运放芯片选型

合集下载

运放选型参数

运放选型参数

运放选型参数摘要:一、运放简介二、运放选型参数1.增益带宽积2.输入偏置电流3.输入偏置电压4.共模抑制比5.输出电流和电压6.电源电压范围7.功耗三、运放选型实例1.确定应用场景2.根据参数进行选型3.实际应用案例四、总结正文:运放,全称为运算放大器,是一种模拟电子器件,广泛应用于各种电子设备和系统中。

作为核心组件,运放的选择至关重要,其中运放选型参数是重要的参考依据。

本文将详细介绍运放选型参数,并以实际案例进行说明。

首先,我们来了解一下运放的增益带宽积。

增益带宽积是运放的一个重要参数,表示运放能够处理信号的最大增益和带宽。

在选择运放时,应根据所需信号的增益和带宽来选取合适的增益带宽积。

输入偏置电流和输入偏置电压是衡量运放输入性能的重要参数。

输入偏置电流是指输入端电流的差值,输入偏置电压是指输入端电压的差值。

这两个参数对运放的输入阻抗和共模抑制比产生影响,需要根据实际应用场景进行选择。

共模抑制比是运放抑制共模信号的能力,它影响了运放在实际应用中的抗干扰性能。

在选择运放时,应根据共模抑制比来选取能够满足抗干扰要求的运放。

输出电流和电压是运放输出性能的重要参数。

输出电流表示运放能够驱动负载的最大电流,输出电压表示运放能够输出的最大电压。

在选择运放时,应根据实际应用中负载的电流和电压需求来选取合适的输出电流和电压。

电源电压范围和功耗是运放的两个重要电气参数。

电源电压范围表示运放能够正常工作的电源电压范围,功耗表示运放在工作过程中的能量消耗。

在选择运放时,应根据实际应用场景的电源电压和功耗要求来选取合适的运放。

下面通过一个实际应用案例来说明如何进行运放选型。

某智能家居系统需要一个用于信号放大的运放,信号增益需求为100倍,信号带宽为10kHz。

根据这些参数,我们可以选择一个增益带宽积大于100kHz的运放。

接下来,我们需要考虑运放的输入性能,输入偏置电流和输入偏置电压应满足系统对输入阻抗和共模抑制比的要求。

八运放集成电路 芯片型号

八运放集成电路 芯片型号

八运放集成电路芯片型号八运放集成电路芯片型号简介引言:八运放集成电路芯片是一种常用于电子设备中的集成电路芯片,其具有多种型号和规格,可广泛应用于各种电子设备中的信号放大、滤波、混频等功能。

本文将对几种常见的八运放集成电路芯片型号进行介绍,以便读者更好地了解和应用这些芯片。

一、AD823AD823是一款高性能、低功耗的八运放集成电路芯片。

该芯片具有低噪声、高增益和低失真等特点,适用于医疗设备、心电图仪等需要高精度信号放大的应用场景。

AD823采用了先进的CMOS工艺,具有较低的功耗和较广的工作电压范围,能够满足不同应用的需求。

二、LM358LM358是一款经典的八运放集成电路芯片,被广泛应用于各种电子设备中。

该芯片具有低功耗、低噪声和高增益等特点,适用于信号放大、滤波和直流偏置等应用。

LM358采用了双运放结构,具有较高的输入阻抗和较低的输出阻抗,能够提供稳定和可靠的信号放大功能。

三、TL072TL072是一款高性能、低噪声的八运放集成电路芯片。

该芯片具有较高的增益带宽积和较低的失调电流,适用于音频放大、滤波和混频等应用。

TL072采用了双JFET输入结构,具有较高的输入阻抗和较低的输入偏置电流,能够提供高质量的信号放大和处理功能。

四、OPA2340OPA2340是一款高精度、低功耗的八运放集成电路芯片。

该芯片具有低噪声、高增益和低失真等特点,适用于精密测量仪器、音频放大和滤波等应用。

OPA2340采用了先进的CMOS工艺和镁铁封装,具有较低的功耗和较高的工作温度范围,能够在恶劣环境下稳定工作。

五、AD827AD827是一款高性能、高精度的八运放集成电路芯片。

该芯片具有低噪声、高增益和低失真等特点,适用于音频放大、测量仪器和通信设备等应用。

AD827采用了先进的CMOS工艺和镁铁封装,具有较低的功耗和较高的工作电压范围,能够满足各种应用的需求。

结论:八运放集成电路芯片是一种常用的电子元器件,具有多种型号和规格,可应用于各种电子设备中的信号放大、滤波、混频等功能。

运放如何选型

运放如何选型

运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

运放关键参数及选型原则之欧阳美创编

运放关键参数及选型原则之欧阳美创编

运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV 以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

运放如何选型

运放如何选型

运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

集成运放的种类及选用

集成运放的种类及选用

集成运放的种类及选用集成运放的种类从前面集成运放典型电路的分析可知,按供电方式可将运放分为双电源供电和单电源供电,在双电源供电中又分正、负电源对称型和不对称型供电。

按集成度 ( 即一个芯片上运放个数 ) 可分为单运放、双运放和四运放,目前四运放日益增多。

按制造工艺可将运放分为双极型、 CMOS型和BiFET型,双极型运放一般输入偏置电流及器件功耗较大,但由于采用多种改进技术,所以种类多、功能强;CMOS型运放输入阻抗高、功耗小,可在低电源电压下工作,初期产品精度低、增益小、速度慢,但目前已有低失调电压、低噪声、高速度、强驱动能力的产品;BiEET型运放采用双极型管与单极型管混合搭配的生产工艺,以场效应管作输入级,使输入电阻高达1012Ω以上,目前有电参数各不相同的多种产品。

除以上三种分类方法外,还可从内部电路的工作原理、电路的可控性和电参数的特点等三个方面分类,下面简单加以介绍。

1、按工作原理分类♦电压放大型实现电压放大,输出回路等效成由电压v I控制的电压源v O=A od v I。

F007、F324、C14573均属这类产品。

♦电流放大型实现电流放大,输出回路等效成由电流i I控制的电流源i O=A i i I。

LM3900、F1900属于这类产品。

♦跨导型将输入电压转换成输出电流,输出回路等效成由电压v I控制的电流源i O,即i O=A g v I,A g 的量纲为电导,它是输出电流与输入电压之比,故称跨导,常记g m。

