高光谱遥感实验

合集下载

高光谱遥感

高光谱遥感
光谱范围 400~850nm 采样间隔 1.8nm 光谱分辨率 <5nm 瞬时视场角 1.5mrad 行象元数 376 信噪比 ~200
• 中国:MAIS、PHI、OMIS-1(10个热波段)、 中国: 个热波段)、 、 、 ( 个热波段 CMODIS(神舟III号) 、Env-DD(环境灾害小卫星) (神舟 号 (环境灾害小卫星)
三、高光谱遥感技术优势与局限性
优势 1:充分利用地物波谱信息资源 :
图 不同波谱分辨率对水铝反射光谱曲线
优势 2: 利用波形 精细光谱特征进行分类与识别地物 : 利用波形/精细光谱特征进行分类与识别地物
Al-OH
Paragonite
Muscovite
Phengite
三种类型的白云母精细光谱特征
岩石的光谱发射率特征
航空高光谱遥感飞行设计图
(2)光谱特征参数定量分析技术 )
不同水分含量的叶片的光谱反射率
RWC(%)=24.5+7.13*面积 (R2=0.845)
(3)光谱匹配技术(二值编码) )光谱匹配技术(二值编码) • 岩矿光谱分类与识别
岩石和矿物
2.15-2.31微米 粘 土 矿 2.24-2.31微米 Mg-OH 对称性>1 滑石 2.15-2.19微米 叶蜡石 2.31-2.35微米 碳 酸 盐
优势 3: 利用图 谱实现自动识别地物并制图 : 利用图-谱实现自动识别地物并制图
局限1:海量数据的传输、 局限 :海量数据的传输、处理与存储 128波段的 波段的OMIS: 采集数据速率 采集数据速率60Mb/s;400Mb/km2 波段的 ;
高光谱遥感信息的图像立方体表达形式是一种新 高光谱遥感信息的图像立方体 表达形式是一种新 型的数据存储格式, 型的数据存储格式,其正面图像是由沿飞行方向的扫 描线合沿扫描方向的像元点组成的一景优选的三波段 合成的二维空间彩色影像; 合成的二维空间彩色影像;其后面依次为各单波段的 图象叠合,其数据量为所有波段图像的总和; 图象叠合,其数据量为所有波段图像的总和;位于图 像立方体边缘的信息表达了各单波段图像最边缘各像 元的地物辐射亮度的编码值或视反射率。 元的地物辐射亮度的编码值或视反射率。

作物长势高光谱

作物长势高光谱

作物长势高光谱
作物长势高光谱遥感是一种利用高光谱遥感技术来监测作物生长状况的方法。

高光谱遥感技术可以通过获取农田地表的多个波段反射光谱信息来分析农作物的生长状态和长势,同时还可以获取植被的生理和生态参数,进而分析农作物的生长状况、营养状况和病虫害情况。

相比传统的遥感方法,高光谱遥感技术具有更高的精度和灵活性,可以更准确地监测作物的生长状况和变化趋势。

通过对高光谱数据的分析和处理,可以提取出与作物生长相关的特征信息,如叶面积指数、生物量、叶绿素含量等,从而实现对作物长势的精准评估。

在作物长势高光谱遥感中,常用的方法包括高光谱图像采集、数据处理和分析、模型建立等。

其中,高光谱图像采集可以通过飞机、卫星等遥感平台来完成,可以获取大范围的农田高光谱数据。

数据处理和分析则是通过对高光谱数据的预处理、特征提取和分类识别等步骤,提取出与作物长势相关的特征信息。

模型建立则是利用提取的特征信息建立预测模型,实现对作物长势的精准预测。

在实际应用中,作物长势高光谱遥感技术可以为农业生产提供重要的决策支持,如制定合理的施肥方案、控制病虫害等。

同时,还可以为科研人员提供更加精准的实验数据和分析结果,有助于推动农业科技的进步和发展。

传感器实训报告

传感器实训报告

常用传感器实训报告高光谱遥感一、实训目的:1、高光谱遥感技术的最初应用就是在地质上,蚀变带是找矿的重要依据,同时,蚀变带在2.2微米处具有光谱吸收特征,其吸收光谱的半带宽在10纳米到50纳米之间。

因此,具有10纳米光谱分辨率的成像光谱仪就有能力直接通过遥感发现蚀变带,以确定找矿的靶区。

同时,通过对植被光谱特征的分析也是找矿的依据,由于矿物中金属离子对植被的侵蚀,会引起植被的病变,使得植被近红外高反射峰就会向短波方向移动5--20纳米,称为“红边蓝移”现象。

高光谱遥感就有能力发现这种现象。

2、人类“鸟瞰”地球的梦想催生了遥感这门科学的兴起,高光谱遥感是遥感科学最前沿的领域。

新中国建立后特别是最近的20多年,中国的高光谱遥感科技研究取得了长足的发展,在某些方面的应用技术实现了出口。

但是,由于缺乏持续性的支持,我们在仪器研制方面还处于落后局面。

人类鸟瞰地球的梦想遥感通俗讲就是遥远的感知,是通过电磁波和记录的相互作用,以波谷和空间两维成像的方式来勘测记录的技术。

3、高光谱(hyper spectral)遥感是上世纪末地球观测系统中最重要的技术突破之一,它克服了传统单波段、多光谱遥感在波段数、波段范围、精细信息表达等方面的局限性,以较窄的波段区间、较多的波段数量提供遥感信息,能够从光谱空间中对地物予以细分和鉴别,在资源、环境、城市、生态等领域得到了广泛应用。

