特高压与超高压分
国内电压等级划分及全球各国电压一览表
一、国内电压等级划分
电压等级的划分(国内):低压、高压、超高压、特高压、高压直流、特高压直流
低压(国内):交流电压为有效值1KV及以下的电压等级
高压(国内):交流电压为有效值1KV及以上、330kv以下的电压等级
超高压(国内):交流电压为有效值330kv及以上、1000KV以下的电压等级
特高压(国内):交流电压为有效值1000kv及以上的电压等级
高压直流(国内):直流电压为有效值±800kV以下的电压等级
高压直流(国内):直流电压为有效值±800kV以上的电压等级
中压:1kv至20kv的电压等级。
能承受此电压等级的电气设备,称为中压电气设备。
中压以上,有高压、超高压、特高压等级别。
二、国际电压等级划分
电压等级的划分(国际):高压、超高压、特高压、高压直流、特高压直流
高压HVAC(国际):交流电压为有效值35KV及以上、220KV以下的电压等级
超高压EHVAC(国际):交流电压为有效值330KV及以上1000KV以下的电压等级
特高压UHVAC(国际):交流电为有效值1000KV及以上的电压等级
高压直流HVDC(国际):直流电压为有效值±600kv及以下的电压等级
特高压直接UHVDC(国际):直流电压为有效值±600KV以上的电压等级
备注:有效值在相同的电阻上分别通以直流电流和交流电流,经过一个交流周期的时间,如果它们在电阻上所消耗的电能相等的话,则把该直流电流(电压)的大小作为交流电流(电压)的有效值,正弦电流(电压)的有效值等于其最大值(幅值)的1/√2,约倍。
全球各国电压一览表。
电力系统电压等级
电力系统电压等级的发展过程及发展趋势输电电压一般分为高压、超高压和特高压 高压(HV HV--High Voltage ):35kV ~200 kV超高压(EHV EHV--Extra High Voltage ):330 kV ~750 kV 特高压(UHV UHV--Ultra High Voltage ):1 000 kV 及以上配电网电压一般为35kV 以下低压(LV LV--Low Voltage ):0.4 kV 及以下 中压(MV MV--Medium Voltage ):3 kV ~35 kV对于直流输电高压直流(HVDC HVDC--High Voltage Direct Current ):330 kV ~750 kV 特高压直流(UHVDC UHVDC--Ultra High Voltage Direct Current ):1 000 kV 及以上中国国家标准中国国家标准《《额定电压额定电压》》(GB I56GB I56--1980)规定的电压等级为:3,6,10,35,63,110,220,330,500,750 kV (待定)。
根据相邻级差不宜太小的原则,可以认为上述电压等级中的35kV 、63kV 和110kV 不宜在同一个地区性电网中并存;330kV 和500 kV 、500 kV 和750 kV 不宜在同一输电系统中并存。
中国电力系统中除西北地区采用330/(220)/110/(35)/10 kV 和东北地区采用500/220/63/10 kV ,其他地区都采用500 /220/110 /(35)/10 kV 系列。
其他国家的情况如下:美国、日本、加拿大、前苏联多采用500/220(275,230)/110 kV 系列,美国、加拿大、前苏联也有750(765)/330(345)/110(154)kV 系列;西欧和北欧国家采用400(380)/220/110(138)系列。
不同电压等级允许的电压偏差
不同电压等级允许的电压偏差电压等级是指电力系统中规定的电压标准,不同的电压等级适用于不同的电力设备和电气设备。
在电力系统中,电压的稳定性对设备运行和电网安全都非常重要。
因此,针对不同的电压等级,都有对应的允许电压偏差标准。
一般来说,电压偏差是指在正常运行条件下,电网中各个节点或者用户端所测得的电压值与其额定电压值之间的差值。
在正常情况下,电压偏差不应该超过一定的标准范围,否则会对设备运行和用电安全造成影响。
不同的电压等级允许的电压偏差标准是不同的。
下面将分析一下常见的电压等级对应的允许电压偏差标准。
1.高压输电线路电压等级在高压输电线路中,通常采用的电压等级有220kV、330kV、500kV 等。
在这些电压等级下,允许的电压偏差标准一般是按照百分比来规定的。
一般来说,220kV的电压等级允许的电压偏差在正负10%之间,330kV和500kV的电压等级允许的电压偏差在正负5%之间。
这是因为在高压输电线路中,电压偏差过大会对线路的传输容量和稳定性造成影响,同时也会对线路上的设备和电器造成潜在的安全隐患。
因此,对于高压输电线路来说,严格控制电压偏差是非常重要的。
2.中压配电线路电压等级在中压配电线路中,常见的电压等级有3kV、6kV、10kV等。
对于这些电压等级,允许的电压偏差标准一般也是按照百分比来规定的。
一般来说,3kV的电压等级允许的电压偏差在正负5%之间,6kV和10kV的电压等级允许的电压偏差在正负3%之间。
在中压配电线路中,允许的电压偏差标准相对较小,这是因为中压配电线路一般服务于城市和工业区域,对电压的稳定性要求较高。
如果允许的电压偏差范围过大,会给工业生产和城市用电带来很大的影响。
3.低压配电线路电压等级在低压配电线路中,常见的电压等级有220V、380V等。
对于这些低压配电线路来说,允许的电压偏差标准也是非常严格的。
一般来说,220V的电压等级允许的电压偏差在正负5%之间,380V的电压等级允许的电压偏差在正负2%之间。
超高压输电技术PK特高压输电技术谁更优?