LM3080、F3080 属于这类产品。

♦互阻型将输入电流转换成输出电压,输出回路等效成由电流i I控制的电压源v O,即v O =A r i I,A r 的量纲为电阻,故称这种电路为互阻放大电路。

AD8009、AD8011属于这类产品。

输出等效为电压源的运放,输出电阻很小,通常为几十欧;而输出等效为电流源的运放,输出电阻较大,通常为几千欧以上。

2、按可控性分类♦可变增益运放可变增益运放有两类电路,一类由外接的控制电压v C来调整开环差模增益A od,称为电压控制增益的放大电路,如VCA610,当v C从0变为-2V时,A od从-40dB变为+40dB,中间连续可调;另一类是利用数字编码信号来控制开环差模增益A od,这类运放是模拟电路与数字电路的混合集成电路,具有较强的编程功能,例如AD526,其控制变量为A2、A1、A0,当给定不同的二进制码时,A od将不同。

常用运放芯片

常用运放芯片

常用运放芯片运放芯片是一种具有高增益、宽带宽和低功耗的集成电路。

它广泛应用于各种电子设备中,例如放大器、滤波器、模拟计算器、传感器接口等。

常用的运放芯片有很多种,本文将介绍一些常用的运放芯片。

1. LM741:LM741是一种经典的运放芯片,是全球最常用的运放芯片之一。

它具有高增益、宽带宽和低噪声等特点,广泛应用于放大电路和滤波器等领域。

然而,LM741也有一些缺点,例如工作电压范围窄、输入输出阻抗高等。

2. TL082:TL082是一种双运放芯片,具有四个运算放大器,广泛应用于音频放大器和滤波器等领域。

它具有宽带宽、低失真和低功耗等特点,而且价格相对较低,是一种性价比较高的运放芯片。

3. AD620:AD620是一种精密放大器芯片,具有低输入偏置电流和低噪声等特点,可以用于传感器信号放大和测量等应用。

AD620还具有可调增益和温度补偿等功能,适用于多种工作环境。

4. LM358:LM358是一种双运放芯片,具有低功耗和低输入偏置电流等特点,广泛应用于电压比较器、温度测量和信号放大等领域。

LM358的价格低廉,性能稳定,是一种常用的运放芯片。

5. TL074:TL074是一种四运放芯片,具有低功耗和宽带宽等特点,适用于高性能音频放大器和滤波器等应用。

TL074还具有高共模抑制比和低温漂等特性,使其在高精度测量和数据采集中有广泛应用。

6. AD823:AD823是一种超低功耗运放芯片,主要用于心电图(ECG)监测和生物信号放大等应用。

AD823具有低噪声和高共模抑制比,能够提供高质量的生物信号放大,适用于医疗设备和个人健康监测等领域。

以上是一些常用的运放芯片,它们具有不同的特点和应用领域。

根据具体的需求,选择合适的运放芯片可以提高电路性能和系统稳定性。

随着技术的不断进步,新型的运放芯片也将不断涌现,为电子设备提供更高的性能和功能。

主流音频运放IC分析与选购

主流音频运放IC分析与选购

主流音频运放IC分析与选购运算放大器(简称“运放”)是运用得非常广泛的一种线性集成电路,而且种类繁多,在运用方面不但可对微弱信号进行放大,还可做为反相、电压跟随器,可对电信号做加减法运算,所以被称为运算放大器。

不但其他地方应用广泛,在音响方面也使用得最多。

例如前级放大、缓冲,耳机放大器除了有部分使用分立元件,电子管外,绝大部分使用的还是集成运算放大器。

而有时候还会用到稳压电路上,制作高精度的稳压滤波电路。

各种运放由于其内部结构的不同,产生的失真成分也不同,所以音色特点也有一定的区别。

本来我们追求的是高保真,运放应该是失真最低,能真实还原音乐,没有个性的最好。

但是由于要配合其他音响部件如数码音源、后级功放管等,如果偏干、偏冷则可搭配音色细腻温暖型的运放,而太过阴柔、偏软的则可搭配音色较冷艳、亮丽的运放,做到与整机配合,取长补短的最佳效果。

所以说,并不是选择越贵的运放得到的效果就一定越好,搭配很重要,达到听感上最好才算达到目的。

如果是应用在低电压的模拟滤波电路中,还要选择对低电压工作性能良好的运放种类。

市面上的运放种类不下五六百种,GBW带宽在5M以上的也有三百多种,最高的已达 300MHZ,转换速率在5V/us以上的也不下几百种,最高达3000V/us。

低档运放JRC4558,这种运放是低档机器使用得最多的。

现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。

不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。

对于一些电脑有源音箱来说,它的应付能力还是绰绰有余的。

5532,如果有谁还没有听说过它名字的话,那就还未称得上是音响爱好者。

这个当年有运放皇之称的NE5532,与LM833、 LF353、CA3240一起是老牌四大名运放,不过现在只有5532应用得最多。

5532现在主要分台湾、美国和PHILIPS生产的,日本也有。

运放分类及选型

运放分类及选型

运放分类及选型对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。

对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小)运算放大器大体上可以分为如下几类:1、通用型运放2、高阻型运放3、低温漂型运放4、高速型运放5、低功耗型运放6、高压大功率型运放1、通用型运放其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如3741,LM358 (双运放),LM324及场效应管为输入级的LF356.2、高阻型运放这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。

实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。

这类运放有LF356、LF355、LF347、CA3130、CA3140 等3、低温漂型运放在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。