本文介绍了高光谱遥感技术的原理,列举了高光谱技术的运用,以及叙述了其前景与展望。

因此学好高光谱遥感对我们了解遥感这门学科有很好的促进作用。

二、实训内容:1、高光谱遥感的发展:、1957年10月,前苏联发射了第一颗人造地球卫星,拉开了人类进入航天遥感的序幕,他们把相机放在卫星上,围着地球转,对地面进行拍摄。

1972年,美国发射了陆地卫星,这是航天遥感的标志性事件。

二十世纪八十年代遥感领域最重要的发展之一就是高光谱遥感的兴起。

从二十世纪九十年代开始,高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段[1]。

高光谱遥感图像分类准确度分析与评估算法改进

高光谱遥感图像分类准确度分析与评估算法改进

高光谱遥感图像分类准确度分析与评估算法改进摘要:随着遥感技术的发展和高光谱遥感图像数据的广泛应用,图像分类准确度成为评估遥感图像处理算法优劣的重要指标之一。

本文通过分析目前常用的高光谱遥感图像分类算法,发现存在一些问题,例如对于光谱特征提取不准确、样本分布不均衡、特征选择不合理等。

因此,本文提出了几种改进的算法,包括基于深度学习的特征提取和分类、模型融合方法等,以提高高光谱遥感图像分类的准确度。

1. 引言高光谱遥感图像是利用能够接收地物反射或辐射的多个波段信息进行图像获取和解译的一种遥感数据。

由于其具有更多的波段信息和更高的光谱分辨率,高光谱图像能够提供更多的地物属性信息,因此在农业、环境监测、城市规划等领域具有广泛的应用前景。

而高光谱遥感图像的分类准确度,则直接关系到地物分类的精度和应用效果。

2. 目前高光谱遥感图像分类算法存在的问题2.1 光谱特征提取不准确对高光谱遥感图像进行分类,首先需要提取有意义的光谱特征。

目前常用的方法有基于PCA(主成份分析)、SAM(光谱角度匹配)等。

然而,这些方法在提取光谱特征时,容易由于数据噪声、信噪比低等原因导致提取结果不准确,从而影响图像分类的准确度。

2.2 样本分布不均衡高光谱遥感图像分类中,不同类别的样本数量通常是不均衡的。

样本分布不均衡会导致训练的模型对多数类别的分类准确度较高,而对少数类别的分类准确度较低。

这样会影响整体分类的准确度。

2.3 特征选择不合理在高光谱图像分类中,特征选择对分类的准确度起着重要的作用。

目前常用的特征选择方法有相关系数法、信息增益法等。

然而,这些方法在选择特征时,往往无法准确地评估特征与类别之间的关联程度,导致选取的特征不一定是最具代表性和区分性的。

3. 高光谱遥感图像分类准确度分析与评估算法改进3.1 基于深度学习的特征提取和分类深度学习在计算机视觉领域取得了巨大成功,对于高光谱遥感图像分类也有着广泛的应用。

通过使用已经在自然图像领域得到验证的深度神经网络,可以实现对高光谱图像的特征提取和分类。

高光谱遥感

高光谱遥感
(4)基于光谱数据库的地物光谱匹配识别算法; (5)混合光谱分解模型; (6)基于光谱模型的地表生物物理化学过程与参数的识别和反演算 法
25
高光谱影像分析技术:
国内外关于成像光谱仪的遥感应用研究中,所采用 的分析方法可归纳为两大类: 一、 基于纯像元的分析方法 (1)。。。
(2)。。。
二、基于混合像元的分析方法
21
PHI和OMIS成像光谱仪的技术指标
22
• 2002年3月在我国载人航天计划中发射的第三艘试验飞船“神 舟三号”中,搭载了一台我国自行研制的中分辨率成像光谱 仪。这是继美国EOS计划MODIS之后,几乎与欧洲环境卫星 (ENVISAT)上的MERIS同时进入地球轨道的同类仪器。它 在可见光到热红外波长范围(0.4-12.5μm)具有34个波段。 • 2007年10月24日我国发射的“嫦娥-1”探月卫星上,成像光谱 仪也作为一种主要载荷进入月球轨道。这是我国的第一台基 于富里叶变换的航天干涉成像光谱仪,它具有光谱分辨率高 的特点。 • 2008年发射的环境与减灾小卫星(HJ-1)星座中,也搭载一 台工作在可见光—近红外光谱区(0.45—0.95μm)、具有128 个波段、光谱分辨率优于5nm的高光谱成像仪。它将对广大 陆地及海洋环境和灾害进行不间断的业务性观测。 • “风云-3”气象卫星也将中分辨率光谱成像仪作为基本观测仪 器,纳入大气、海洋、陆地观测体系,为对地球的全面观测 和监测提供服务。
18
19
我国高光谱发展:
• 80年代,研制和发展了新型模块化航空成像光谱仪 (MAIS)。这一成像光谱系统在可见—近红外—短波红 外具有64波段,并可与6-8波段的热红外多光谱扫描仪集 成使用,从而使其总波段达到70—72个。
• 高光谱仪器的研制成功,为中国遥感科学家提供了新的技 术手段。通过在我国西部干旱环境下的地质找矿试验,证 明这一技术对各种矿物的识别以及矿化蚀变带的制图十分 有利,成为地质研究和填图的有效工具。

