六年级奥数最大最小问题答案
小学六年级奥数第25讲 最大最小问题(含答案分析)

第25讲 最大最小问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。
最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
二、精讲精练【例题1】a 和b 是小于100的两个不同的自然数,求a -ba+b的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950 答:a -b a+b 的最大值是4950 。
练习1:1、 设x 和y 是选自前100个自然数的两个不同的数,求x -yx+y的最大值。
2、 a 和b 是小于50的两个不同的自然数,且a >b ,求a -ba+b的最小值。
3、 设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+yx -y的最大值;②求x+yx -y的最小值。
【例题2】有甲、乙两个两位数,甲数27等于乙数的23。
这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。
练习2:1.有甲、乙两个两位数,甲数的310等于乙数的45。
这两个两位数的差最多是多少?2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。
这两个两位数的和最小是多少?3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。
问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。
(完整版)小学六年级奥数题附答案

小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A 仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
六年级奥数题及答案

1、一张圆形纸片的半径是3厘米,一张正方形纸片上的边长是4厘米。
两张纸片重叠一部分放在左面上,覆盖桌面的面积为38平方厘米。
问:两张纸片重合部分的面积是多少?2.在100名学生中,爱好音乐的有56人,爱好体育的有75人。
那么,既爱好音乐又爱好体育的人,最少有多少人?最多有多少人?3.某班参加体育活动的学生有25人,参加音乐活动的有26人,参加美术活动的有24人,同时参加体、音活动的有16人,同时参加音、美活动的有15人同时参加体、美活动的有14人,三个组同时都参加的有5人。
这个班共有多少名学生参加活动?4.某校六年级举行语文和数学竞赛,参加人数占全年级总人数的百分之40.参加语文竞赛的占竞赛人数的五分之二,参加数学竞赛的占竞赛人数的四分之三,两项都参加的有12人。
这个学校六年级共有多少人?5.某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这个班三项都会的至少有几人?6.分母是385的最简真分数共有多少个?这些真分数的和是多少?7.某校参加数学竞赛有120名男生,80名女生,参加语文竞赛的有120名女生,80名男生,已知该校总共有260名学生参加竞赛,其中75名男生两科竞赛都参加了,那么只参加数学竞赛而没有参加语文竞赛的女生有多少人?8.在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。
这本书的插图中正方形最少有多少个?最多有多少个?9.经纬小学四年级有45人参加了慰问坚守在青年宫、防洪纪念塔、九站三个地段抗洪的解放军叔叔的活动,去过青年宫慰问的有19人,去过防洪纪念塔的有18人,去过九站的有16人;去过青年宫、防洪纪念塔两处的有7人,去过青年宫、九站两处的有有6人,去过防洪纪念塔、九站两处的有5人;有3人三处都去过;其余的在校准备慰问品。
准备慰问品的有多少人?10.五年级一班有32人参加数学竞赛,有27人参加英语竞赛,有22人参加语文竞赛,其中参加数学和英语两科的有12人,参加英语和语文两科的有14人,参加数学和语文两科的有10人,那么五年级一班至少有多少人?11.在1到1998的自然数中,能被2整除,但不能被3和7整除的数有多少个?12.某工厂第一季度有百分之80的人全勤,第二季度有百分之85的人全勤,第三季度有百分之95的人全勤,第四季度有百分之90的人全勤。
小学六年级下册 经典奥数题及答案 最全

小学六年级下册的奥数题及答案一.工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题1.A和B是小于100的两个非零的不同自然数。
六年级奥数考点:极值问题

考点:极值问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。
最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
二、精讲精练【例题1】a和b是小于100的两个不同的自然数,求a-ba+b的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a-b a+b 的最大值是99-199+1=4950答:a-ba+b的最大值是4950。
练习1:1、(课后)设x和y是选自前100个自然数的两个不同的数,求x-yx+y的最大值。
99 1012、a和b是小于50的两个不同的自然数,且a>b,求a-ba+b的最小值。
1 973、设x和y是选自前200个自然数的两个不同的数,且x>y,①求x+yx-y的最大值;②求x+yx-y的最小值。
(1)399 (2)201 199【例题2】有甲、乙两个两位数,甲数27等于乙数的23。
这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56答:这两个两位数的差最多是56。
练习2:1.(课后)有甲、乙两个两位数,甲数的310等于乙数的45。
这两个两位数的差最多是多少?甲、乙两数的比是8:3,甲数最大是96 ,差最大是60。
2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。
这两个两位数的和最小是多少?甲、乙两数的比是3:10,甲数最小是102,和最小是442。
3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?一、二、三道工序所需的工人数的比是148:132:128=14:21:24,所以至少安排14+21+24=59个工人。
人教版小学六年级奥数题