超高压输电技术PK特高压输电技术谁更优?超高压输电技术PK特高压输电技术谁更优?根据“十二五”规划,“十二五”期间中国电网五年的投资规模将达到1.58万亿元,年均为3000亿元,其中交直流特高压电网预计占三分之一,110千伏的以下预计占三分之一,220至750千伏之间也将占到三分之一。
由此可见,高压,超高压和特高压在电网建设中各自占据着举足轻重的地位。
超高压输电技术和特高压输电技术和研究和应用都不可小视。
超高电压是指330千伏至765千伏的电压等级,即330(345)千伏、400(380)千伏、500(550)千伏、765(750)千伏等各种电压等级。
特高压输电是指交流1000千伏或直流±800千伏电压等级。
超高压直流输电的优点和特点 ①输送容量大。
现在世界上已建成多项送电3GW的高压直流输电工程。
②送电距离远。
世界上已有输送距离达1700km的高压直流输电工程。
我国的葛南(葛洲坝-上海南桥)直流输电工程输送距离为1052km,天广(天生桥-广东)、三常(三峡-常州)、三广(三峡-广东)、贵广(贵州-广东)等直流输电工程输送距离都接近1000km。
③输送功率的大小和方向可以快速控制和调节。
④直流输电的接入不会增加原有电力系统的短路电流容量,也不受系统稳定极限的限制。
⑤直流输电可以充分利用线路走廊资源,其线路走廊宽度约为交流输电线路的一半,且送电容量大,单位走廊宽度的送电功率约为交流的4倍。
如直流±500kV线路走廊宽度约为30m,送电容量达3GW;而交流500kV线路走廊宽度为55m,送电容量却只有1GW。
直流电缆线路不受交流电缆线路那样的电容电流困扰,没有磁感应损耗和介质损耗,基本上只有芯线电阻损耗,绝缘水平相对较低。
⑥直流输电工程的一个极发生故障时,另一个极能继续运行,并通过发挥过负荷能力,可保持输送功率或减少输送功率的损失。
⑦直流系统本身配有调制功能,可以根据系统的要求做出反应,对机电振荡产生阻尼,阻尼低频振荡,提高电力系统暂态稳定水平。
特高压、超高压输电线路多分裂导线施工技术
特高压、超高压输电线路多分裂导线施工技术摘要:在我国电力行业发展的过程中特高压、超高压输电线路的建设规模越来越大其导线施工质量关系着整个工程质量。
其中多分裂架空导线输电技术的应用就使得电力系统的电容量得到进一步的扩大从而满足当前我国电力行业发展的相关要求。
关键词:输电电路;多分裂导线;施工技术多分裂架空导线输电技术在实际应用中,虽然具有许多的优点,但是也存在着许多不利的因素,这就对使其在实际应用的过程中存在着一定的安全隐患,进而给人们带来了巨大的损失。
下面我们就对多分裂架空导线输电技术的相关内容进行介绍。
1特高压、超高压型输电线路特点分析1.1特殊性特高压、超高压输电线路进行施工时涉及到多方面问题,需要多方面进行合作才能确保高压输电线路施工的质量。
在整个输电线路进行施工的过程中,会有许多因素对特高压、超高压输电线路工程的质量造成影响,这些因素往往是非常复杂而多变的,要确保这些因素对高压输电线路工程的影响降低到最低,就应该对这些因素展开充分的调查,并进行有针对性的防范,这样才能够有效避免相关的因素对特高压、超高压输电线路工程所造成的隐患。
1.2多变性特高压、超高压输电线路工程在进行施工时非常容易受到外部因素的影响,因此输电线路工程就容易出现质量的问题,而对这些问题进行解决的难度也非常大。
如果在施工的过程中由于外部因素导致了输电线路工程质量出现了问题,则必须立即进行及时的补救,避免相关问题出现了连锁的反应,使问题更加的严重和恶化。
1.3重要性在特高压、超高压输电线路工程进行施工的整个过程中,其具有极其重要性,不但将影响到整个电力工程的施工进度,而且还会对整个电力系统的安全造成严重的影响。