低温漂型运放就是为此设计的。

目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。

4、高速型运放在快速A/D及D/A以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG —定要足够大。

高速型运放的主要特点是具有高的转换速率和宽的频率响应。

常见的运放有LM318、从175等。

其SR=50~70V/ms5、低功耗型运放由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。

常用的低功耗运放有TL-022C, TL-160C等。

6、高压摆大功率型运放运放的输出电压主要受供电电源的限制。

在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。

高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。

D41运放的电源电压可达-150V,J A791运放的输出电流可达1A。

运放芯片资料

运放芯片资料

运放芯片运放芯片又称作运算放大器芯片,是电子元件中的一种重要组成部分,常被用于电路中的信号放大、滤波、积分、微分等各种运算。

运放芯片在现代电子设备中被广泛应用,其性能和稳定性对整个电路系统的正常运行起着至关重要的作用。

运放芯片的基本原理运放芯片是运算放大器的集成电路版本。

运算放大器是一种差分输入、高增益、直流耦合的电子放大器。

它的输入端具有高阻抗,输出端具有低阻抗,能够实现信号的放大和运算。

运放芯片内部包含多个晶体管和电阻等元件,通过适当的连接方式,可以实现各种电路功能。

作为一种集成电路,运放芯片体积小、功耗低、性能稳定,使得其在各种电子设备中得到广泛应用。

在模拟电路、数字信号处理、功率控制等领域,运放芯片扮演着重要的角色。

运放芯片的应用信号放大运放芯片最常见的用途之一是作为信号放大器。

通过合适的反馈电路设计,可以实现不同的放大倍数和频率响应。

在各种测量仪器、音频设备和通信系统中,信号放大是基本要求,而运放芯片的高增益和低失真特性使其成为理想的选择。

滤波器运放芯片也常被用于构建各种类型的滤波器,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

通过合理设计电路参数和使用适当的运放芯片,可以实现所需的频率响应和滤波效果。

积分器和微分器在信号处理和控制系统中,运放芯片还常被用于构建积分器和微分器。

积分器能够实现信号的积分运算,用于进行积分控制和信号处理;微分器则能够实现信号的微分运算,常被用于滤波和系统响应的优化。

运放芯片的选型和应用注意事项在选用运放芯片时,需要根据具体的应用需求来确定性能参数,包括增益带宽积、输入偏置电压、共模抑制比等。

同时,应注意电路的稳定性和抗干扰能力,避免由于误差放大导致的系统性能下降。

另外,在设计电路时,应合理选择反馈网络和电源供电,避免出现振荡和失真等问题。

严格遵循运放芯片的使用规范和工作条件,确保其在设计寿命内正常工作。

结语运放芯片作为电子元器件中的重要一员,在各种电子设备和系统中发挥着重要作用。

运算放大器选型指南

运算放大器选型指南

运算放大器选型指南运算放大器(Operational Amplifier,简称Op Amp)是一种重要的电子元件,广泛应用于各种电子设备和电路中。

它具有输入阻抗高、增益稳定、输出能力强等特点,可放大输入信号并输出放大后的信号,被用于放大、滤波、比较、积分、微分等多种信号处理应用。

在进行运算放大器选型时,需要考虑以下几个因素:1.功能要求:首先要明确需要运算放大器实现的功能。

不同的应用场景需要不同的功能要求,比如需要放大直流或交流信号,需要实现滤波、比较、积分、微分等功能。

2.参数指标:选择合适的运算放大器要考虑其参数指标,如增益带宽积、输入与输出电压范围、电源电压范围、偏置电压、输入偏置电流、输出阻抗等。

这些参数指标对于实现具体的应用要求至关重要。

3.精度要求:根据应用需求考虑运算放大器的精度要求,如增益的稳定性、输入和输出的精度、温度漂移、噪声等。

一般来说,要求精度越高的应用,选择的运算放大器性能要求也相对较高。

4.效率和成本:运算放大器的效率和成本也是选型中的考虑因素。

效率指的是运算放大器的功耗和能耗,可以根据实际需求选择功耗较低的型号。

成本包括器件本身的价格和其他外部元件的成本,需要综合考虑投资和应用需求。

5.兼容性和可靠性:考虑运算放大器的兼容性和可靠性,特别是在多个放大器组成的电子系统中,要保证各个放大器之间的配合和运行稳定性。

在具体选型时,可以参考厂商提供的数据手册和技术规格表,查找满足应用需求的运算放大器型号。

此外,也可以借鉴其他工程师的经验和评价,了解不同型号的优缺点,从而做出更好的选择。

总结起来,在运算放大器选型时要考虑功能要求、参数指标、精度要求、效率和成本、兼容性和可靠性等因素,根据实际需求选择合适的型号。

最后,进行实际应用前,还需通过实验和测试验证选型的正确性和可靠性。

常用运放选型表

常用运放选型表

常用运放选型表器件名称制造商简介μA741 TI 单路通用运放μA747 TI 双路通用运放AD515A ADI 低功耗FET 输入运放AD605 ADI 低噪声,单电源,可变增益双运放AD644 ADI 高速,注入BiFET 双运放AD648 ADI 精密的,低功耗BiFET 双运放AD704 ADI 输入微微安培电流双极性四运放AD705 ADI 输入微微安培电流双极性运放AD706 ADI 输入微微安培电流双极性双运放AD707 ADI 超低漂移运放AD708 ADI 超低偏移电压双运放AD711 ADI 精密,低成本,高速BiFET 运放AD712 ADI 精密,低成本,高速BiFET 双运放AD713 ADI 精密,低成本,高速BiFET 四运放AD741 ADI 低成本,高精度IC 运放AD743 ADI 超低噪音BiFET 运放AD744 ADI 高精度,高速BiFET 运放AD745 ADI 超低噪音,高速BiFET 运放AD746 ADI 超低噪音,高速BiFET 双运放AD795 ADI 低功耗,低噪音,精密的FET 运放AD797 ADI 超低失真,超低噪音运放AD8022 ADI 高速低噪,电压反馈双运放AD8047 ADI 通用电压反馈运放AD8048 ADI 通用电压反馈运放AD810 ADI 带禁用的低功耗视频运放AD811 ADI 高性能视频运放AD812 ADI 低功耗电流反馈双运放AD813 ADI 单电源,低功耗视频三运放AD818 ADI 低成本,低功耗视频运放AD820 ADI 单电源,FET 输入,满幅度低功耗运放AD822 ADI 单电源,FET 输入,满幅度低功耗运放AD823 ADI 16MHz,满幅度,FET 输入双运放AD824 