安全技术——压力容器设计使用年限2014-03-12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力容器设计使用年限
1)一般容器、换热器壳体及管箱:10年;
2)塔类、一般反应器、高压换热器、难于更换的元件或容器:15~20年;
3)球形容器:25年;
4)重要的反应容器:30年.
具体的设计年限应该用用户提出,毕竟设备是有他们使用的,然后再根据使用年限定设备的腐蚀余量;正常应该是这个流程;但是现在包揽业务的都是一些中间商,大家都不知道设计年限,所以这样把这个任务推给了设计者,所以呢,腐蚀余量=年腐蚀速率X设计年限;
新容规TSG R0004-2009里注明:
压力容器设计图纸上应注明设计使用年限,对于这个新要求计算方法。
1、所谓设计使用年限,就是指一台压力容器在正常的工况下,按均匀腐蚀的速率,计算出设计使用年限。我觉得应该叫理论设计使用年限比较妥当,因为实际的压力容器使用年限是算不出来的,因为压力容器工况是在变化的,且存在不可预知。一些不可预知的操作因素也影响了计算结果。所以我觉得只能当做均匀的腐蚀速率,这一“理想状态”进行设计。
2、2 方法原则
先按照设计压力、设计温度等参数计算出容器的计算厚度,这个厚度是压力容器使用年限厚度,我们暂且称为“年限厚度”。也就是说一台压力容器的壁厚减薄到“年限厚度”时,我们就认为这台压力容器是不能使用了,也就是说这台压力容器使用年限已到。
3、具体计算
理论设计使用年限=(名义厚度-年限厚度)/均匀腐蚀速率,均匀腐蚀速率单位为mm/年,关键是这个数据是很难确定的,不同的压力、不同的温度和不同介质下这个数据如何得到呢?《HG20580-1998钢制化工容器设计基础规定》中说也就简单的罗列了腐蚀速率,如腐蚀速率为0.05~0.13mm/年算轻微腐蚀。两台容器,同介质同压力,温度不同,高温的容器肯定比低温容器的寿命短。如何能精确到不同压力、不同的温度、不同的介质下腐蚀速率呢?因为腐蚀速率差0.01的话,计算的寿命差很多的。
压力容器预设运用年限的研讨
错误设计如果设计人员由于受技术条件及观念等因素的制约,在设计时对于结构设计不合理会对压力容器设计使用寿命造成影响。如设备上有大开孔,补强计算采用压力面积法时,接管与壳体连接内外壁没有采用圆弧过渡;如设计低温压力容器时,不采用圆角结构等。
考虑疲劳工况目前,GB150-1998《钢制压力容器》中没有提供元件的疲劳设计方法。因此,当设计温度在JB4732的温度限制范围以内时,可以采用JB4732中的疲劳分析设计方法进行计算。
这种有效次数是将金属温差的波动循环次数乘以JB4732表3-4中所列的相应系数,再将所得次数相加而得到总次数;由热膨胀系数不同的材料组成的部件(包括焊缝),当(a1-a2)>△T>0.00034时的温度波动循环次数。其中a1与a2是两种材料的平均膨胀系数,△T为工作时温度总波动范围。计算上述工况的总循环次数。
或考虑其它条件包括启动与停车在内的全范围压力循环的预计(设计)循环次数,不超过JB4732附录C的疲劳曲线中,以设计温度下材料的设计应力强度Sm的3倍作为Sa所查得的循环次数(Sa为疲劳曲线中对应的应力幅值);正常工作时的预计(设计)压力循环范围不超过。
(P为设计压力,Sa是在相应设计疲劳曲线中与规定的显著压力波动动次数相对应的纵座标值,Sm是设计温度下材料的设计应力强度;如果规定的显著压力波动次数超过设计疲劳曲线上给出的最大循环数,Sa则取对应于曲线上最大循环次数的值);在正常工作及启动与停车过程中,任何相邻两点之间的温度不超过(Sa是在规定的启动与停车循环次数下从所用的设计疲劳曲线上查得的纵座标值,E是在此两点平均温度下的弹性摸量,a为此两点平均温度下的瞬时热膨胀系数);正常工作过程中,任意相邻两点间温度差的波动范围不超过(Sa是在相应的设计疲劳曲线中与规定的显著温度差波动的总循环数相对应的纵座标值);对于用弹性摸量腐蚀裕量腐蚀速率热膨胀系数不同的材料制成的部件,在容器正常工作下的温度波动总代数值范围不超过Sa/[E1a1―E2a2](Sa是在相应的设计疲劳曲线中与规定的显著温度波动次数相对应的数值。在平均温度下两种结构材料的瞬时热膨胀系数a1和a2,弹性模量为E1与E2。显著温度波动是指
整个变化范围超过S/[2(E1a1―E2a2)]的温度波动);机械载荷(不包括压力,包括管线反力)的波动范围规定为由此而引起的应力范围不超过Sa;(Sa 是在相应的设计疲劳曲线中与规定的显著载荷波动总次数相对应的幅值。规定的总次数超过106时,则Sa为对应于106循环次数的幅值)。
计算上述工况总循环次数。设计寿命计算将不作疲劳设计所允许的次数(按JB4732规范取1000次)除以通过以上的条作计算出的总循环次数,得出的数值就是考虑疲劳作用工况下的设计使用寿命,如下式。
设计使用寿命=将分别考虑腐蚀与疲劳工况下计算出的设计使用寿命相比较,小数者则为该容器的设计使用寿命。
计算示例某压力容器由一个筒体和两个半球形封头组成,其材料为16MnR,腐蚀裕度为3mm,腐蚀速率为0.15mm/年。容
器中的自增强接管由0Cr18Ni10构成。容器每年停车维修6次。开启2小时容器达到最大压力2.1MPa,最高温度204℃。
启动中任意两点间的最大温差△T=121℃。在正常操作条件下,两点间的温差△T可以忽略不计。停车时,△T最大值为38℃。已知碳钢的热膨胀系数为6.5×10-6in/°F,不锈钢为9.5×10-6in/°F.如果不进行疲劳分析设计,试确定该容器最多能够安全工作多少年
考虑疲劳工况时的设计使用寿命根据JB4732中3.10.2.1,确定该容器每年总的循环次数a)每年全范围压力循环的循环次数为6次;b)由表可知,在启动中,温差为△T=121℃时的系数为4.关闭时温差为△T=38℃时的系数为1.因此,一年内金属温差波动的有效循环次数为(4+1)×6=30次。
c)在接管连接处,(9.5×10-6―6.5×10-6)×204的值为0.00062,因为该值大于0.00034,所以,每年的有效循环次数为6次。
综上所述,该容器每年总的循环次数为6+30+6=42次。如果不按疲劳分析进行设计,那么该容器最多可以使用设计使用寿命=23.8年考虑腐蚀工况时的设计使用寿命腐蚀裕度为3mm,腐蚀速率为0.15mm/年,则按腐蚀裕量计算寿命设计使用寿命==20年结论本设备的设计使用寿命为20年。
结束压力容器的设计使用寿命不一定等于实际使用寿命,它仅仅是设计者根据容器预期的使用条件而给出的估计,其作用是提醒使用者,当超过压力容器的