运算放大器由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大 ,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
第三章 差动放大电路及集成运算放大器 第三节集成运算放大器及其应用
差动放大电路及集成运算放大器
3.3.3.4 差模输入电阻rid
是指运放在输入差模信号时的输入电阻。对信号源来说,
差模输入电阻rid的值越大,对其影响越小。理想运放的rid
为无穷大。
3.3.3.5 开环输出电阻ro
运放在开环状态且负载开路时的输出电阻。其数值越小,
带负载的能力越强。理想运放的ro = 0。
i11
ui1 R11
;i12
ui 2 R12
该参数表示运放两个输入端之间所能承受的最大差模电 压值,输入电压超过该值时,差动放大电路的对管中某侧的 三极管发射结会出现反向击穿,损坏运放电路。运放μA741 的最大差模输入电压为30V。
差动放大电路及集成运算放大器
3.3.3.2 最大共模输入电压Uicmax
这是指运算放大器输入端能承受的最大共模输入电压。 当运放输入端所加的共模电压超过一定幅度时,放大管将退 出放大区,使运放失去差模放大的能力,共模抑制比明显下 降。运放μA741在电源电压为±15V时,输入共模电压应在 ±13V以内。
如果输入信号从同相输入端引入,运放电路就成了同相 比例运算放大电路。如图3-20所示。根据理想运算放大器的 特性:u u ui i1 i f 得:
i1
u R1
ui R1
if
u uo RF
ui uo RF
因而: uo
1
RF R1
ui
Auf
uo ui
1
RF R1
差动放大电路及集成运算放大器
该电路的反馈类型为串联电.3.4.3 反相加法器 如果在反相输入比例运算电路的输入端增加若干输入支
路,就构成反相加法运算电路,也称求和电路,如图3-22所 示。
集成运算放大器及其应用习题解答
第3章集成运算放大器及其应用习题解答3.1 差动放大电路的工作原理是什么?解:最简单的差动放大电路由两个完全对称的单管放大电路拼接而成。
由于电路的对称性,输出信号电压采用从两管集电极间提取的双端输出方式,对于无论什么原因引起的零点漂移,均能有效地抑制。
在电路的两个输入端输入大小相等、极性相同的信号电压,由于电路的对称性,两管集电极电位的大小、方向变化相同,输出电压为零(双端输出)。
说明差动放大电路对共模信号无放大作用。
共模信号的电压放大倍数为零。
在电路的两个输入端输入大小相等、极性相反的信号电压,由于电路的对称性,差动放大电路的输出电压为两管各自输出电压变化量的两倍。
3.2 集成运算放大器的基本组成有哪些?解:从电路的总体结构上看,集成运算放大器基本上都由输入级、中间放大级、输出级和偏置电路四个部分组成。
3.3 集成运算放大器的主要参数有哪些?解:1.开环差摸电压增益:2.输入失调电压U io:3.输入失调电流I io:4.差摸输入电阻r id和输出电阻r o:5.共模抑制比K CMR:6.最大差模输入电压U idmax:7.最大共模输入电压U icmax:8.静态功耗P co:9.最大输出电压U opp:3.4 理想集成运算放大器的主要条件是什么?解:(1)开环差模电压增益A ud=∞;(2)共模抑制比K CMR=∞;(3)开环差模输入电阻r id=∞;(4)开环共模输入电阻r ic=∞;(5)开环输出电阻r o=0。
3.5 通用型集成运放一般由几部分电路组成,每一部分常采用哪种基本电路?通常对每一部分性能的要求分别是什么?解:(1)输入级:一般采用具有恒流源的双输入端的差分放大电路,主要作用是减小放大电路的零点漂移、提高输入阻抗。
(2)中间放大级:一般采用多级放大电路,主要作用是放大电压,使整个集成运算放大器有足够高的电压放大倍数。
(3)输出级:一般采用射级输出器或互补对称电路,其目的是实现与负载的匹配,使电路有较大的输出功率和较强的带负载能力。
实验3集成运算放大器的基本应用
规范操作
在实验过程中,严格遵守操作规范, 避免对设备造成不必要的损害。
07 总结与展望
实验总结
实验目的
通过搭建集成运算放大器的基本 应用电路,掌握运算放大器的工 作原理、性能指标及基本分析方 法。
实验内容
设计并搭建反相、同相及差分放 大电路,观察并分析电路输入输 出特性,验证运算放大器的线性 放大功能。
无输出或输出异常 检查电源是否接通,以及电源电压是否符合要求。