ADI 单电源,满幅度低功耗,FET 输入运放AD826 ADI 高速,低功耗双运放AD827 ADI 高速,低功耗双运放AD828 ADI 低功耗,视频双运放AD829 ADI 高速,低噪声视频运放AD830 ADI 高速,视频差分运放AD840 ADI 宽带快速运放AD841 ADI 宽带,固定单位增益,快速运放AD842 ADI 宽带,高输出电流,快速运放AD843 ADI 34MHz,CBFET 快速运放AD844 ADI 60MHz,2000V/μs 单片运放AD845 ADI 精密的16MHzCBFET 运放AD846 ADI 精密的450V/μs 电流反馈运放AD847 ADI 高速,低功耗单片运放AD848 ADI 高速,低功耗单片运放AD849 ADI 高速,低功耗单片运放AD8519 ADI 满幅度运放AD8529 ADI 满幅度运放AD8551 ADI 低漂移,单电源,满幅度输入输出运放AD8552 ADI 低漂移,单电源,满幅度输入输出双运放AD8554 ADI 低漂移,单电源,满幅度输入输出四运放AD8571 ADI 零漂移,单电源,满幅度输入/输出单运放AD8572 ADI 零漂移,单电源,满幅度输入/输出双运放AD8574 ADI 零漂移,单电源,满幅度输入/输出四运放AD8591 ADI 带关断的单电源满幅度输入输出运放AD8592 ADI 带关断的单电源满幅度输入输出运放AD8594 ADI 带关断的单电源满幅度输入输出运放AD8601 ADI 低偏移,单电源,满幅度输入/输出单运放AD8602 ADI 低偏移,单电源,满幅度输入/输出双运放AD8604 ADI 低偏移,单电源,满幅度输入/输出四运放AD9610 ADI 宽带运放AD9617 ADI 低失真,精密宽带运放AD9618 ADI 低失真,精密宽带运放AD9631 ADI 超低失真,宽带电压反馈运放AD9632 ADI 超低失真,宽带电压反馈运放C54DSKplus TI 低噪高速去补偿双路运放L165 ST 3A功率运放L272 ST 双通道功率运放L2720 ST 低压差双通道功率运放L2722 ST 低压差双通道功率运放L2724 ST 低压差双通道功率运放L2726 ST 低压差双通道功率运放L2750 ST 低压差双通道功率运放LF147 ST 宽带四J-FET 运放LF151 ST 宽带单J-FET 运放LF153 ST 宽带双J-FET 运放LF155 ST 宽带J-FET 单运放LF156 ST 宽带J-FET 单运放LF157 ST 宽带J-FET 单运放LF247 ST 宽带四J-FET 运放LF251 ST 宽带单J-FET 运放LF253 ST 宽带双J-FET 运放LF255 ST 宽带J-FET 单运放LF256 ST 宽带J-FET 单运放LF257 ST 宽带J-FET 单运放LF355 ST 宽带J-FET 单运放LF356 ST 宽带J-FET 单运放LF357 ST 宽带J-FET 单运放LM101A TI 高性能运放LM124A(ST) ST 低功耗四运放LM146 ST 可编程四双极型运放LM158/A ST 低功耗双运放LM224A(st) ST 低功耗四运放LM246 ST 可编程四双极型运放LM258/A ST 低功耗双运放LM324A ST 低功耗四运放LM346 ST 可编程四双极型运放LM358/A ST 低功耗双运放LMV321 TI 低电压单运放LMV324 TI 低电压四运放LMV358 TI 低电压双运放LS204 ST 高性能双运放LS404 ST 高性能四运放LT1013 TI 双通道精密型运放LT1014 TI 四通道精密型运放MC1558 TI 双路通用运放MC33001 ST 通用单JFET 运放MC33002 ST 通用双JFET 运放MC33004 ST 通用四JFET 运放MC3303 TI 四路低功率运放MC33078 ST 低噪双运放MC33079 ST 低噪声四运放MC33171 ST 低功耗双极型单运放MC33172 ST 低功耗双极型双运放MC33174 ST 低功耗双极型四运放MC34001 ST 通用单JFET 运放MC34002 ST 通用双JFET 运放MC34004 ST 通用四JFET 运放MC3403 TI 四路低功率通用运放MC35001 ST 通用单JFET 运放MC35002 ST 通用双JFET 运放MC35004 ST 通用四JFET 运放MC3503 ST 低功耗双极型四运放MC35171 ST 低功耗双极型单运放MC35172 ST 低功耗双极型双运放MC35174 ST 低功耗双极型四运放MC4558 ST 宽带双极型双运放MCP601 Microchip 2.7V~5.5V 单电源单运放MCP602 Microchip 2.7V~5.5V 单电源双运放MCP603 Microchip 2.7V~5.5V 单电源单运放MCP604 Microchip 2.7V~5.5V 单电源四运放NE5532 TI 双路低噪高速音频运放NE5534 TI 低噪高速音频运放OP-04 ADI 高性能双运放OP-08 ADI 低输入电流运放OP-09 ADI 741 型运放OP-11 ADI 741 型运放OP-12 ADI 精密的低输入电流运放OP-14 ADI 高性能双运放OP-15 ADI 精密的JFET 运放OP-16 ADI 精密的JFET 运放OP-17 ADI 精密的JFET 运放OP-207 ADI 超低Vos 双运放OP-215 ADI 高精度双运放OP-22 ADI 可编程低功耗运放OP-220 ADI 低功耗双运放OP-221 ADI 低功耗双运放OP-227 ADI 低噪低偏移双测量运放OP-260 ADI 高速,电流反馈双运放OP-27 ADI 低噪声精密运放OP-270 ADI 低噪音精密双运放OP-271 ADI 高速双运放op-32 ADI 高速可编程微功耗运放op-37 ADI 低噪声,精密高速运放op-400 ADI 低偏置,低功耗四运放op-42 ADI 高速,精密运放op-420 ADI 微功耗四运放op-421 ADI 低功耗四运放op-471 ADI 低噪声,高速四运放OP07 ADI 超低偏移电压运放OP07C TI 高精度,低失调,电压型运放OP07D TI 高精度,低失调,电压型运放OP07Y TI 高精度,低失调,电压型运放OP113 ADI 低噪声,低漂移,单电源运放OP162 ADI 15MHz 满幅度运放OP176 ADI 音频运放OP177 ADI 超高精度运放OP181 ADI 超低功耗,满幅度输出运放OP183 ADI 5MHz 单电源运放OP184 ADI 精密满幅度输入输出运放OP186 ADI 满幅度运放op191 ADI 微功耗单电源满幅度运放OP193 ADI 精密的微功率运放OP196 ADI 微功耗,满幅度输入输出运放OP200 ADI 超低偏移,低功耗运放OP213 ADI 