[课件]第一讲 逐步回归分析PPT

合集下载

第一讲 逐步回归分析讲解

第一讲   逐步回归分析讲解

2 1 4 2
A(0)

1
1.5
3
4

4
3
10
5

0.5 0.5 2 1
A(1)

0.5
1
1 3

2
1 2 1
1.5-1×0.5=1 3-1×2=1 4-1×1=3
0.5-0.5×(-0.5)=0.75 2-0.5×1=1.5 1-0.5×3=2.5
SS
1b1

SP12 b2

SP13b3

SP1y
SP21b1 SS 2b2 SP23b3 SP2 y
SP31b1 SP32b2 SS 3b3 SP3y
2b1 1b2 4b3 2 1b1 1.5b2 3b3 4 4b1 3b2 10b3 5
x5
y,%
68.6
70.9
62.2
66.7
57.3
60.5
56.7
60.5
58.0
58.9
x
17.2
13.3
10.3
64.4
62.5
63.4
s
4.1
3.8
4.4
7.0
5.6
3.8
一、计算相关系数阵
1、计算各变量的平均数(为表1—1) 设自变量x1,x2,…,xm与依变量y存在线性关系,m元线性回归 方程为:
由x估测y的估计值 yˆ 的直线回归方程: yˆ =a+bx
第一节 逐步回归分析的基本方法
逐步回归分析的基本方法可以通过一个实例介绍其分析步骤。 例1 为考察舍内干球温度(x1)、湿球温度(x2)、露点温度(x3)、相对湿 度(x4)及舒适度指数(x5)对罗曼蛋鸡产蛋率(y)的影响。随机抽测12个位点 各64只鸡在56—67周令的平均周产蛋率如表1—1。

逐步回归和通径分析 ppt课件

逐步回归和通径分析 ppt课件

表1 表14-1资料四元线性回归和偏回归系数的假设检验
9
逐步回归 通径分析
(2)建立m-1元线性回归方程:
表2表明,三元线性回归方程 和三个自变量的偏回归系数均 极显著或者显著,因此不需要 再作自变量的剔除。
表2 表14-1资料三元线性回归和偏回归系数的假设检验
最优线性回归方程:
y=-46.9663+2.013139x1+0.674643x2+7.830227x3
x1
y
x2
x3
e
16
逐步回归 通径分析 通径分析的假设检验
回归方程的检验
通径系数的检验
17
逐步回归 通径分析
y a b 1 x 1 b 2 x 2 … b m x m e (1)
对(1)进行标准化变换,令:
y y y SS y
x i
xi xi SS i
标准化变量的m元线性回归方程为:
(2)自变量的个数最少
一方面对因变量起显著作用的自变量都选进回归 方程,另一方面对因变量作用不显著的自变量都剔除 回归方程,选择一个最佳的变量组合。
5
逐步回归 通径分析
逐步剔除法 主要步骤逐:步剔除法
(1)从包含全部p个自变量组合的回归方程中逐个
检验回归系数,剔除对因变量作用不显著的自变量
方;(法2)对剔除后剩下的q个自变量建立对因变量的多
通径部分q1 ; 还有
x1 与
x2; x1与x3的间接通径 r13 q3
和 1r2
q 2
部分。
通式: ① xi 对 y 的直接通径 xi y ② xi 对 y 的间接通径 xi xj y
15
逐步回归 通径分析

回归分析 ppt课件

回归分析 ppt课件
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
10
回归分析
2.方差分析: 方差分析反映了模型整体的显著性,一般将模型的检验
19
回归分析
曲线回归分析只适用于模型只有一个自变量且可以化为 线性形式的情形,并且只有11种固定曲线函数可供选择,而 实际问题更为复杂,使用曲线回归分析便无法做出准确的分 析,这时候就需用到非线性回归分析。它是一种功能更强大 的处理非线性问题的方法,可以使用用户自定义任意形式的 函数,从而更加准确地描述变量之间的关系。
回归分析
1
回归分析
•寻求有关联(相关)的变量之间的关系,是指 通过提供变量之间的数学表达式来定量描述变 量间相关关系的数学过程。
•主要内容:
1.从一组样本数据出发,确定这些变量间的定量关系式; 2.对这些关系式的可信度进行各种统计检验 3.从影响某一变量的诸多变量中,判断哪些变量的影响显著, 哪些不显著 4.利用求得的关系式进行预测和控制
观察结果3,模型中的常数项是3.601,t值为24.205,显著性为 0.000;通货膨胀的系数是0.157, t值为2.315,显著性为0.049。所 12以,两个结果都是显著的。
回归分析
结论:
一元线性回归方程: y=a+bx
写出最终模型的表达式为: R(失业率)=3.601+0.157*I(通货膨胀率) 这意味着通货膨胀率每增加一点,失业率就增加 0.157点;
P值(Sig)与0.05作比较,如果小于0.05,即为显著。