检查输入信号是否正常,如有问题则调整信号源。
常见故障及排除方法
• 检查电路连接是否正确,如有虚焊或短路现象应及时修复。
常见故障及排除方法
01
02
03
04
放大倍数不准确
检查反馈电阻的阻值是否准确 ,如有偏差应更换。
检查输入电阻和输出电阻的阻 值是否合适,如不合适应调整
06 注意事项与故障排除
实验安全注意事项
电源安全
确保实验电源稳定且符合设备要求,避免过高或过低的电压导致 设备损坏或引发危险。
操作规范
按照实验指导书和教师指导进行操作,不要随意更改电路连接或 参数设置。
防静电措施
在操作过程中,采取防静电措施,如佩戴防静电手环,避免静电 对设备造成损害。
常见故障及排除方法
运算放大器的应用电路
除了基本的反相、同相和差分放大电路外,运算 放大器还可以构成积分器、微分器、比较器等复 杂电路,实现更多功能。
对未来研究的建议
深入研究运算放大器的性能指标
针对不同应用场景,研究如何优化运算放大器的性能指标,提高电 路性能。
探索新型运算放大器
随着半导体技术的发展,探索具有更高性能、更低功耗的新型运算 放大器,满足未来电子系统的需求。
集成运算放大器原理
集成运算放大器原理集成运算放大器,简称运放,是现代电子电路中非常重要的一种器件。
它的重要性不仅在于它本身所能完成的多种电路设计任务,而且更在于它在大量其他器件中的应用。
另外,集成运算放大器的开发为现代电子设备的制造、现代电子技术的研究和发展,提供了非常重要的基础。
集成运算放大器的比较器部分由于运放的结构十分复杂,因此在讲述集成运放原理之前,我们先来看看运放中的比较器部分的原理。
运放的比较器部分主要由一个差分放大器组成。
差分放大器是指由两个相同而反向连接的共模信号放大器组成。
相同是指这两个放大器的电路参数相等,反向连接是指两个放大器(也称之为放大级)的输出信号相反,并且将这两个信号相减后再进行输出。
差分放大器的电路图示如下:![image.png](attachment:image.png)我们可以看到,差分放大器的输入端分别是V1和V2,输出端是Vo。
差分放大器主要的功能就是从两个输入信号之间的差异中产生一个输出信号。
在差分放大器中,输入信号被放大并经过输出节点的反相和非反相输入。
根据正片差分放大器的基本公式,可以算出振幅比为:![image-2.png](attachment:image-2.png)其中k为放大系数,当k = R1/R2时,放大器输出为差异电压(Vin1 - Vin2)。
进一步,如果通过一个电压比较器对差分放大器的输出电压进行监测,它们可以被调整或比较,以及当它们之间存在特定比较关系时产生输出信号。
这就实现了集成运算放大器的比较器部分。
集成运算放大器的反相放大器部分在讲完运放的比较器部分后,我们接下来来看看运放的反相放大器部分的原理。
反相放大器是由一个集成运放反相输入端和根据反馈电阻选定的电路分压器组成的。
反相放大器的电路图如下:![image-3.png](attachment:image-3.png)在反相放大器的电路中,输入电压通过电路分压器得到一个分压电压,并且在反相输入端的放大电路中被反向放大。
集成运算放大器的三种输入组态
பைடு நூலகம்观题
10分
图示电路中运放为理想器件,试求输出电压 UO的值,并估算平衡电阻RP的阻值。
RF 5kΩ R1 2kΩ 2V R2 2kΩ R3 1kΩ RP ¥
+ UO -
作答
2.2.3 差分输入组态
当两个信号分别从两个输入端输入时, 构成差分输入组态,如图2.2.9所示。
主菜单
开
始 回
图2.2.7 为电压传输特性。
2.2.2 同相输入组态 当比例系数(1+R F/R 1)中,R F=0 或R 1=∞时,即R F /R 1=0时, u o=u i; 电路称为电压跟随器。如图2.2.5所示。
2.2.2 同相输入组态
同相输入与反相输入组态相比较电路 特点有:
①同相输入比反相输入组态输入电阻 大;对放大有利。
' R R '' F uo (1 F ) ui 2 ' R1 R2 RF
u i1与u i2共同作用:
主菜单
开 始 回
uo u u
' o
退 前 进 最 后 返
'' o
回 作 ?业
退
出
2.2.3 差分输入组态
为了保证集成运算放大器两个输入端对 地的电阻平衡,同时为了避免降低共模抑 制比,在图2.2.9电路中通常要求:
R4 2R2 uo (1 ) (us1 us 2 ) R3 R1
R1 R2
代入上式得:
RF R
' F