低噪声,低漂移,单电源运放OP249 ADI 高速双运放OP250 ADI 单电源满幅度输入输出双运放OP262 ADI 15MHz 满幅度运放OP27 TI 低噪声精密高速运放op275 ADI 音频双运放OP279 ADI 满幅度高输出电流运放OP281 ADI 超低功耗,满幅度输出运放op282 ADI 低功耗,高速双运放OP283 ADI 5MHz 单电源运放OP284 ADI 精密满幅度输入输出运放op285 ADI 9MHz 精密双运放op290 ADI 精密的微功耗双运放op291 ADI 微功耗单电源满幅度运放op292 ADI 双运放OP293 ADI 精密的微功率双运放op295 ADI 满幅度双运放OP296 ADI 微功耗,满幅度输入输出双运放op297 ADI 低偏置电流精密双运放OP37 TI 低噪声精密高速运放OP413 ADI 低噪声,低漂移,单电源运放OP450 ADI 单电源满幅度输入输出四运放OP462 ADI 15MHz 满幅度运放op467 ADI 高速四运放op470 ADI 低噪声四运放OP481 ADI 超低功耗,满幅度输出运放op482 ADI 低功耗,高速四运放OP484 ADI 精密满幅度输入输出运放op490 ADI 低电压微功率四运放op491 ADI 微功耗单电源满幅度运放op492 ADI 四运放OP493 ADI 精密的微功率四运放op495 ADI 满幅度四运放OP496 ADI 微功耗,满幅度输入输出四运放op497 ADI 微微安培输入电流四运放op77 ADI 超低偏移电压运放op80 ADI 超低偏置电流运放OP90 ADI 精密的微功耗运放op97 ADI 低功耗,高精度运放PM1012 ADI 低功耗精密运放PM155A ADI 单片JFET 输入运放PM156A ADI 单片JFET 输入运放PM157A ADI 单片JFET 输入运放RC4136 TI 四路通用运放RC4558 TI 双路通用运放RC4559 TI 双路高性能运放RM4136 TI 通用型四运放RV4136 TI 通用型四运放SE5534 TI 低噪运放SSM2135 ADI 单电源视频双运放SSM2164 ADI 低成本,电压控制四运放TDA9203A ST IIC总线控制RGB 前置运放TDA9206 ST IIC总线控制宽带音频前置运放TEB1033 ST 精密双运放TEC1033 ST 精密双运放TEF1033 ST 精密双运放THS4001 TI 超高速低功耗运放TL022 TI 双组低功率通用型运放TL031 TI 增强型JFET 低功率精密运放TL032 TI 双组增强型JFET 输入,低功耗,高精度运放TL034 TI 四组增强型JFET 输入,低功耗,高精度运放TL051 TI 增强型JFET 输入,高精度运放TL052 TI 双组增强型JFET 输入,高精度运放TL054 TI 四组增强型JFET 输入,高精度运放TL061 TI 低功耗JFET 输入运放TL061A ST 低功耗JFET 单运放TL061B ST 低功耗JFET 单运放TL062 TI 双路低功耗JFET 输入运放TL062A/B ST 低功耗JFET 双运放TL064 TI 四路低功耗JFET 输入运放TL064A/B ST 低功耗JFET 四运放TL070 TI 低噪JFET 输入运放TL071 TI 低噪声JFET 输入运放TL071A/B ST 低噪声JFET 单运放TL072 ST 低噪声JFET 双运放TL072A TI 双组低噪声JFET 输入运放TL072A/B ST 低噪声JFET 双运放TL074 TI 四组低噪声JFET 输入运放TL074A/B ST 低噪声JFET 四运放TL081 TI JFET输入运放TL081A/B ST 通用JFET 单运放TL082 TI 双组JFET 输入运放TL082A/B ST 通用JFET 双运放TL084 TI 四组JFET 输入运放TL084A/B ST 通用JFET 四运放TL087 TI JFET输入单运放TL088 TI JFET输入单运放TL287 TI JFET输入双运放TL288 TI JFET输入双运放TL322 TI 双组低功率运放TL33071 TI 单路,高转换速率,单电源运放TL33072 TI 双路,高转换速率,单电源运放TL33074 TI 四路,高转换速率,单电源运放TL34071 TI 单路,高转换速率,单电源运放TL34072 TI 双路,高转换速率,单电源运放TL34074 TI 四路,高转换速率,单电源运放TL343 TI 低功耗单运放TL3472 TI 高转换速率,单电源双运放TL35071 TI 单路,高转换速率,单电源运放TL35072 TI 双路,高转换速率,单电源运放TL35074 TI 四路,高转换速率,单电源运放TLC070 TI 宽带,高输出驱动能力,单电源单运放TLC071 TI 宽带,高输出驱动能力,单电源单运放TLC072 TI 宽带,高输出驱动能力,单电源双运放TLC073 TI 宽带,高输出驱动能力,单电源双运放TLC074 TI 宽带,高输出驱动能力,单电源四运放TLC075 TI 宽带,高输出驱动能力,单电源四运放TLC080 TI 宽带,高输出驱动能力,单电源单运放TLC081 TI 宽带,高输出驱动能力,单电源单运放TLC082 TI 宽带,高输出驱动能力,单电源双运放TLC083 TI 宽带,高输出驱动能力,单电源双运放TLC084 TI 宽带,高输出驱动能力,单电源四运放TLC085 TI 宽带,高输出驱动能力,单电源四运放TLC1078 TI 双组微功率高精度低压运放TLC1079 TI 四组微功率高精度低压运放tlc2201 TI 低噪声,满电源幅度,精密型运放TLC2202 TI 双组,低噪声,高精度满量程运放TLC2252 TI 双路,满电源幅度,微功耗运放TLC2254 TI 四路,满电源幅度,微功耗运放TLC2262 TI 双路先进的CMOS,满电源幅度运放TLC2264 TI 四路先进的CMOS,满电源幅度运放TLC2272 TI 双路,低噪声,满电源幅度运放TLC2274 TI 四路,低噪声,满电源幅度运放TLC2322 TI 低压低功耗运放TLC2324 TI 低压低功耗运放TLC251 TI 可编程低功率运放TLC252 TI 双组,低电压运放TLC254 TI 四组,低电压运放TLC25L2 TI 双组,微功率低压运放TLC25L4 TI 四组,微功率低压运放TLC25M2 TI 双组,低功率低压运放TLC25M4 TI 四组,低功率低压运放TLC2652 TI 先进的LINCMOS 精密斩波稳定运放TLC2654 TI 先进的LINCMOS 低噪声斩波稳定运放TLC271 TI 低噪声运放TLC272 TI 双路单电源运放TLC274 TI 四路单电源运放TLC277 TI 双组精密单电源运放TLC279 TI 双组精密单电源运放TLC27L2 TI 双组,单电源微功率精密运放TLC27L4 