人教版小学六年级奥数题1. 1.一个三位小数精确到十分位后是1.0,这个三位小数最大是(),最小是()。
[填空题] *_________________________________(答案:1.049 0.950)2. 2.一个圆柱体的底面积是圆锥体的2倍,高是圆锥体的1/6,那么,这个圆柱体的体积与圆锥体的体积比是()。
[填空题] *_________________________________(答案:1:1)3. 3.上午10时,小明测量了一根2米长的竹竿的影子长是0.8米,然后立即测量出一颗大树的影子是2.4米。
这颗大树的高度是()米。
[填空题] *_________________________________(答案:6)4. 4.手表中的一个零件长0.12毫米,把它画在比例尺是50:1的图纸上,长()厘米。
[填空题] *_________________________________(答案:0.6)5. 5.鸡兔共有脚26只,若交换鸡兔数量,那么它们一共有脚22只。
鸡有()只,兔有()只。
[填空题] *_________________________________(答案:3 5)6. 6.两个非零自然数A和B的最大公因数是15,已知A=2×3×3×m,B=3×m,那么A和B的最小公倍数是()。
[填空题] *_________________________________(答案:90)7. 7.A和B是两个自然数,A除以B的商是3,则A和B的最大公因数是(),最小公倍数是()。
[填空题] *_________________________________(答案:B A)8. 8.若4x―5 = 35,那么5x―4 =() [填空题] *_________________________________(答案:46)9. 9.画圆时圆规两脚叉开的距离是2厘米,画出的半圆的周长是()厘米。
小学六年级奥数第24讲 比较大小(含答案分析)

第24讲 比较大小一、知识要点我们已经掌握了基本的比较整数、小数、分数大小的方法。
本周将进一步研究如何比较一些较复杂的数或式子的值的大小。
解答这种类型的题目,需要将原题进行各种形式的转化,再利用一些不等式的性质进行推理判断。
如:a >b >0,那么a 的平方>b 的平方;如果a >b >0,那么1a<1b;如果a b>1,b >0,那么a >b 等等。
比较大小时,如果要比较的分数都接近1时,可先用1减去原分数,再根据被减数相等(都是1),减数越小,差越大的道理判断原分数的大小。
如果两个数的倒数接近,可以先用1分别除以这两个数。
再根据被除数相等,商越小,除数越大的道理判断原数的大小。
除了将比较大小转化为比差、比商等形式外,还常常要根据算式的特点将它作适当的变形后再进行判断。
二、精讲精练 【例题1】比较777773777778 和888884888889的大小。
这两个分数的分子与分母各不相同,不能直接比较大小,使用通分的方法又太麻烦。
由于这里的两个分数都接近1,所以我们可先用1分别减去以上分数,再比较所得差的大小,然后再判断原来分数的大小。
因为1-777773777778 =5777778 ,1-888884888889 =58888895777778 >5888889 所以777773777778 <888884888889。
练习1: 1、比较77777757777777 和66666616666663的大小。
2、将9876598766 ,98769877 ,987988 ,9899按从小到大的顺序排列出来。
3、比较235861235862 和652971652974的大小。
【例题2】比较1111111 和111111111哪个分数大? 可以先用1分别除以这两个分数,再比较所得商的大小,最后判断原分数的大小。
因为1÷1111111 =1111111 =1011111÷111111111 =111111111 =1011111101111 >1011111 所以1111111 <111111111练习2: 1、比较A =3331666 和B =33166的大小2、比较111111110222222221 和444444443888888887的大小3、比较88888878888889 和99999919999994的大小。
小学六年级数学奥数含答案及解题思路