SAS 逐步回归 PPT课件

SAS 逐步回归 PPT课件
6
model语句选项(1)
选项 selection= best=
include=
maxstep= noint slentry= slstay=
功能和用法
指定模型选择的方法,可以是前进法(forward)、后退法(backward)、逐 步法(stepwise)等九种方法。
在模型选择方法为RSQUARE、ADJRSQ或CP时使用。当模型选择方法为 ADJRSQ或CP时,此选项用来指定最佳模型的最大个数;当模型选择方法为 RSQUARE时,此选项用来为每一种大小的模型指定其最佳模型的最大个数。 这些最佳模型将在结果中显示或输出到“outest=”选项所指定数据集中。 要求在变量筛选时必须将model语句中所列自变量中的前n个包括在模型中, 变量筛选过程仅在剩余的自变量中进行。当模型选择方法为NONE时此选项 无效。 须设置为正整数。在模型选择方法为FORWARD、BACKWARD或 STEPWISE时,用来指定进行变量筛选的最大步数。对于FORWARD或 BACKWARD方法,此选项的默认值为模型中所包含的自变量个数,而对于 STEPWISE方法,此默认值为上述默认值的三倍。
ridge须设置为一个非负数所组成的列表或单个数值以列表中的每一个数值作为岭常数k进行岭回归分析并将每一次岭回归分析所得的参数估计值输出到outest选项所指定的输出数据集中
SAS-逐步回归
南京医科大学流行病与卫生统计学系 柏建岭
1
reg过程
reg过程是专门用于回归分析的SAS过程,可提供绝大多数 常用的线性回归分析功能;
归模型。 forward(前进法)。
前进法以模型中没有变量开始,对每个自变量, forward计算反映自变量对模型的贡献的F 统计量。这些 F 统计量与model语句中给出的slentry=水平上的值相比 较,如果F 统计量的显著水平没有一个比slentry=水平上 (如果缺省slentry=这个参数,则显著水平假设为0.50) 的值大,则forward停止。否则,forward在模型中加入具 有最大F 统计量的变量,然后forward再计算这些变量的F 统计量直到剩下的变量都在模型的外面,再重复估计过 程。变量就这样一个接一个地进入模型直到剩下的变量 没有一个可以产生显著的F统计量。一旦一个变量进入 了模型,它就不再出去了。