5_高光谱遥感_反演建模

5_高光谱遥感_反演建模

5.3 多元线性回归分析模型
多元线性回归模型:
建立模型的步骤:
5.3 多元线性回归分析模型
多元线性回归模型
5.3 多元线性回归分析模型
多元线性回归模型:
5.3 多元线性回归分析模型
多元线性回归模型:
5.3 多元线性回归分析模型
多元线性回归模型:
5.3 多元线性回归分析模型
多元线性回归模型:
5.4 非线性分析反演模型
一、模式识别:
模式是供模仿用的理想样本。 所谓模式识别,是指从待识别对象中识别出哪些对象与已知模 式相同或相近。 在日常生活中,人们经常用感宫来识别图形、文字、语言等。 在科学技术中,通过气象卫星资料的分析和处理,对未来天气属于何 种类型作出预报;医生通过病情分析,对病人所患病情作出判断; 地质工作者通过对地质资料的分析,对矿藏分布情况作出判断,等等。 这些工作的共同特点是给出了各种已经模式,识别给定的对象属于 哪一种类型,这就是模式识别。 根据光谱信息和样本数据,判断每个像元对应研究对象的大小, 属于模式识别问题。
5.4 非线性分析反演模型
5.4 非线性分析反演模型
5.4 非线性分析反演模型
5.4 非线性分析反演模型
5.4 非线性分析反演模型
一、模式识别:
土壤含水量距离贴近度识别结果
5.4 非线性分析反演模型
二、BP神经网络法: 1、基本原理
5.4 非线性分析反演模型
二、BP神经网络法: 2、模型结构
5.2 一元回归分析模型
一元线性回归模型:
回归分析方法,是研究要素之间具体的数量关系的一种强有力的 工具,运用这种方法能够建立反映光谱特征与研究要素之间具体的数 量关系的数学模型,即回归模型。

遥感上机高光谱数据分析实验

遥感上机高光谱数据分析实验

实验一高光谱数据分析一、实验目的理解波谱库的概念,掌握波谱库操作、浏览和提取影像反射率,学会从感兴趣区中提取波谱信息,并进行彩色合成。

实验过程:打开cup95_at.int,在可用波段列表对话框中,选择Band 193(2.2008um)点击Gray Scale 单选按钮,然后点击Load Band。

将灰度影像加载到显示窗口中。

从主影像窗口菜单中选择Tools →Profiles →Z Profile (Spectrum),提取表观反射率波谱曲线浏览影像波谱并同波谱库进行比较在主影像窗口中,使用鼠标左键点击并拖动缩放指示矩形框或者直接点击鼠标左键,将缩放指示矩形框移动到以所选像素点为中心的区域中,右图曲线发生变化。

打开ENVI给定的波谱库,本次实验使用JPL和USGS波谱库,步骤如下:从ENVI 主菜单中选择Spectral →Spectral Libraries →Spectral Library Viewer。

在Spectral Library Input File 对话框中,点击Open File 按钮,从spec_lib/jpl_lib 子目录中,选择jpl1.sli 波谱库文件,点击OK。

选择Select Input File 区域中的jpl1.sli,点击OK。

在Spectral Library Viewer 对话框中,选择Options →Edit (x, y) Scale Factors,并在Y Data Multiplier 文本框中,输入值1.000,以匹配影像表观反射率范围(1-1000),点击OK。

在Spectral Library Viewer 对话框中,选择下列波谱名称,绘制它们的波谱曲线:ALUNITE SO-4ABUDDINGTONITE FELDS TS-11ACALCITE C-3DKAOLINITE WELL ORDERED PS-1A得到如下的波谱图像:波谱库的波谱曲线从绘制(plot)窗口菜单中,选择Edit →Plot Parameters,自定义波谱曲线的绘制图。

高光谱预处理实验指导书

高光谱预处理实验指导书

高光谱遥感图像预处理实验指导书指导教师:赵泉华一、实习目的通过高光谱遥感图像预处理的学习,使学生在课堂教学及实验课教学的基础上进一步将理论与实践相结合,消化和理解课堂所学理论知识,达到初步掌握利用ENVI等软件预处理高光谱遥感图像,并熟悉高光谱遥感图像预处理流程与方法的目的。

二、实习方式学生自学指导书为主,指导教师讲授为辅;利用计算机,结合相应遥感图像及ENVI软件的具体操作进行。

三、练习数据机载高光谱AVIRIS数据。

四、实习内容与要求掌握高光谱遥感图像预处理的理论与方法,利用ENVI中FLAASH大气校正工具和快速大气校正工具对高光谱数据进行大气校正及快速大气校正。

实验一、高光谱FLAASH数据大气校正实验目的:通过实验操作,掌握高光谱遥感图像FLAASH数据的大气校正的基本方法和步骤,深刻理解遥感图像大气校正的意义。

实验内容:ENVI软件中高光谱图像预处理模块下的图像大气校正。

高光谱图像的预处理主要是辐射校正,辐射校正包括传感器定标和大气校正。

辐射校正一般由数据提供商完成。

太阳辐射通过大气以某种方式入射到物体表面然后再反射回传感器,由于大气气溶胶、地形和邻近地物等影像,使得原始影像包含物体表面,大气,以及太阳的信息等信息的综合。

如果我们想要了解某一物体表面的光谱属性,我们必须将它的反射信息从大气和太阳的信息中分离出来,这就需要进行大气校正过程。

操作步骤:1.打开文件File→Open→CupriteAVIRISSubset.dat→打开。

2. FLAASH Atmospheric Correction Module Input Parameters设置在Toolbox 中打开FLAASH 工具Radiometric Correction/Atmospheric Correction Module/FLAASH Atmospheric Correction→双击启动→进入FLAASH Atmospheric Correction Module Input Parameters 面板。