小学六年级数学奥数含答案及解题思路数学奥数一直被认为是考验学生数学综合能力的一种高水平考试。
对于小学六年级的学生来说,参加数学奥数的挑战可以帮助他们加深对数学的理解和应用能力。
本文将介绍一些小学六年级数学奥数的题目,并给出相应的答案和解题思路。
题目一:计算问题已知:9.6 + 5.3 = 14.9, 74.2 - 32.1 = 42.1求解:74.2 + 9.6 - 32.1 + 5.3 = ?答案:56.9解题思路:首先,利用小学阶段已学过的数学运算法则,按照先加后减的原则,先计算74.2 + 9.6 = 83.8,再减去32.1,得到答案56.9。
题目二:图形问题给定一个矩形ABCD,AB = 6cm,BC = 8cm。
在边AB上取一点E,使得AE = 2cm。
连接DE交BC于点F,连接AF,并且延长交矩形BC 延长线于点G。
求解角AFG的大小。
答案:90°解题思路:在矩形BCDG中,对角线交叉点上的角度一般为90°。
因此,角AFG的大小为90°。
题目三:逻辑问题根据下面的数字序列,找出规律,填入问号处。
2, 4, 8, 16, ? , 64答案:32解题思路:观察数字序列可以发现每个数都是前一个数的2倍。
因此,缺失的数字应该是16的2倍,即32。
题目四:计算器问题将计算器上的数字1234随机按下,得到一个四位整数。
求解这个四位整数最大可以是多少?答案:4321解题思路:由于计算器上的数字不能重复使用,所以最大的数应该是将数位上的数字从大到小排列,即4321。
题目五:几何题已知三角形ABC,其中∠B = 60°,BC = 5cm。
在边BC上取一点D,使得BD = 3cm。
连接AD并延长至交BC的延长线上的点E。
求解AE的长度。
答案:8cm解题思路:根据三角形相似定理,可以得出AB/BC = AE/EC。
已知AB = BC = 5cm,代入得5/5 = AE/(3+2)。
六年级奥数定义新运算及答案

六年级奥数定义新(Xin)运算及答案1.规(Gui)定:a※b=(b+a)×b,那(Na)么(2※3)※5= 。
2.如(Ru)果a△b表(Biao)示,例(Li)如3△4,那(Na)么,当a△5=30时(Shi), a= 。
3.定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b是任意有理数,我们规定: a⊕b= a+b-1,,那么。
5.x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是。
6.如果a⊙b表示,例如4⊙5=3×4-2×5=2,那么,当x⊙5比5⊙x大5时,x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a※b=.如果(x※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x※y=,其中的表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x※m=x(m≠0),则m的数值是。
10.设a,b为自然数,定义a△b。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a,b为自然数,定义a※b如下:如果a≥b,定义a※b=a-b,如果a<b,则定义a※b= b-a。
(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a※b= b※a;②(a※b)※c= a※(b※c)。
12.设a,b是两个非零的数,定义a※b。
最值问题(六年级奥数题及答案)

最值问题
阶梯教室座位有10排,每排有16个座位,当有150个人就坐时,某些排坐着的人数就一样多.我们希望人数一样的排数尽可能少,则相同人数的至少有排.
解:至少有4排.
如果排人数各不相同,那么这10排最多分别坐16、15、14、13、……、7人,则最多坐16+15+14+13+12+1பைடு நூலகம்+10+9+8+7=115
(人);
如果最多有2排人数相同,那么最多坐(16+15+14+13+12)×2=140(人);
如果最多有3排人数一样,那么最多坐(16+15+14)×3+13=148(人);
如果最多有4排人数一样,那么最多坐(16+15)×4+14×2=152(人).
由于148<150<152,所以只有3排人数一样的话将不可能坐下150个人,相同人数的至少有4排.
六年级下册奥数试题最大与最小全国通用(含答案)

第八讲最大与最小在实际生活与生产实践中,人们总是想用最少的财力、物力、人力以及时间等在可能的范围内取得最佳效益。
况且,在许多现实问题中有时很难确定或者就不需要具体的每个数值,有时只关心最大、最小等极值。
这一讲就来研究某个量在一定条件下取得最大值或最小值问题。
这类问题题目中经常出现“最小”、“至少”、“至多”等术语。
经常只能根据具体问题,综合运用所学知识进行求解。
例1某校六年级一班准备用100元钱买圣诞树装饰品。
在花店这样的装饰品成束出售,由20朵花组成的花束每束价值4元,由35朵花组成的花束每束价值6元,由50朵花组成的花束每束价值9元,请问每种花束各买多少才能买到最多的花朵?分析:想用100元钱买到最多的花朵,题目中有三种花束:A种:由20朵花组成的花束价值4元B种:由35朵花组成的花束价值6元C种:由50朵花组成的花束每束价值9元平均1元钱可买A种花朵5朵或B种花朵5.8朵或C种花朵5.5朵,为了买到最多的花朵,应该多买B种花束解:经分析可知由35朵花组成的B种花束中的花朵最便宜,宜多买。
由于每束6元,故100元钱可买16束,还剩4元钱,这4元钱恰好买一束由20朵花组成的A种花束,这时共买花朵:16×35+20=580(朵),若B种花束少买几束,增加A种或C种花束的数量,都不能使花朵数达到580朵。
因此,应买由35朵花组成的花束16束和由20朵花组成的花束1束,可使花朵数量最多:580朵。
说明:此题也可设A种、B种、C种花束各买x束、y束、z束时,可使花朵最多,列方程:4x+6y+9z=100,x,y,z是自然数可以先缩小字母的取值范围。
例如12元能买3束A种花束或2束B种花束,分别得到60朵花和70朵花,于是很清楚在最优解中A种花束不应超过2束。
同理,比较B种花束和C种花束,发现要使花朵最多,C种花束不应超过1束,即x≦2,z≦1,下面只有很少的几种情况了,可以一一列举,同样可以求得x=1,z=0,y=16例2有一类自然数,从第三个数字开始,每个数字恰好是它前面两个数字之和,如134,1459等等,求这类数中最大的自然数和最小的自然数。
六年级上册奥数试题:第4讲 最大与最小 全国通用(含答案)