TI 四组,单电源微功率精密运放TLC27L7 TI 双组,单电源微功率精密运放TLC27L9 TI 四组,单电源微功率精密运放TLC27M2 TI 双组,单电源低功率精密运放TLC27M4 TI 四组,单电源低功率精密运放TLC27M7 TI 双组,单电源低功率精密运放TLC27M9 TI 四组,单电源低功率精密运放TLC2801 TI 先进的LinCMOS 低噪声精密运放TLC2810Z TI 双路低噪声,单电源运放TLC2872 TI 双组,低噪声,高温运放TLC4501 TI 先进LINEPIC,自校准精密运放TLC4502 TI 先进LINEPIC,双组自校准精密运放TLE2021 TI 单路,高速,精密型,低功耗,单电源运放TLE2022 TI 双路精密型,低功耗,单电源运放TLE2024 TI 四路精密型,低功耗,单电源运放TLE2027 TI 增强型低噪声高速精密运放TLE2037 TI 增强型低噪声高速精密去补偿运放TLE2061 TI JFET输入,高输出驱动,微功耗运放TLE2062 TI 双路JFET 输入,高输出驱动,微功耗运放TLE2064 TI JFET输入,高输出驱动,微功耗运放TLE2071 TI 低噪声,高速,JFET 输入运放TLE2072 TI 双路低噪声,高速,JFET 输入运放TLE2074 TI 四路低噪声,高速,JFET 输入运放TLE2081 TI 单路高速,JFET 输入运放TLE2082 TI 双路高速,JFET 输入运放TLE2084 TI 四路高速,JFET 输入运放TLE2141 TI 增强型低噪声高速精密运放TLE2142 TI 双路低噪声,高速,精密型,单电源运放TLE2144 TI 四路低噪声,高速,精密型,单电源运放TLE2161 TI JFET 输入,高输出驱动,低功耗去补偿运放TLE2227 TI 双路低噪声,高速,精密型运放TLE2237 TI 双路低噪声,高速,精密型去补偿运放TLE2301 TI 三态输出,宽带功率输出运放TLS21H62-3PW TI 5V,2 通道低噪读写前置运放TLV2221 TI 单路满电源幅度,5 脚封装,微功耗运放TLV2231 TI 单路满电源幅度,微功耗运放TLV2252 TI 双路满电源幅度,低压微功耗运放TLV2254 TI 四路满电源幅度,低压微功耗运放TLV2262 TI 双路满电源幅度,低电压,低功耗运放TLV2264 TI 四路满电源幅度,低电压,低功耗运放TLV2322 TI 双路低压微功耗运放TLV2324 TI 四路低压微功耗运放TLV2332 TI 双路低压低功耗运放TLV2334 TI 四路低压低功耗运放TLV2341 TI 电源电流可编程,低电压运放TLV2342 TI 双路LICMOS,低电压,高速运放TLV2344 TI 四路LICMOS,低电压,高速运放TLV2361 TI 单路高性能,可编程低电压运放TLV2362 TI 双路高性能,可编程低电压运放TLV2422 TI 先进的LINCMOS 满量程输出,微功耗双路运放TLV2432 TI 双路宽输入电压,低功耗,中速,高输出驱动运放TLV2442 TI 双路宽输入电压,高速,高输出驱动运放TLV2450 TI 满幅度输入/输出单运放TLV2451 TI 满幅度输入/输出单运放TLV2452 TI 满幅度输入/输出双运放TLV2453 TI 满幅度输入/输出双运放TLV2454 TI 满幅度输入/输出四运放TLV2455 TI 满幅度输入/输出四运放TLV2460 TI 低功耗,满幅度输入/输出单运放TLV2461 TI 低功耗,满幅度输入/输出单运放TLV2462 TI 低功耗,满幅度输入/输出双运放TLV2463 TI 低功耗,满幅度输入/输出双运放TLV2464 TI 低功耗,满幅度输入/输出四运放TLV2465 TI 低功耗,满幅度输入/输出四运放TLV2470 TI 高输出驱动能力,满幅度输入/输出单运放TLV2471 TI 高输出驱动能力,满幅度输入/输出单运放TLV2472 TI 高输出驱动能力,满幅度输入/输出双运放TLV2473 TI 高输出驱动能力,满幅度输入/输出双运放TLV2474 TI 高输出驱动能力,满幅度输入/输出四运放TLV2475 TI 高输出驱动能力,满幅度输入/输出四运放TLV2711 TI 先进的LINCMOS 满量程输出,微功耗单路运放TLV2721 TI 先进的LINCMOS 满量程输出,极低功耗单路运放TLV2731 TI 先进的LINCMOS 满量程输出,低功耗单路运放TLV2770 TI 2.7V高转换速率,满幅度输出带关断单运放TLV2771 TI 2.7V高转换速率,满幅度输出带关断单运放TLV2772 TI 2.7V高转换速率,满幅度输出带关断双运放TLV2773 TI 2.7V高转换速率,满幅度输出带关断双运放TLV2774 TI 2.7V高转换速率,满幅度输出带关断四运放TLV2775 TI 2.7V高转换速率,满幅度输出带关断四运放TS271 ST 可编程CMOS 单运放TS272 ST 高速CMOS 双运放TS274 ST 高速CMOS 四运放TS27L2 ST 低功耗CMOS 双运放TS27L4 ST 低功耗CMOS 四运放TS27M2 ST 低功耗CMOS 双运放TS27M4 ST 低功耗CMOS 四运放TS321 ST 低功率单运放TS3V902 ST 3V满幅度CMOS 双运放TS3V904 ST 满幅度四运放TS3V912 ST 3V满幅度CMOS 双运放TS3V914 ST 满幅度四运放TS461 ST 单运放TS462 ST 双运放TS512 ST 高速精密双运放TS514 ST 高速精密四运放TS522 ST 精密低噪音双运放TS524 ST 精密低噪音四运放TS902 ST 满幅度CMOS 双运放TS904 ST 满幅度四运放TS912 ST 满幅度CMOS 双运放TS914 ST 满幅度四运放TS921 ST 满幅度高输出电流单运放TS922 ST 满幅度高输出电流双运放TS924 ST 满幅度高输出电流四运放TS925 ST 满幅度高输出电流四运放TS942 ST 满幅度输出双运放TS951 ST 低功耗满幅度单运放TS971 ST 满幅度低噪声单运放TSH10 ST 140MHz 宽带低噪声单运放TSH11 ST 120MHz 宽带MOS 输入单运放TSH150 ST 宽带双极输入单运放TSH151 ST 宽带和MOS 输入的单运放TSH22 ST 高性能双极双运放TSH24 ST 高性能双极四运放TSH31 ST 280MHz 宽带MOS 输入单运放TSH321 ST 宽带和MOS 输入单运放TSH93 ST 高速低功耗三运放TSH94 ST 高速低耗四运放TSH95 ST 高速低功耗四运放TSM102 ST 双运放-双比较器和可调电压基准TSM221 ST 满幅度双运放和双比较器UA748 ST 精密单运放UA776 ST 可编程低功耗单运放X9430 Xicor 可编程双运放。