高光谱遥感影像混合像元分解

高光谱遥感影像混合像元分解

04
混合像元分解实验与分析
实验数据介绍
数据来源
01
实验数据来自中国的某高光谱遥感卫星,覆盖了多个地区和不
同的土地利用类型。
数据特点
02
数据具有高光谱分辨率,包含了数百个波段,能够提供丰富的
地物光谱信息。
数据预处理
03
为了提高混合像元分解的精度,需要进行数据预处理,包括辐
射定标、大气校正、几何校正等。
端元数量与分解精度
实验结果表明,随着端元数量的增加,混合像元分解的精度逐渐提高。但端元数量过多会导致解的不稳定,因此需要 选择合适的端元数量。
不同土地利用类型的识别
通过混合像元分解,可以有效地识别不同类型的土地利用,如植被、水体、城市等。这为土地利用变化监测、生态保 护等方面提供了有力支持。
比较不同方法的结果
混合像元分解的必要性
为了更准确地提取地物信息,提高遥感应用的效果,对高光谱遥感影像进行混合像元分解是必要的。通过混合像 元分解,可以将一个混合像元分解成若干个纯像元的线性组合,从而更准确地表达地物的光谱特征。
混合像元分解研究现状
早期研究方法
早期的研究主要采用端元提取和丰度反 演的方法进行混合像元分解。端元提取 的方法主要基于空间和光谱的统计分析 ,从高光谱数据中提取出纯像元;丰度 反演的方法则是基于线性混合模型,通 过优化算法反演出各纯像元的丰度。
VS
近期研究方法
近年来,随着深度学习技术的发展,越来 越多的研究开始采用深度学习的方法进行 混合像元分解。深度学习方法能够自动地 学习和提取高光谱数据中的复杂结构和特 征,从而更准确地分解混合像元。目前, 常见的深度学习方法包括卷积神经网络 (CNN)、生成对抗网络(GAN)等。

ERDAS遥感软件教程-高光谱图像处理实验

ERDAS遥感软件教程-高光谱图像处理实验

九、高光谱图像处理高光谱分辨率遥感(Hyperspectral Remote Sensing),简称高光谱遥感,是在电磁波的紫外、可见光、近红外和中红外波段范围内,获取许多非常窄且光谱连续的影像数据的技术。

常规遥感的波段宽度一般大于50nm,并且波段在电磁波谱上不连续,所有波段加起来并不能覆盖可见光到热红外的整个波普范围,而光谱遥感成像光谱仪可以提供数十个甚至数百个很窄的波段(波段宽度一般小于10nm)来接受信息,且能够产生一条连续完整的光谱曲线(V ane and Goetz,1933),光谱覆盖从可见光到红外光的全部电磁波范围,因此其信息量是无法探测的,而高光谱传感器极窄的波段宽度,足够识别这些地物特征。

高光谱遥感凭借着其明显的技术优势,在各领域展现出广阔的应用前景。

目前已广泛应用于地质矿产调查、植被研究、环境监测、土壤调查、农作物估产、大气科学等领域中。

高光谱图像具有以下特点:(1)波段多,光谱分辨率高,光谱间相关性强。

(2)空间分辨率高。

高的光谱分辨率和空间分辨率是遥感技术发展的两个方向,这两个方向有趋于统一的趋势。

(3)由于波段多,狭窄且连续,使得高光谱数据量巨大、数据冗余严重。

一些常规遥感图像处理分析方法仍可用于高光谱影像。

但由于高光谱图像波段多、广谱分辨率大、数据量大等特点,常规的遥感图像处理方法并不完全适合高光谱图像处理,对它的处理需要一些特殊的方法和技术。

ERDAS IMAGINE9.2提供了一个高光谱分析工具,是高光谱数据的分析简单化、自动化。

本章主要介绍高光谱分析工具中的各个功能,这些功能都在Interpreter图标下的BasicHyperSpectral Tools工具中(图9.1)。

本例使用的示例数据是一幅1995年美国内华达州某地的AVIRS图像,从波段172~221,共50个波段,文件格式为img,存放在chp\tutor\ex_hyper.img(图9.2)。

图9.1Basic HyperSpectral Tools工具图9.2实例图像ex_hyper.img9.1归一化处理光谱归一化(Normalize ),是将每一个像元的光谱值统一到整体平均亮度水平,以减小亮度差异。