第4讲最大与最小知识网络人们经常考虑有关“最”的问题,如最大、最小、最多、最少、最快、最慢等。
这类求最大值、最小值的问题是一类重要典型的问题,我们在实际生产和生活中经常遇到。
在本书的学习中我们经常要用到以下几个重要结论:(1)两个数的和一定,那么当这两个数的差最小时,它们的积最大。
(2)三个数a、b、c,如果a+b+c一定,只有当a=b=c时,a×b×c的积才能最大。
(3)两个数的积一定,那么当两个数的差最小时,它们的和最小。
(4)在所有周长相等的n边形中,以正n边形的面积最大。
(5)在周长相等的封闭平面图形中,以圆的面积为最大。
(6)在棱长的和一定的长方体中,以长、宽、高都相等的长方体,即正方体的体积最大。
(7)在所有表面积一定的几何体中,球体体积最大。
重点·难点本节所涉及的题型较多,但一般都要求根据一个不变量来确定另一变量的最大值或最小值。
如何根据题意,灵活运用不同的方法来求出表达式,再求最值,或直接求最值是本讲的重点。
这就要求我们不能太急于入手,不妨从一些比较简单的现象或数字开始,找出规律,进而解决问题。
学法指导解决本节问题的方法和策略常常因题而异,归纳起来有以下几种常用的方法:(1)从极端情形入手。
(2)枚举比较。
(3)分析推理。
(4)构造。
[例1]不能写成两个不同的奇合数之和的最大偶数为多少?思路剖析两个最小的不同的奇合数为9和15,9+15=24,因此小于24的偶数都不能写成两个不同的奇合数之和。
下面我们只需要考虑大于24的偶数即可。
15后面的一个奇合数为21,9+21=30,所以比24大比30小的偶数也不能写成两个不同的奇合数之和。
32也不能,34=9+25,36=9+27,38不能,40=15+25,42=15=27,44=9+35,…此时初步确定不能写成两个不同的奇合数之和的最大偶数为38。
解答根据以上分析,我们初步确定所求的最大偶数为38,下面我们给予证明。
六年级奥数年龄问题(三)教师版

6-1-8.年龄问题(三)教学目标1.六年级奥数年龄问题〈三〉教师版2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.知识精讲知识点说明:一、年龄问题变化关系的三个基本规律:1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量;3.两个人之间的年龄差不变二、年龄问题的解题要点是:1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系.2.关键:抓住“年龄差”不变.3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式.4.陷阱:求过去、现在、将来。
年龄问题变化关系的三个基本规律:1.两人年龄的差是不变的量;2.两个人的年龄增加量是不变的;3.两人年龄的倍数关系是变化的量;年龄问题的解题正确率保证:验算!例题精讲年龄与和差倍分问题综合【例 1】王刚、李强和小莉、小芳是两对夫妻,四人的年龄和为132,丈夫都比妻子大5岁,李强比小芳大6岁.小莉〈〉岁.【考点】年龄问题【难度】3星【题型】填空【关键词】走美杯,3年级,初赛【解析】通过丈夫都比妻子大5岁,李强比小芳大6岁.知道李强和小莉才是夫妻,那么小莉比李强小5岁,王刚和小芳是夫妻,小芳比李强小6岁,小芳又比王刚小5岁,可见王刚比李强小1岁,画图如下:我们可以先求出李强的年龄:〈132+1+6+5〉÷4=36〈岁〉,那么小莉的年龄是:36-5=31〈岁〉。
【答案】小莉31岁。
【例 2】一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?【考点】年龄问题【难度】3星【题型】解答【解析】妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷〈1+4+4〉=8〈岁〉,妈妈的年龄是:8×4=32〈岁〉,爸爸和妈妈同岁为32岁.【答案】孩子8岁,爸爸妈妈32岁【例 3】父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?【考点】年龄问题【难度】3星【题型】解答【解析】再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55+〈岁〉,由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5+倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.5年后的年龄和为:455255+⨯=〈岁〉;()〈岁〉÷+=5年后儿子的年龄:554111儿子今年的年龄:1156-=〈岁〉-=〈岁〉,父亲今年的年龄:45639【答案】儿子6岁,父亲39岁【巩固】父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?【考点】年龄问题【难度】3星【题型】解答【解析】由已知条件可以得出,8年前父子年龄之和是608244-⨯=〈岁〉,又知道8年前父亲的年龄正好是儿子的3倍,由此可得:儿子:608231819()()〈岁〉;父亲:601941-=〈岁〉-⨯÷++=【答案】父亲41岁,儿子19岁【例 4】王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是18岁.王老师今年32岁,李老师今年多少岁?【考点】年龄问题【难度】3星【题型】解答【解析】王老师比李老师大2031836-=〈岁〉.⨯-⨯=〈岁〉.故李老师今年的年龄为32626【答案】26岁【例 5】小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁?【考点】年龄问题【难度】3星【题型】解答【解析】把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:小明的年龄是:〈53+2〉÷〈4+1〉=11〈岁〉,爸爸的年龄是:53-11=42〈岁〉,小明与爸爸的年龄差是:42-11=31〈岁〉.【答案】31岁【例 6】我们每次过生日都要吃蛋糕,一般蛋糕上面都要插蜡烛,而且蜡烛数目恰好等于他生日那天的年龄.小明每年过生日都要吃蛋糕,今天又是小明的生日,从出生到今天,他的生日蛋糕共有24根蜡烛,则小明今天过的是____________________岁生日.【考点】年龄问题【难度】3星【题型】填空【关键词】学而思杯,4年级,第2题【解析】12345621++++++=,无法达到24。
六年级奥数--最大最小问题