回归分析学习课件PPT课件

回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调

回归及相关分析PPT课件

回归及相关分析PPT课件
或实际场景中。
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 逐 步回归分析
第一讲 逐步回归分析 STEPWISE REGRESSION ANALYSIS
在多元线性回归分析时,为建立一个较为简化又能准确预测依 变量的最优回归方程,通常是逐个剔除复回归方程中经检验对 y 影 响不显著的所有自变量。这种先全部引入,后逐个剔除的方法,也 是建立最优回归方程的一种分析法。此类分析法还很多,它们多适 用于自变量个数较少,或大多数自变量对 y有显著影响的资料分析。 否则,计算量将大大增加。目前较为常用的逐步回归分析法是按自 变量与 y影响程度的大小,逐个地由大至小将自变量引入回归方程。 而每引入一个自变量,都要对方程中的各个自变量作显著性检验。 检验时先选偏回归平方和最小的自变量进行检验,若为显著,余者 皆为显著;若检验差异不显著,即从方程中剔除,直至留在方程中 的自变量均检验为显著后,再引入另一个与 y 影响最大的变量,并 进行显著性检验。如此反复,直至没有自变量可再被引入,而方程 中所有自变量均与y存在显著的线性关系为止。
58.4 58.6 60.2 ┇ 58.0 60.4 71.2 64.4 7.0
x5
68.6 62.2 66.4 ┇ 57.3 56.7 58.0 62.5 5.6
y,%
70.9 66.7 64.3 ┇ 60.5 60.5 58.9 63.4 3.8
正相关:两变量同长同 消 直线相关分析 简单相关分析 负相关:两变量此长彼 消 平衡关系 ( 相关分析 ) 曲线相关分析 复相关分析 多元相关分析 偏相关分析 相关关系 直线回归分析 一元回归分析 曲线回归分析 因果关系 (回归分析 ) 多元线性回归分析 多元回归分析 多元非线性回归分析
相关系数
( x x )( y y ) COV SP ( x x )( y y ) xy xy n 1 r 2 2 2 2 S S SS SS x y ( x x ) ( y y ) ( x x ) ( y y ) x y n 1 n 1
SS b b b 1 1 SP 12 2 SP 13 3 SP 1 y SP b b b 21 1 SS 2 2 SP 23 3 SP 2y SP b b b 31 1 SP 32 2 SS 3 3 SP 3 y
2b1 1b2 4b3 2 1b1 1.5b2 3b3 4 4b 3b 10 b3 5 2 1
2 1 4 2 (0) A 1 1.5 3 4 4 3 10 5 .5 0 .5 2 1 0 (1 ) A 0 .5 1 1 3 2 1 2 1
1.5-1×0.5=1 3-1×2=1 4-1×1=3 0.5-0.5×(-0.5)=0.75 2-0.5×1=1.5 1-0.5×3=2.5
3-4×0.5=1 10-4×2=2 5-4×1=1 -2-1×(-0.5)=-1.5 2-1×1=1 1-1×3=-2 -0.5-1×(-1.5)=1 1-1×(-1)=2 3-1×(-2)=5
0 .5 1 .5 0 .5 .75 0 0.75-1.5×(-1.5)=3 (2 ) A 0 .5 1 1 3 -0.5-1.5×(-1)=1 -0.5-1.5×(-2)=2.5 1 . 5 1 1 2
周令
56 57 58 ┇ 65 66 67
x1,℃
22.1 17.4 20.1 ┇ 13.8 13.0 13.4 17.2 4.1
x2,℃
16.7 12.6 15.7 ┇ 9.4 9.4 10.7 13.3 3.8
x3,℃
13.3 9.0 12.5 ┇ 5.2 6.4 8.3 10.3 4.4
x4,%
回归系数
( x x )( y y ) SP xy b SS ( x x )2 x
ayb x
ˆ 的直线回归方程: 由x估测y的估计值 y ˆ =a+bx y
第一节 逐步回归分析的基本方法
逐步回归分析的基本方法可以通过一个实例介绍其分析步骤。 例1 为考察舍内干球温度(x1)、湿球温度(x2)、露点温度(x3)、相对湿 度(x4)及舒适度指数(x5)对罗曼蛋鸡产蛋率(y)的影响。随机抽测12个位点 各பைடு நூலகம்4只鸡在56—67周令的平均周产蛋率如表1—1。 表1—1各变量的观察值、平均数及标准差 n=12
式中
2 2 2 SS ( x x ) x ( x ) / n x
2 2 2 SSy ( y y ) y ( y ) / n
称x变量的平方和; 称y变量的平方和;
x y 称乘积和(sum of products)。 S P ( x x ) ( y y ) xy xy n
1 1 .5 2 .5 3 (3 ) a 1 2 1 5 1 . 5 1 1 2
b1=2.5 b2=5 b3=-2
预备知识
生物各性状间的关系是相互依赖和相互制约的关系,改变某一性状,即会引起 另一性状也发生变异。而生物现象数量的表现多半是随机的,因此对现象关系的 研究亦就是对随机变量关系的研究。对随机变量关系的研究,在统计学中有相关 分析和回归分析两种不同的方法。相关分析是研究变量间的相互之间关系,研究 变量间相互联系的性质和紧密程度。回归分析是研究一个变量对另一个变量的单 向依存关系,即研究一个变量随另一个变量变化而变化。这里,后一个变量叫自 变量,前一个变量叫依变量或应变量。变量间的相关关系及分析方法归纳如下:
相关文档
最新文档