《2024年高光谱分辨率红外遥感大气温湿度廓线反演方法研究》范文

《2024年高光谱分辨率红外遥感大气温湿度廓线反演方法研究》范文

《高光谱分辨率红外遥感大气温湿度廓线反演方法研究》篇一一、引言随着遥感技术的不断发展,高光谱分辨率红外遥感技术已成为大气环境监测的重要手段。

其中,大气温度和湿度是评估气候变化、气象预报以及空气质量等关键参数。

高光谱分辨率红外遥感技术可以获取大气的精细结构信息,对大气的温湿度廓线反演研究具有重要价值。

本文旨在研究高光谱分辨率红外遥感大气温湿度廓线反演方法,以期提高反演精度和效率。

二、研究背景及意义大气温度和湿度的准确测量对于气象预报、气候变化研究、环境监测等领域具有重要意义。

传统的大气温湿度测量方法主要包括探空法、地面观测站法等,这些方法虽然能提供一定精度的数据,但受到时间和空间的限制,难以实现大范围、实时、连续的监测。

而高光谱分辨率红外遥感技术具有大范围、快速、连续监测的优势,能够为大气温湿度监测提供新的解决方案。

因此,研究高光谱分辨率红外遥感大气温湿度廓线反演方法具有重要意义。

三、高光谱分辨率红外遥感原理高光谱分辨率红外遥感技术利用红外光谱范围内的电磁波对大气进行探测。

通过对大气中不同气体分子的吸收、散射等物理过程进行分析,可以获取大气的温度、湿度、成分等关键参数。

红外光谱具有较高的光谱分辨率,能够提供丰富的光谱信息,为大气温湿度廓线反演提供了可能。

四、温湿度廓线反演方法1. 数据预处理在进行温湿度廓线反演前,需要对遥感数据进行预处理。

包括去除噪声、校正大气散射、校正仪器响应等步骤,以提高数据的信噪比和准确性。

2. 辐射传输模型辐射传输模型是温湿度廓线反演的基础。

通过建立大气辐射传输模型,将遥感观测数据与大气温度、湿度等参数联系起来。

常用的辐射传输模型包括线性和非线性模型等。

3. 反演算法根据辐射传输模型和遥感观测数据,采用合适的反演算法进行温湿度廓线反演。

常用的反演算法包括查找表法、迭代法、神经网络法等。

其中,查找表法具有较高的计算效率,但需要预先建立大量的查找表;迭代法可以获得较高的反演精度,但计算量较大;神经网络法可以充分利用神经网络的非线性特性,提高反演精度和效率。

高光谱遥感定标和校正

高光谱遥感定标和校正

实验报告班级:遥感科学与技术2013级1班姓名:文凤平学号:2013043009 一.实验名称定标和大气校正二.实验目的用FLAASH工具完成影像的大气校正,熟悉其校正含义及参数的意义。

三.实验数据四.实验内容与结果分析(实验主要内容,软件操作的主要过程截图及实验结果截图)(1)TM影像定标—FLAASH大气校正,结果分析,查看校正前后影像光谱曲线变化1.加载多光谱中需要进行大气校正的图像,Basic Tools->Preprocessing->Calibration Utilities->Landsat Calibration在弹出来的对话框中加载TM图像;2.Basic Tools->Convert Data(BSQ,BIL,BIP)在对话框中选择定标后的图像,然后再Convert File Parameters窗口中作如下选择:Output Interleave选择BIP,Convert In Place选择Yes,点击ok按钮即可;3.Spectral->FLAASH在弹出的对话框中的Input Radiance Image中加载定标且转换过格式的多光谱图像在弹出的对话框中设置如下:点击在右下角的按钮加载多光谱文件夹中TXT记事本即可得到所有的FLAASH参数设置:4.点击左下角的Apply按钮即可运行大气校正的操作,将校正后和校正前的图像进行link对比并查看两者的光谱曲线图像(在主窗口中右键->Z Profile(Spectrum));左图为校正前右图为校正后(2)AVIRIS数据(已定标)—FLAASH大气校正,结果分析,查看校正前后影像光谱曲线变化1.加载高光谱文件夹中需要进行大气校正的图像,Spectral->FLAASH在弹出的对话框中的Input Radiance Image中加载定标且转换过格式的多光谱图像在弹出的对话框中设置如下:点击在右下角的按钮加载多光谱文件夹中TXT记事本即可得到所有的FLAASH参数设置:点击对话框下面按钮,设置如下:点击右下角按钮设置如下:2.点击左下角的Apply按钮即可运行大气校正的操作,将校正后和校正前的图像进行link对比并查看两者的光谱曲线图像(在主窗口中右键->Z Profile(Spectrum));。

高光谱算法实验

高光谱算法实验

高光谱算法实验
高光谱算法实验是指通过使用高光谱数据进行数据处理
和分析,以提取有关地物或场景的详细光谱信息的实验研究。

以下是一个基本的高光谱算法实验流程:
1. 数据获取:获取高光谱遥感数据,可以通过航空或卫星遥感传感器收集。

2. 数据预处理:对获取的高光谱数据进行预处理,包括噪声去除、大气校正、几何校正等。

3. 特征提取:根据实验的目标,选择合适的特征提取方法,例如主成分分析(PCA)、线性判别分析(LDA)等,提取数据中的有用光谱信息。

4. 数据分类/回归:使用合适的分类或回归算法对提取
的特征进行处理,将数据分为不同的类别或预测目标变量。

5. 算法评估:对实验结果进行评估,包括精度评估、交叉验证等,以验证算法的准确性和可靠性。

6. 结果分析:分析实验结果,探索数据中的光谱特征和相关信息,获取对应地物或场景的相关知识。

7. 优化和改进:根据实验结果和分析,对算法进行优化和改进,以提高分类或回归的准确性和稳定性。

在高光谱算法实验中,常用的算法包括支持向量机(SVM)、随机森林(Random Forest)、卷积神经网络(CNN)等。

根据实际需求和研究目标,可以选择合适的算法进行实验和分析。

需要注意的是,高光谱算法实验需要充分理解高光谱数
据的特点和处理方法,并结合实际应用场景进行合理的算法选择和实验设计。

同时,实验中的数据预处理、特征提取和算法评估等步骤也需要谨慎进行,确保实验结果的可靠性和科学性。

实验一:高光遥感数据的获取及分析

实验一:高光遥感数据的获取及分析

实验一高光谱遥感数据获取评分姓名:石佳兴学号:20133032001031、分别使用AVIRIS 和Hyperion 数据,如何针对植被、水体等不同地物进行假彩色合成选择合适的波段?方法:1.(标准)假彩色合成:根据加色法和减色法原理,选择遥感影像的某三个波段,分别赋予红、绿、蓝三种颜色,就可以合成彩色影像。