六年级奥数——最大最小问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。
最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
二、精讲精练【例题1】a 和b 是小于100的两个不同的自然数,求a -b a+b的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950答:a -b a+b 的最大值是4950。
练习1:1、设x 和y 是选自前100个自然数的两个不同的数,求x -y x+y的最大值。
2、a 和b 是小于50的两个不同的自然数,且a >b ,求a -b a+b的最小值。
3、设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+y x -y的最大值;②求x+y x -y的最小值。
有甲、乙两个两位数,甲数27等于乙数的23。
这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56答:这两个两位数的差最多是56。
练习2:1、有甲、乙两个两位数,甲数的310等于乙数的45。
这两个两位数的差最多是多少?2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。
这两个两位数的和最小是多少?3、加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。
问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。
六年级奥数第24讲:最值问题

最值初步在小学数学竞赛中,常常需要求“最大”、“最小”、“最多”、“最少”、“最近”、最远“等问题,这类数学问题叫最值问题。
常用解题方法有:①限定范围,②放缩,③估计,④列表等。
例1、(1+9219)+(1+9219×2)+(1+9219×3)+…+(1+9219×10)+(1+9219×11)的结果是χ,与χ最接近的数是多少?做一做:设411+812+1613+3214+6415+12816+25617的结果为a 最接近的整数是多少?例2、问:在下面四个算式中,最大的得数数应是多少? (1)(171+191)×20 (2)(241+291)×30 (3)(311+371)×40 (4)(411+471)×50做一做:下面四个算式中,哪一个的结果最大?哪一个的结果最小?(1)(199-293)×40 (2)(194-274)×30(3)(215-315)×24 (4)(217-337)×17例3、在下面的□中分别填上加、减、乘、除四种运算符号,使得到的四个算式的得数之和尽可能大,这个和等于多少?做一做:在下面 中分别填入+、-、×、÷符号,使a,b,c,d 之和最大例4、用0,1,2,3,4,5,6,7,8,9十个数字组成五个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大。
那么,这五个两位数的和是多少?做一做:用下面写有数字的四张卡片排成四位数,问:其中最小的数与最大的数的和是多少?例5、用1,2,3,4,5,6,7七个数字组成三个两位数,一个一位数,并且使用这四个数之和等于100,要求最大的两位数尽可能大,那么,最大的两位数是多少?做一做:用1~7这七个数字组成三个两位数和一个一位数,并且使这四个数的和等于100。
若要求最大的两位数尽可能小,那么,最大的两位数是多少?例6、在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间添上一个加号或一个减号,组成一个算式,要求:1.版式的结果等于37;2.这个算式中的所有减数(前面添了减号的数)的乘积尽可能大。
高斯小学奥数六年级上册含答案第18讲最值问题二