RF uo (ui 2 ui1 ) R1
2.2.3 差分输入组态
图2.2.10是一个性能比较优越的差分放大 电路,常用于仪表放大器。
实验三:集成运算放大器的线性应用研究指导书(2020)
实验三集成运算放大器线性应用的研究一、实验原理和目的集成运算放大器是一种具有高增益、直接耦合的多级放大电路,它一般有两个输入端(同相端和反相端)和一个输出端。
在实际应用当中,集成运放可以利用其线性区特性实现信号放大的作用。
同时,由于实际运放很接近理想运放。
所以,它也可以借助反馈结构,利用理想运放线性区“虚短”、“虚断”的特性,来实现很多不同的电路功能。
虚短:u+=u-;虚断:i+=i-=0本实验的目的是通过实验的方法测量指定电路的输入信号u+ 、u-和输出信号u o,并试分析两者间的关系,判断电路可以实现的功能。
同时,以实验结果对照理论分析,加深对集成运放特性的理解;为集成运放线性应用理论课程的学习打下良好的基础。
二、实验要求请同学们根据下列要求,在实验前完成预习任务和相关计算;在实验中完成相应参数的测量;实验结束后分析得出结论。
1. 实验预习:(1)实验前,通过视频回顾常用仪器的基本使用方法,重点复习信号发生器和示波器的使用。
(2)尝试根据“虚短”和“虚断”分析实验电路输入和输出信号的函数关系:u o=f(u+ 、u-)。
2. 实验内容及数据测量:2.1 实验内容一利用下面给出的实验电路,分析输入和输出信号的函数关系:u o=f(u I)。
(1)电路中同相输入端通过电阻接地。
利用信号发生器在反相输入端输入3组不同幅值、频率的正弦或方波信号。
建议信号大小设置在50mV至1V之间,取值应覆盖各数量级。
(2)用示波器观察输出波形,并记录各组输出信号的峰值,以及相位情况,填于表1之中。
(3)使用示波器的储存功能保存各组输出的波形图片文件。
内容u I u o u I和u o的相位关系项目第一组第二组第三组表12.2 实验内容二利用下面给出的实验电路,分析输入和输出信号的函数关系:u o=f(u I)。
(1)电路中同相输入端通过电阻接地。
利用信号发生器在反相输入端输入3组不同幅值、频率的正弦或方波信号。
建议信号大小设置在50mV至5V之间,取值应覆盖各数量级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- u id
+u i2
- u2id
-ui2
2
-
EE
IRe不变 UE不变 信所号以相,当Re于对短差路模。
a
10
①求差模电压放大倍数:
因为ui1 =- ui2
Rc + uo - Rc
设ui1 ,ui2 uo1 ,uo2 。
电路对称│uo1│=│uo2│ +
Rb T1
uo= uo1 – uo2=2 uo1
IRe=0.7VRe(VEE)
u
+
i1
Rb
Rc
Rc
+ uo _
Rb
T1
T2
+ u i2
-
IC1=IC2IC12IRe
R
_
e
V
-
EE
UCE1=UCE2V C C IC R C ( 0 .7 )
IB 1
IB 1
IC
U O=U C 1U C2 0
a
8
2.抑制零漂的原理:
当ui1 = ui2 = 0 时,
ui1=-ui2 =uid/2,
Rc
+ uo -
Rc
uic=0。 若ui1 ,ui2
Rb
Rc
T1
++
u-+o 1
RuLo
-+
u-+o 2
Rc
T2 Rb
+
Rb T1 u-o1 E u-o2 T2 Rb
+
ib1 ,ib2 ie1 ,ie2
u i1 + u id
u-i1
2u id
-2
E
IRe
R
_
e
+
u-o 1
RL
+
u-o 2
E
T2 Rb
+
因ui1 = ui2, uo1 = uo2
u i1
u ic
-
uo= 0 (理想化)。
IRe
R
_
e
V
EE
u ic
u i2
-
共模电压放大倍数
Auc 0
a
13
四.差动放大器的输入输出方式
差动放大器共有四种输入输出方式:
1. 双端输入、双端输出(双入双出) 2. 双端输入、单端输出(双入单出) 3. 单端输入、双端输出(单入双出) 4. 单端输入、单端输出(单入单出)
Re1
- VEE
uV的漂移电压
等效 100 uV
漂移
3. 减小零漂的措施
第一级是关键
1V
用非线性元件进行温度补偿
采用差动放大电路
a
4
5.1 差动放大电路
一.结构: 对称性结构
+ V CC
即:1=2=
Rc
Rc
UBE1=UBE2= UBE rbe1= rbe2= rbe
Rb
+ uo _