由于选择的颜色与原来遥感波段所代表的真实颜色不同,因此生成的合成色不是地物的真实颜色,这种合成叫做假彩色合成。

当遥感影像的绿波段赋蓝,红波段赋绿,近红外波段赋红时,这一合成被称为标准假彩色合成。

过程:根据方法中所述的原理,对于AVIRI遥感影像,可以分别赋予第52、31、21波段红、绿、蓝,来识别植被、水体等不同地物;对于Hyperion遥感影像,则可以分别赋予第111、31、21波段红、绿、蓝。

结果:AVIRIS 数据Hyperion 数据分析1.植被在可见光波段(0.38-0.76um)有一个小的反射峰,位置在0.55um(绿)处,在近红外波段(0.7--0.8um)有一个反射的“陡坡”,至1.1um附近有一个峰值。

根据标准假彩色的合成原理,绿波段被赋予蓝,红外波段被赋予红,绿色与红色相加为品红,因而植被在影像中大致呈红色。

2.水体的反射主要在蓝绿光波段,其他波段吸收都很强,根据标准假彩色合成原理,绿波段被赋蓝,因此一般的湖泊水库等均呈蓝黑色。

水体呈现深蓝色,植被呈现红色,通过标准假彩色合成较好的区分了植被、水体、建筑物等不同地物。

2分别从ETM+,AVIRIS 和Hyperion 数据中分别选取5 种不同的地物,提取曲线。

从光谱剖面曲线上,比较分析多光谱数据和高光谱数据的各自特点。

方法:提取5种不同地物所在区域的平均光谱数据。

过程:提取区域平均光谱数据的方法(1)首先,利用ROI 工具选取区域;(2)然后,在ROI Tool 的窗口中选中区域,再点击下方的Stats 按钮;(3)最后,在ROI Statistics Results 窗口中,点击File|Save ROI Results to text file…菜单,按照提示保存为文本文件;(4)将文本文件导入Excel 或Matlab,其中Mean 对应的数据列即为该区域的平均光谱。

基于高光谱遥感影像的森林识别与分类

基于高光谱遥感影像的森林识别与分类
高光谱遥感技术已广泛应用于土地资源调查、环境监测、城市规划等领域 。
森林识别与分类研究现状
基于高光谱遥感影像的森林识 别与分类研究已取得了一定的 进展,但仍存在一些挑战和难 点。
目前的研究主要集中在图像预 处理、特征提取和分类算法等 方面,取得了不少成果。
但仍存在一些问题,如图像噪 声干扰、特征提取不充分、分 类精度不高等。
消除传感器和大气因素的影响 ,将原始辐射亮度转换为反射
率或辐射率。
几何校正
纠正影像的几何变形,使影像 与地图坐标系统一致。
噪声去除
去除影像中的噪声,提高影像 质量。
波段组合
根据需要选择不同波段的高光 谱影像进行组合,提高分类精
度。
影像质量评价
分辨率
评价高光谱影像的空间分辨率 ,即单个像素所表示的实际地
)、梯度提升决策树(GBDT)等。
非监督分类算法
无需已知样本进行训练,通过聚类分析将影像划分为不同 的类别。常见的算法有K-均值聚类、层次聚类等。
混合分类算法
结合监督分类和非监督分类的优点,先用非监督分类对未 知区域进行初步分类,再用监督分类对初步分类结果进行
优化。
分类结果评估指标
精度评估
通过比较分类结果与实际结果,计算分类精度、混淆矩阵等指标 ,评估分类算法的性能。
森林健康状况评估
高光谱遥感影像可以获取森林的 健康状况,包括叶绿素含量、水 分含量等参数,为森林健康评估 提供依据。
生态环境保护应用案例
1 2
森林生态系统服务功能评估
利用高光谱遥感影像,可以评估森林生态系统的 服务功能,包括水源涵养、土壤保持、气候调节 等。
生态环境质量监测
通过对高光谱遥感影像的分析,可以监测生态环 境的质量状况,包括空气质量、水质等参数。

高光谱遥感

高光谱遥感

(一)高光谱遥感基本概念1、高光谱遥感特点波段特点:波段多、波段宽度窄、不断连续数据量特点:数据量大、数据冗余增加2、波谱空间与光谱空间光谱特征空间:以波段为维度的空间,波段增加会导致光谱空间维度增加。