( 2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是
36 立方厘米,
这根铁丝的长度是多少厘米?
例 2. 有 5 袋糖,其中任意 3 袋的总块数都超过 60 .这 5 袋糖块总共最少有多少块? 「分析」 每 3 袋的总块数都超过 60 ,要求 5 袋的总块数.事实上我们以前做过类似的 题:“已知三个数两 两的和数, 求这三个数的总和. ”这样的题大家是怎么处理的呢?它 的处理方法能否应用到本 题中来呢?
那么邮递员从邮局出发,要走
1 1 1 邮局 111
第十八讲 最值问题二
例 7. 答 案: 294 详解: 长方体满足: 长 宽 高 80 4 20 厘米,要使体积最大,就应该使三边长度 尽量接近 . 所 以当三边长度分别为 7 厘米、 7 厘米和 6 厘米时,体积最大,为 7 7 6 294 立方厘米 .
( 2)要使剩下的数尽量小,就要让数的首位是
1,第二位起是尽量多的 0.首位上的 1
取第一个数字 1 就行了 . 然后去掉
234567891 共 9 个数,留下第一个
0; 再去掉
1112131415161718192 共 19 个数,留下第 2 个 0; 再去掉 3 次的 19 个数,就能得到第
3、4、5 个 0. 现在一共去掉了 9 19 4 85 个数,剩下的数前六个数字是
「分析」 为了让这样的三个数的乘积最大, 我们当然要让三个数的首位最大. 那么首位 应该
是多少呢?注意到这三个数都是
9 的倍数, 9 的倍数有什么特征呢?它对这三个数
提出了怎样的要求?
练习 3、用 1、2、 3、4、 5、6 各一个组成两个三位数,使得它们都是 要求乘积最大,请写出这个乘法算式.
六年级下册数学试题-奥数专练:最值问题(含答案)全国通用

最值问题1.最值问题在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”,又称“最值问题”。
在日常生活、工作中,经常会遇到有关最短路线、最短时间、最大面积、最大乘积等问题,这就是在一定条件下的最大值或最小值方面的数学问题。
最值问题在小学奥数各个专题中都有一定的应用,几何,数论,应用题,杂题等各类题型都可以以最值的形式出题,因此要想学号最值问题,需要全面掌握奥数体系,了解各个部分的知识点,加以综合运用。
2.最值问题采用的方法很多,主要有列表法,方程法,极值判断法,构造法,枚举法等等。
例1有一类自然数,它的各个数位上的数字之和为2003,那么这类自然数中最小的是几?例2某公共汽车从起点开往终点站,中途共有13个停车站。
如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中,正好各有一位乘客从这一站到以后的每一站,那么为了使每位乘客都有座位,这辆公共汽车至少应有多少个座位?例3将前100个自然数依次无间隔地写成一个192位数:123456789101112……9899100从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?例4阶梯教室座位有10排,每排有16个座位,当有150个人就座,某些排坐着的人数就一样多。
我们希望人数一样的排数尽可能少,这样的排数至少有多少排?将l,2,3…49,50任意分成10组,每组5个数,在每组中取数值居中的那个数为“中位数”,求这10个中位数之和的最大值及最小值。
一组互不相同的自然数,其中最小的数是1,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和,问:这组数之和最大值是多少?当这组数之和有最小值时,这组数都有哪些数?并说明和是最小值的理由。
测试题1.某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有多少人?2.小王现有一个紧急通知需要传达给小区内的975个人。
小学数学六年级奥数《最值问题(1)》练习题(含答案)