Rb
T1
T2
+
+
u i1 -
u id
2
差模电压放大倍数
Aud ui1uOui2
2 u O1 2 u i1
u O1 u i1
+
+
ib Rb
Aud
(Rc
//
RL 2
Rb rbe
)
ui 1
-
+
a
+
u-o1
rbe
+
u-o2 T2 Rb
E
+
- u id
ui2
2
-
ic
β ib RC
+
+
RL uo1
2
+
11
②差模输入电阻
R i d 2R brbe
Rc + uo - Rc
③输出电阻
+
Rb T1 u-o1
+
u-o2 T2 Rb
+
E
+
Ro 2Rc
u i1
u id
-2
- u id
ui2
2
-
a
12
(2)加入共模信号
ui1=ui2 =uic,
+ V CC
uid=0。
Rc
+ uo -
Rc
设ui1 ,ui2 uo1 , uo2 。 + R b T 1
RC1=RC2= RC u i1
u i2
Rb1=Rb2= Rb
-
R
_
e
V
-
EE
a
5
二. 几个基本概念
1. 差动放大电路一般有两个输入端: 双端输入——从两输入端同时加信号。
单端输入——仅从一个输入端对地加信号。
2. 差动放大电路可 以有两个输出端。
双端输出——从C1 和C2输出。
单端输出——从C1 或C2 对地输出。
+ V CC
Rc
Rc
UC1 = UC2
Rb
+ uo _
Uo= UC1 - UC2 = 0 +
T1
T2
u i1
当温度变化时: -
R
_
e
V
EE
设T ic1 ,ic2 uc1 , uc2
Rb
+ u i2 -
uo= uc1 - uc2 = 0
a
9
3.电路的动态分析
(1)加入差模信号
+ V CC
a
2
直耦放大电路的特殊问题——零点漂移
零漂现象:
uo
输 入 ui=0 时 , , 输 出 有 缓 慢 变化的电压产生。
0
产生零漂的原因:
由温度变化引起的。当温度变 化使第一级放大器的静态工作 点发生微小变化时,这种变化 量会被后面的电路逐级放大,
最终在输出端产生较大的电压 + 漂移。因而零点漂移也叫温漂。 u i
+ V CC
Rc Rb T1
+
+
uo
-
+
u-o 1
u-o 2
Rc T2 Rb
+ u i1
-a+ NhomakorabeaR
_
e
V
EE
u i2 -
6
3. 差模信号与共模信号
差模信号: uid=ui1ui2
共模信号:
uic
=
1 2(ui1ui2)
+ V CC
Rc
Rc
差模电压增益: Aud
=
uod u id
Rb
共模电压增益: Auc
= uoc u ic
+ u i1
-
总输出电压:
+ uo _
T1
T2
R
_
e
V
EE
Rb
+ u i2 -
u o= u o d u o cA u u i d d A u u i cc
4. 共模抑制比
K CMR =
a
Aud Auc
7
三.差动放大电路的基本工作原理
1. 静态工作点的计算:
+ V CC
ui1=ui20 忽略Ib,有:Ub1=Ub2=0V
第五章 集成运算放大器
5.1 差动放大电路 5.2 集成运算放大器中的单元电路 5.3 集成运放简介 5.4 集成运算放大器中的主要参数 5.5 特殊集成运算放大器
a
1
什么是集成运算放大器?
集成运算放大器——高增益的直接耦合的集成 的多级放大器。
集成电路的工艺特点:
(1)元器件具有良好的一致性和同向偏差,因而特别有利于实现 需要对称结构的电路。 (2)集成电路的芯片面积小,集成度高,所以功耗很小,在毫瓦 以下。 (3)不易制造大电阻。需要大电阻时,往往使用有源负载。 (4)只能制作几十pF以下的小电容。因此,集成放大器都采用 直接耦合方式。如需大电容,只有外接。 (5)不能制造电感,如需电感,也只能外接。
—
R c1 Rb1
T1 Re1
t
R e2
+ VCC
+u o T2
- VEE
零漂的衡量方法: 将输出漂移电压按电压增益折算到输
入端计算。a
3
例如
假设 Au1=100, Au2 =100 Au =10000
若输出有1 V的漂移
R c1 Rb1
T1
R e2
+ VCC
+u o T2
电压 。
+
ui 则等效输入有100 —
主要讨论的问题有:
差模电压放大倍数、共模电压放大倍数 差模输入电阻 输出电阻
a
14
1.双端输入双端输出
(1)差模电压放大倍数
Aud
(Rc
//
RL 2
Rb rbe
)
(2)共模电压放大倍数
Auc 0
(3)差模输入电阻
+ u i1