16脚运放芯片资料大全

16脚运放芯片资料大全

16脚运放芯片资料大全运放芯片(Operational Amplifier,简称Op Amp)是一种常见的集成电路,广泛应用于电子设备中。

它的主要功能是将输入信号放大到可控制的水平,同时在输出端提供高增益和稳定的信号。

在现代电子技术中,运放芯片已经成为不可或缺的重要元件。

运放芯片的特点是输入电阻高、输出电阻低,具有极低的失调电流和失调电压。

同时,运放芯片还具有高开环增益,宽带宽和优秀的共模抑制比。

这些特性使得它在电路设计中具有非常重要的作用。

在实际应用中,不同类型的运放芯片有着不同的特点和应用场景。

下面是一些常见的运放芯片及其特点的介绍。

1. LM741:LM741是一种经典的通用运放芯片。

它具有输入电阻高、增益稳定的特点,适用于大多数基本放大电路的设计。

2. TL081:TL081是一种高速运放芯片,具有较宽的带宽和快速的响应速度。

它适用于需要高速运算的电路,如滤波器和信号调理电路等。

3. AD827:AD827是一种差分运放芯片,具有极低的失调电流和失调电压。

它广泛应用于测量和仪器放大电路,并提供高精度的差分信号放大功能。

4. OP275:OP275是一种低噪声运放芯片,适用于音频放大和音频处理电路。

它具有低噪声、低失真和高信噪比的特点,保证了音频信号的高保真度。

5. LM358:LM358是一种双运放芯片,具有低功耗和广泛的电压供应范围。

它广泛应用于低功耗和便携式电子设备中。

通过了解这些运放芯片的特点和应用场景,我们可以根据具体的需求选择合适的芯片进行电路设计。

同时,在使用运放芯片时需要注意以下几点:首先,保持良好的供电和接地。

良好的供电和接地可以减少噪音干扰,提高运放芯片的性能。

其次,合理选择外部元件。

外部元件的选择直接影响到运放芯片的放大和频率特性,因此需要根据具体的应用要求进行合理的设计。

另外,运放芯片的工作温度和工作电压也是需要考虑的因素。

要确保运放芯片在规定的工作温度和电压范围内工作,以免影响其性能和寿命。

常用精密运放芯片

常用精密运放芯片

常用精密运放芯片精密运放芯片(Precision Op-Amp)是一种高精度、高稳定性、低噪声的运算放大器,广泛应用于各种电子设备中。

以下是一些常用的精密运放芯片:1. AD8606:Analog Devices公司的一款双路、四路输出、轨到轨输入和输出运算放大器,具有高输出电流和低失真度。

2. LM317:Texas Instruments(TI)公司的一款线性稳压器,具有内置短路保护和过温保护等特点。

3. OP-07:Burr-Brown(现在属于Texas Instruments)公司的一款超精密运算放大器,具有低噪声、低失真度和高稳定性等特点。

4. AD797:Analog Devices公司的一款高精度、低噪声运算放大器,具有宽电源电压范围和出色的输出电流能力。

5. OPA847:Texas Instruments公司的一款超精密运算放大器,具有极低的噪声和失真度,适用于高精度数据采集和信号处理应用。

6. LM7171:Texas Instruments公司的一款双路输出、高精度线性稳压器,具有宽电源电压范围和低输出噪声等特点。

7. OP177:Burr-Brown(现在属于Texas Instruments)公司的一款高精度、低噪声运算放大器,具有出色的直流和交流性能。

8. AD620:Analog Devices公司的一款高精度、宽带运算放大器,具有低噪声、低失真度和高输出电流等特点。

9. LM358:Texas Instruments公司的一款双路运算放大器,具有宽电源电压范围、高输出电流和低失真度等特点。

10. OPA27:Texas Instruments公司的一款高精度、低噪声运算放大器,适用于高精度信号处理和仪器测量应用。

这些精密运放芯片在各种电子设备中发挥着重要作用,例如数据采集、信号处理、滤波、放大等。

在实际应用中,可根据需求选择合适的芯片。

运放芯片分析

运放芯片分析

运放芯片分析NE5532:确实有点胆味,解析力一般,高频比较燥,低频比较糊且肥。

OP275:和5532比,胆性还重一点,解析力、低频、音场更好一点,可以买贴片的来打摩声卡用(特别是创新的),可以改善硬冷的数码声。

EL2244:音色中性,音场比较宽,高频还可以,中频音乐味差。

有人说解析力很高,其实是因为低频量感少,中频薄,高频显得突出而已。

要用好比较难。

LT1057:两端延伸不错,速度、动态和解析力也挺好,就是属冷色调,放出的音乐好象有种不食人间烟火的味道,让你可以静静的听,却燃不起对音乐的那份激情。

AD827:延伸非常好,解析力高,高频华丽,中频纯厚,低频下潜和力度都不错,音场向前后左右拓展,有了凹凸感(这一点比其它运放强),速度快,动态好,感觉很大气,初换上此运放后确实有让人为之一振的感觉。