小学数学六年级奥数《最值问题(1)》练习题(含答案)一、填空题1.一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试 次才能配好全部的钥匙和锁.2.用长和宽分别是4厘米和3厘米的长方形小木块,拼成一个正方形,最少要用这样的木块 块.3.一个一位小数用四舍五入法取近似值精确到万位,记作50000.在取近似值以前,这个数的最大值是 .4.100个自然数,它们的总和是10000,在这些数里,奇数的个数比偶数的个数多,那么这些数里至多有 个偶数.5.975⨯935⨯972⨯( ),要使这个连乘积的最后四个数字都是零.在括号内最小应填 .6.有三个连续自然数,它们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是 .7.下图九个数中取出三个数来,这三个数都不在同一横行,也不在同一纵行.问:怎样取才能使这三个数之和最大,最大数是 .8.农民叔叔阿根想用20块长2米,宽1.2米的金属网建一个靠墙的长方形鸡窝.为了防止鸡飞出,所建鸡窝的高度不得低于2米,要使鸡窝面积最大,长方形的长和宽分别应是 .9.一个三角形的三条边长是三个两位的连续偶数,它们的末位数字和能被7整除,这个三角形的最大周长等于 .10.农场计划挖一个面积为432m 2的长方形养鱼池,鱼池周围两侧分别有3m 和4m 的堤堰如图所示,要想占地总面积最小,水池的长和宽应为 .二、解答题11.下图中,已知a 、b 、c 、d 、e、f 是不同的自然数,且前面标有两个箭头的每一个数恰等于箭头起点的两数的和(如b =a +d ),那么图中c 最小应为多少?a b cd ef12.唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n 次指令,米老鼠就以原速度的n ⨯10%倒退一分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少应是多少次?13.某游泳馆出售冬季学生游泳卡,每张240元,使用规定:不记名,每卡每次只限一人,每人只限一次.某班有48名学生,老师打算组织学生集体去游泳,除需购买若干张游泳卡,每次游泳还需包一辆汽车,无论乘坐多少名学生,每次的包车费均为40元.若要使每个同学游8次,每人最少交多少钱?14.某商店需要制作如图所示的工字形架100个,每个由铝合金型材长为2.3米,1.7米,1.3米各一根组装而成.市场上可购得该铝合金型材的原料长为 6.3米.问:至少要买回多少根原材料,才能满足要求(不计损耗)?———————————————答 案——————————————————————1. 6第一把钥匙最坏的情况要试3次,第二把要试2次,第三把要试1次,共计6次.2. 12因4和3的最小公倍数为12,故最少需这样的木块12块.3. 50000.44. 48一共有100个自然数,其中奇数应多于50个,因为这100个自然数的总和是偶数,所以奇数的个数是偶数,至少有52个,因而至多有48个.5. 20因975=39⨯52,935=187⨯5,972=243⨯22,要使其积为1000的倍数,至少应乘以5⨯22=20.6. 1105因为12、13、14的公倍数分别加上12、13、14后才依次是12、13、14倍数的连续自然数,故要求是13的倍数的最小自然数,只须先求12、13、14的最小公倍数为1092,再加上13得1105.7. 20第一横行取6,第二横行取7,第三横行取7.8. 12米,6米.金属网应竖着放,才能使鸡窝高度不低于2米.如图,设长方形的长和宽分别是x 米和y 米,则有x +2y =1.2⨯20=24.长方形的面积为S =xy =()y x 221⨯.因为x 与2y 的和等于24是一个定值,故它们的乘积当它们相等时最大,此时长方形的面积S 也最大,于是有:x =12,y =6.9. 264依题意,末位数字和能被7整除的只有7、14、21等三种.但三个两位的连续偶数相加其和也一定是偶数,故符合题意的只有14.这样三个最大的两位连续偶数.它们的末位数字又能被7整除的,便是90、88、86,它们的和即三角形最大周长为90+88+86=264.10. 24m ,18m如图,设水池边长为xm ,宽为ym ,则有xy =432,占地总面积S =(x +8)(y +6)m 2 于是S =xy +6x +8y +48=6x +8y +480.因6x +8y =48⨯432为定值,故当6x =8y 时,S 最小,此时x =24,y =18.11. 依题意,d 应当取最小值1,那么a 和f 只能一个为2,另一个为4.这样,根据b =a +d ,e =d +f ,b 和e 便只能一个为3,另一个为5,而c =b +e .所以c 最小应为3+5=8.12. 米老鼠跑完全程用的时间为10000÷125=80(分),唐老鸭跑完全程的时 间为10000÷100=100(分).唐老鸭第n 次发出指令浪费米老鼠的时间为n n 1.01125%101251+=⨯⨯+. 当n 次取数为1、2、3、4…13时,米老鼠浪费时间为1.1+1.2+1.3+1.4+…+2.3=22.1(分)大于20分.因为米老鼠早到100-80=20分,唐老鸭要想获胜,必须使米老鼠浪费的时间超过20分钟,因此唐老鸭通过遥控器至少要发13次指令才能在比赛中获胜.13.设一共买了x 张卡,一共游泳y 次,则共有xy =48⨯8=384(人次),总运费为:(240x +40y )元.因240x ⨯40y =240⨯40⨯384是一定值,故当240x =40y ,即y =6x 时和最小,此时可求得x =8,y =48.总用费为240⨯8+40⨯48=3840(元),平均每人最少要交3840÷48=80(元).显然④⑤⑥三种方案损耗较小. ④⑤⑥⑦方案依次切割原材料42根、14根、29根和1根共用原材料42+14+29+1=86(根).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五周 最大最小问题