波普特征空间:不同波段影像所构成的测度空间。

3、高光谱数据图谱合一的特点高光谱数据同时反映地物的空间特征(图)和光谱特征(谱)。

(二)成像光谱仪1、成像光谱仪的空间成像方式和光谱成像方式的含义空间成像方式:从影像二维空间形成角度考察成像光谱仪的工作方式。

光谱成像方式:从光谱维数据形成的角度考察成像光谱仪的工作方式。

2、成像光谱仪的瞬时视场角(IFOV)仪器视场角(FOV)瞬时视场角:以毫弧度为计量单位,所对应的地面大小被称为地面分辨单元。

仪器视场角:仪器扫描镜在空中扫过的角度,与系统平台高度决定了地面扫描幅宽。

摆扫型:单个像元凝视时间短,进一步提升光谱分辨率和信噪比较困难。

推扫型:凝视时间长,分辨率高,仪器体积小(无光机),视场角小(30°)定标量大不稳定。

3、成像光谱仪的三种定标方式共性:出于同一目的,特定情况下都是不可缺少的。

差异:处于不同阶段,考虑因素不同,入瞳辐射值获取方式不同(实验室定标:有实验室测得,原始定标,准确度高,后续定标基础)(机上星上定标:综合性定标,对前一项进行的修正,机上星上测得考虑搬运安装操作影响)(场地定标:入轨后实际运行情况,大面积均匀地表做参照,考虑大气传输,多通道大范围)场地定标的常用方法:反射基法(气溶胶参数)、辐照度基法(过程)、辐亮度基法(人力)机上定标一般使用内定标法,星上定标受制于体积一般进行辐射定标(人造辐射源/太阳)光谱定标:确定成像光谱仪增益系数和偏置量之前,必须通过光谱定标,获得成像光谱仪每个波段的中心波长和带宽。

辐射定标:确定成像光谱仪在该波长小输入辐射能与输出响应关系(增益系数和偏置量)4、空间分辨率和光谱分辨率光谱分辨率:指探测器波长方向上的记录宽度,又称波段宽度(50%)空间分辨率:由仪器瞬时视场角决定,地面分辨单元。

高光谱遥感影像混合像元分解

高光谱遥感影像混合像元分解
基本步骤是采用监督最大似然法分类,前提是必须符 合正态分布。分别利用样本计算出模糊均值向量与模 糊协方差矩阵用于代理最大似然法分类中的均值向量 与协方差矩阵,求取出属于某一个类别的隶属度。
不同混合像元分解模型的可行性
应用 估算不同类型的比例
浓密森林的植被与裸地
线性
混合模型的可行性
光学几何 随机几何 概率
方法:PCA降维散点图角点 缺点:费时费力,适用少量数据
B)全自动选取Endmember
利用非监督的方法从数据本身全自动获取端元 光谱是目前研究的热点。
(1)纯净端元指数(PPI)
1、利用MNF变化进行噪声白化和降维的处理。 2、把光谱特征空间中所有的像元往单位向量u上
投影,端元会投影到u的两侧,而混合像元会 投影到中部。 3、计算每个像元被投影到端点的次数,即为纯 净指数。 4、当被投影到向量端点的次数越多的时候,证 明该像元为纯净像元的概率越大。
(3)几何光学模型。
该模型适用于冠状植被地区,它把地面看成由 树及其投射的阴影组成。从而地面可以分成四 种状态:光照植被面(C)、阴影植被面 (T)、光照背景面(G)、阴影背景面(Z)。 像元的反射率可以表示为:
R ( A c R c A T R T A G R G A Z R Z ) /A
第八章 高光谱遥感图像混 合像元分解
本章主要介绍高光谱遥感数据混合 像元分解技术,多种混合分解模型以及 扩展内容介绍。
8.1 混合分解的定义:
1)混合像元在高光谱遥感影像中普遍存在。 2)求解每一混合像元的覆盖类型组分比例 值,也就是求取端元百分含量(丰度)。 3)解决了因混合像元的归属而产生的错分、 误分问题,分类将更加精确。
优点:计算精度要高,符合实际情况,考虑了多种具 体因素。