但久听之下,也发现很多问题:一、虽然三频段、音场很宽,气势足,大开大合,但总感觉结构有点松,不够紧凑;二、人声部份一般,有时大动态时,人声被配乐声淹没;三、不够细腻,属于激情有余而柔情不足;四、音乐味不够。

不过很多的人喜欢这种风格。

当然买两片来换换口味听还是可以的,按我的感觉,用在AV功放上看DVD大片应该很适合。

OPA2604:感觉象5532的升级版,各方面都有很大提高,解析力不错,音乐味更好,有胆味,声底属于较纯厚且有点刚性,综合素质很不错。

DY649:和2604比,解析力更好,高频部份纤细而又柔美且泛音丰富,声底没2604厚,很清澈、细致的感觉,音乐画面异常清晰,人声部份圆润通透、有种甜甜的感觉,人声(特别是女声)是它的强项。

DY639:整体性稍弱于649,但更具备胆机特性,胆味更浓。

DY669:和2604差不太多,纯厚的声音。

AD712:解析力很好,清晰而又没有音染的声音,一种很透明的感觉,声底细致,低频量稍少。

属于典型的监听风格。

不过可能很多人都不大喜欢这种纯净水的感觉,还是加点味精好,大概是我已前玩过音乐制作的原因吧,习惯了这种纯纯的监听味道,挺感兴趣。

运放选型

运放选型

运算放大器的结构形式主要有三种:模块、混合电路和单片集成电路。

对于设计工程师来说,不仅是要知道所用产品的型号,而且还应熟悉生产这些产品的工艺,从而能够从一类放大器中选出一种放大器做特定的应用。

表1 给出了各种运算放大器结构的性能情况。

(一)模块放大器目前使用几种工艺生产运算放大器,性能最高的放大器是以模块的形式由分立元件构成的。

因为使用分立元件,所以可选用像高压输出晶体管、超低电流的FET 管以及阻值很高的电阻等等这类专门制作的元件。

在模块的设计中,在电气测试时(密封之前)通过对直流参数(比如失调电压)或交流参数(比如建立时间)进行细调的方法来选择电阻和电容是可能的。

模块工艺的缺点是实际的尺寸较大和价格高。

由于每个模块都是单独构成的,大量加工制造是不现实的,并且制造成本相对地也是很高的,但是对于那些对性能有极高级别要求的特殊应用来说,由于模块运算放大器的规范由生产厂来保证,所以它们还是有吸引力的。

模块运算放大器包括斩波稳定放大器、可变电抗静电计放大器和宽带高速放大器。

1.斩波稳定放大器当需要放大(或缩小)电平极低的电压信号时,要使用斩波放大器。

斩波放大器的内部是交流耦合的--有效的差动输入信号被斩波成方波,这个方波被解调和放大。

交流耦合消除了许多与运放有关的误差,因此失调和漂移极低。

斩波放大器的主要性能指标:低失调电压10 A低失调漂移0.1 V/℃长期稳定性1 V/年高开环增益107V/V低温升漂移3 V2.静电计放大器当需要尽可能高的输入阻抗和最低的偏置电流时,要使用静电计放大器。

静电计放大器内部也是交流耦合的,输入信号被加到包括低漏流的变容二极管(电压可变电容)的电桥上,该电桥由高频载波信号所激励。

输入电压引起电桥的不平衡,合成的交流误差信号被交流耦合到下一级,在那里被同步解调和放大。

使用低漏流可变电容产生的输入电流低至10fA(1fA=10-15A),获得这样的低电流是以较高的失调电压为代价的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运放芯片选型
运放芯片(Operational Amplifier,简称OP-AMP)作为一种重要的模拟电路元件,在电子设备中有着广泛的应用。

因为其输入输出信号放大倍数大、频响宽,输入阻抗高,输出阻抗低,能够提供良好的放大和滤波特性,因而成为许多电子设备和系统中的关键器件。

运放芯片的选型对电路设计和性能有着重要影响,以下将介绍运放芯片选型的一些关键因素。

首先,需要考虑的是运放芯片的工作电压范围。

根据具体应用场景和电路要求,选择适合的工作电压范围的运放芯片。

通常,运放芯片的工作电压范围可分为单电源和双电源两种。

单电源工作的运放芯片适合于只有正电压供应的场合,而双电源工作的运放芯片既适用于正负电压供应的场合,也适合于只有正电压供应的场合。

其次,需要考虑的是运放芯片的增益带宽积。

增益带宽积是一种关键的性能指标,它是指运放芯片在单位频率范围内的放大倍数乘以频率的积。

增益带宽积越大,运放芯片的高频响应能力越强。

对于高频信号处理和放大的应用,需要选择增益带宽积较大的运放芯片。

同时,还需要考虑运放芯片的输入偏置电流和输入偏置电压。

输入偏置电流是指运放芯片输入端的电流偏离零电流的程度,而输入偏置电压是指电压应用于运放芯片输入端时输出端的电压偏离零电压的程度。

这两个参数越小,表示运放芯片的输入电流和电压偏置能力越好,对精确放大和信号处理的应用更加适合。

另外,还需要关注的是运放芯片的电源电流和静态功耗。

电源电流是指运放芯片从电源中获取的电流,静态功耗是指在没有输入信号时运放芯片本身消耗的功率。

选择低电源电流和低静态功耗的运放芯片,可以减少电路系统的功耗,延长电池使用寿命。

此外,还需考虑运放芯片的温度特性和稳定性。

温度特性是指运放芯片在不同温度下的性能表现,稳定性是指运放芯片的工作在不同温度和电源波动下的性能表现。

应选择具有良好温度特性和稳定性的运放芯片,以确保电路设计的可靠性和稳定性。

最后,还需要考虑运放芯片的价格和供应情况。

根据具体项目的预算和市场供求情况,选择价格适中且易于获得的运放芯片。

同时,还可以考虑供应商的信誉度和售后服务等因素,选择可靠的供应商和品牌的运放芯片。

综上所述,运放芯片选型需要综合考虑工作电压范围、增益带宽积、输入偏置电流和输入偏置电压、电源电流和静态功耗、温度特性和稳定性、价格和供应情况等因素。

根据具体应用需求,选择适合的运放芯片,能够保证电路设计的性能和可靠性。

相关文档
最新文档