例1:
a 和
b 是小于100的两个不同的非零自然数,求a -b a+b
的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99
a -
b a+b 的最大值是99-199+1 =4950
答:a -b a+b 的最大值是4950。
练习1:
1、 设x 和y 是选自前100个非零自然数的两个不同的数,求x -y x+y
的最大值。
2、 a 和b 是小于50的两个不同的非零自然数,且a >b ,求a -b a+b
的最小值。
3、 设x 和y 是选自前200个非零自然数的两个不同的数,且x >y ,①求x+y x -y
的最大值;②求x+y x -y
的最小值。
例2:
有甲、乙两个两位数,甲数27 等于乙数的23。
这两个两位数的差最多是多少? 甲数:乙数=23 :27
=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。
练习2:
1、 有甲、乙两个两位数,甲数的310 等于乙数的45。
这两个两位数的差最多是多少?
2、 甲、乙两数都是三位数,如果甲数的56 恰好等于乙数的14。
这两个三位数的和最小是多少?
3、 加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48
个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?
例3:
如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。
问:这样的数对共有多少个?
在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和减数同时减去1后,又得到一个满足题意条件的四位数对。
为了保证减数是四位数,最多可以减去78,因此,这样的数对共有78+1=79个。
答:这样的数对共有79个。
练习3
1、 两个四位数的差是8921。
这两个四位数的和的最大值是多少?
2、 如果两个三位数的和是525,就说这两个三位数组成一个数对。
那么这样的数对共有
多少个?组成这样的数对的两个数的差最小是多少?最大是多少?
3、 如果两个四位数的差是3456,就说这两个数组成一个数对。
那么,这样的数对共有多
少个?组成这样的数对的两个数的和最大是多少?最小是多少?
例4.
三个连续自然数,后面两个数的积与前面两个数的积之差是114。
这三个数中最小的是多少?
因为:最大数×中间数-最小数×中间数=114,即:(最大数-最小数)×中间数=114 而三个连续自然数中,最大数-最小数=2,因此,中间数是114÷2=57,最小数是57-1=56
答:最小数是56。
练习4
1、 三个连续的奇数,后两个数的积与前两个数的积之差是252。
三个数中最小的数
是______.
2、 a 、b 、c 是从大到小排列的三个数,且a -b =b -c ,前两个数的积与后两个数的
积之差是280。
如果b =35,那么c 是_____。
3、 被分数67 ,514 ,1021
除得的结果都是整数的最小分数是______。
例5.
三个数字能组成6个不同的三位数。
这6个三位数的和是2886。
求所有这样的6个三位数中的最小的三位数。
因为三个数字分别在百位、十位、个位各出现了2次。
所以,2886÷222能得到三个数字的和。
设三个数字为a 、b 、c ,那么6个不同的三位数的和为
abc+acb+bac+bca+cab+cba
=(a+b+c )×100×2+(a+b+c )×10×2+(a+b+c )×1×2
=(a+b+c )×222
=2886
即a+b+c =2886÷222=13
答:所有这样的6个三位数中,最小的三位数是139。
练习5
1、 有三个数字能组成6个不同的三位数。
这6个不同的三位数的和是3108。
所有这样
的6个三位数中最大的一个是多少?
2、 有三个数字能组成6个不同的三位数。
这6个不同的三位数的和是2220。
所有这样
的6个三位数中最小的一个是多少?
3、 用a 、b 、c 能组成6个不同的三位数。
这6个三位数相加的和是2886。
已知a 、b 、c
三个数字中,最大的数字是最小数字的2倍,这6个三位数中最小的数是多少?
答案:
练1
1、 99101
2、 197
3、 (1)399 (2) 201199
练2
1、 甲、乙两数的比是8:3,甲数最大是96 ,差最大是60。
2、 甲、乙两数的比是3:10,甲数最小是102,和最小是442。
3、 一、二、三道工序所需的工人数的比是148 :132 :128 =14:21:24,所以至少安排
14+21+24=59个工人。
练3
1、 9999+(9999-8921)=11077
2、 较小的数最大是(521-1)÷2=262,100~262共有163个自然数,所以共有163对,
两个数的差最大是525-100-100=325
3、 数对共有9999-3456-1000+1=5544个,两个数的和最大是9999-3456+9999=
16542,两个数的和最小是1000+3456+1000=5456
练4
1、 最大数-最小数=4 中间数=252÷4=63 最小数=63-2=61
2、 根据题意可得(a -c )×b =280,进而可以推出a -c =280÷b =280÷35=8,所以,c =35-8÷2=31
3、 所求的分数,它的分子是6,5,10的最小公倍数,分母是7,14,21的最大公约数,
所以答案是307。
练5
1、 符合题意的三个数字之和是3108÷222=14,因此,所有这样的6个三位数中最大的
一个是941(三个数字不能有0,否则就不能排出6个不同的三位数)。
2、 三个数字的和是2220÷222=10,最小的一个是127。
3、 最小的数是346。