遥感实验报告

遥感实验报告

遥感实验报告一、实验目的。

本实验旨在通过遥感技术对地球表面进行观测和数据获取,以探究遥感技术在环境监测、资源调查和自然灾害预警等方面的应用。

二、实验原理。

遥感技术是利用卫星、飞机等远距离传感器获取地球表面信息的一种技术手段。

通过接收地面反射、辐射或散射的电磁波,可以获取地表地貌、植被覆盖、土地利用等信息。

三、实验步骤。

1. 选择合适的遥感影像数据,包括多光谱影像、高光谱影像等。

2. 对影像数据进行预处理,包括辐射定标、大气校正等。

3. 利用遥感软件进行影像解译,提取地表信息。

4. 对提取的地表信息进行分析和应用,如环境监测、资源调查等。

四、实验结果与分析。

通过实验,我们成功获取了地表的多光谱影像数据,并对其进行了预处理和解译。

最终得到了地表的植被覆盖、土地利用等信息。

这些信息对于环境监测、资源调查等方面具有重要意义。

五、实验结论。

遥感技术在地球科学领域具有重要的应用价值,能够为环境保护、资源管理等提供有力支持。

通过本次实验,我们深入了解了遥感技术的原理和应用,对其在实际工作中的应用有了更深刻的认识。

六、实验总结。

本次实验不仅让我们掌握了遥感技术的基本原理和操作方法,还加深了我们对地球表面信息获取和分析的认识。

未来,我们将进一步学习遥感技术,探索其更广泛的应用领域,为地球科学研究和环境保护做出更大的贡献。

七、参考文献。

1. 《遥感原理与应用》,XXX,XXX出版社,2018年。

2. 《遥感技术在环境监测中的应用》,XXX,XXX期刊,2020年。

以上为本次遥感实验的报告内容,希望对大家有所帮助。

感谢各位的阅读和支持!。

高光谱遥感图像目标检测

高光谱遥感图像目标检测
2 2
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈢基于纯点模型的检测方法
二 • CEM(Constrained Energy Minimization) 算法 基 – CEM算子是从信号处理的匹配滤波器角度提出。 于 – 将高光谱图像数据视为多维信号序列。 纯 – 通过滤波器(投影),突出已知目标,压制未知背景 点 信号。 模 型 的 目 标 检 测
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈠纯点模型
二 • 纯点模型不考虑光谱混合,模型相对简单 – 目标与背景之间除了二次散射和阴影的关系外,不存 基 在其他的相互作用,观测数据要么是属于目标,要么 于 是属于背景。 纯 • 图像观测光谱可以写为如下形式: 点 x 为观测光谱向量 其中: 模 x st w s b 为背景光谱。 型 s t 为目标光谱 x sb w 的 w 附加噪声 目 或者写成如下形式: 标 x st w 检 测 x st sb w
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈠面向目标检测的纯点模型
二 • 通常,我们将背景和噪声结合在一起,称之为 干扰,可定义干扰模型: 基 x 于 v 为背景干扰 纯 x s t 点 – 多元正态分布是最常用的统计分布之一,这主要是因 为它具有良好的可操作性,且已经成功地应用于许多 模 目标检测技术中。 型 的 • 针对干扰模型,可假设v服从多元正态分布: 目 均值: 标 v ~ N (b , ) 方差: 检 测
NUDT

卫星信息处理与应用实验室
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高光谱遥感实验
实验一高光谱遥感数据
一. 分别使用AVIRIS和Hyperion数据,如何针对植被、水体等不同
地物进行假彩色合成选择合适的波段?
根据彩色合成原理,可选择同一目标的单个多光谱数据合成一幅彩色图像,当合成图像的红绿蓝三色与三个多光谱段相吻合,这幅图像就再现了地物的彩色原理,就称为真彩色合成。

假彩色合成又称彩色合成。

根据加色法或减色法,将多波段单色影像合成为假彩色影像的一种彩色增强技术。

合成彩色影像常与天然色彩不同,且可任意变换,故称假彩色影像。

下面以ETM影像为例,进行真彩色合成,详细步骤如下:
1.在ERDAS IMAGINE 2010中加载ETM影像etmsubsrt.img。

图一.添加ETM影像数据
2.由ETM影像数据的基本参数中,RGB三色数据如下
故分别选取1、2、3波段作为蓝、绿、红三色进行真彩色合成,结果如下
图二.ETM影像真彩色合成
图中绿色为植被,蓝色为水体。

3.对ETM影像数据的基本参数进行分析,选取对水体、植被
有特征三个波段进行假彩色合成。

因为ETM影像中波段2,
即绿色波段可用于分辨植被,波段,3,即红色波段处于叶
绿素吸收区域,可用于观测植被效果好,波段4,即近红
外波段,可以从植被中区分出水体,故分别选取波段2、3、
4作为蓝、绿、红三色进行假彩色合成。

图三.ETM影像假彩色合成
图中深蓝色为植被,浅蓝色和红色为水体。

使用AVIRIS和Hyperion数据,针对植被、水体等不同地物进行假彩色合成的步骤如上,其中,使用AVIRIS数据进行假彩色合成时选取波段50、31、20作为红绿蓝三色进行假彩色合成
图四.AVIRIS影像假彩色合成
使用Hyperion数据进行假彩色合成时选取波段110、31、21作为红、绿、蓝三色进行假彩色合成
图五. Hyperion影像假彩色合成
图中深蓝色为水体,浅蓝色为植被。

二. 分别从ETM、AVIRIS和Hyperion数据中分别选取3到5种不同的
地物,提取曲线。

从光谱剖面曲线上,比较分析多光谱数据和高光谱数据的各自特点。

1.对于ETM影像数据,分别提取水体、植被、建筑物三种地物,
步骤如下
在ERDAS IMAGINE 2010中加载ETM影像etmsubsrt.img后,
分别选取波段2、3、4作为蓝、绿、红三色进行假彩色合成,在合成影像上分别选取蓝色水体、棕色建筑物、红色植被,查
看其光谱特征曲线,结果如下。

2. 在ERDAS IMAGINE 2010中加载Hyperion影像后,分别选取波段50、31、20作为红、绿、蓝三色进行假彩色合成,在合成影像上分别选取蓝色水体、棕色建筑物、红色植被,查看其光谱特征曲线,结果如下
3.由于使用AVIRIS数据,针对植被、水体等不同地物进行假彩色合成的结果不理想,因此难以进行地物特征曲线的提取。

4.由于1、2中的ETM影像和Hyperion影像为同一地区,且分别为多光谱影像和高光谱影像,对比其地物特征曲线,可以发现,前者曲线为折线,后者为十分弯曲的曲线。

这一点
说明高光谱影像的光谱分辨率远远高于多光谱影像,这也正是高光谱影像相对于多光谱影像的最后要特征,即相对于多光谱影像,高光谱遥感可获取许多非常窄的光谱连续的影像数据,每个波段宽度仅小于10nm;所有波段排列在一起能形成一条连续的光谱曲线。

相关文档
最新文档