如果输电线路工程一旦出现了质量的隐患,则将会给国家经济造成严重的损失,还有可能造成重大的人员伤亡,因此输电线路工程质量十分重要。
2特高压、超高压型输电线路的张力架线在我国电网设计和建设中,电能需求的不断增长。
伴随着特高压、超高压型输电线路施工规模的不断扩大,为了保证较低的线路损耗,其导线架空中采用多分裂型的导线已经是的重要思路。
特高压
前言光伏电站选址时有个说法较“摸着电线走”,电网是制约光伏发电最重要的因素之一。
在光伏等可再生能源遇到送出、消纳瓶颈时,国家一方面大力发展分布式,让光伏项目直接建在需求侧;另一方面,修建特高压线路,集中解决大型可再生能源基地的送出问题。
本文为大家收集了我国特高压建设的一些情况,希望对大家的工作有所帮助。
一、什么是“特高压”输电电压一般分高压、超高压和特高压。
国际上,高压(HV)通常指35~220kV的电压;超高压(EHV)通常指330kV及以上、1000kV以下的电压;特高压(UHV)指1000kV及以上的电压。
高压直流(HVDC)通常指的是1600kV及以下的直流输电电压,±800kV以上的电压称为特高压直流输电(UHVDC)。
我国目前绝大多数电网来说,低压电网指的是1kV及以下的电网;中压电网指的是35kV的电网;高压电网指的是66kV、110kV和220kV电网;超高压电网指的是330kV,500kV和750kV电网。
特高压输电指的是正在开发的1000 kV交流电压和±800kV直流电压输电工程和技术。
特高压电网指的是以1000kV输电网为骨干网架,超高压输电网和高压输电网以及特高压直流输电高压直流输电和配电网构成的分层、分区、结构清晰的现代化大电网。
二、特高压的优点特高压最大优点就是可以长距离、大容量、低损耗输送电力。
据测算,1000kV交流特高压输电线路的输电能力超过500万kW,接近500kV超高压交流输电线路的5倍。
±800kV直流特高压的输电能力达到700万kV,是±500kV超高压直流线路输电能力的2.4倍。
除此之外,特高压线路还具有:线路造价低;输电损耗小;输送容量大;限制短路电流;线路故障时的自防护能力强;节省线路走廊;实现非同步电网互联;功率调节控制灵活;特别适合电缆输电等优点。
三、我国特高压的规划1、国家电网公司在“十二五”规划国家电网公司在“十二五”规划中提出,今后我国将建设联接大型能源基地与主要负荷中心的“三纵三横一环网”特高压骨干网架和13项直流输电工程(其中特高压直流10项),形成大规模“西电东送”、“北电南送”的能源配置格局。
特高压和超高压输电对比初探
式下输送相 同容量的电力的情 况下, 利用特 高压输 电扣超 高压输 电分别对受端短路 电流和输 电损耗等 方面的影 响, 井得 出了相关结论 , 为分析特高压输电扣超 高压输 电提供 了计算依据。
电源送端
特高压输电系统
()长距 离特 高 压 输 电 8
受端
5 0k 母 0 V
4 0k 0
m
1 特高压和超高压输 电线路
特 高压 、 高压 输 电线路 的 电抗 、 超 电纳 和电 阻值 由其子 导线数 、 导线半 径 、 裂导 线直 径 和相 间导 子 分
电 源 送端 超 高 压 输 电 系 统
关 键 词 : 高压 ; 高 压 ; 电 特 超 输
中 图分 类 号 :M 7 T 2 文 献 标 识 码 : B 文章 编号 :0 9 6 5 2 0 ) 刊 一 0 0 0 10 —0 6 {0 6 增 04 — 2
5 0 V 母 ! 1 0 1 母 线 0k 戋 0k, 0
相 同功率 的情况 下进 行对 比。 ( ) 此 算 例 中 , 0 0k 特 高 压 输 电 线 路输 2在 1 0 V
送 有 功 功 率 约 40 0MW, 虑 线 路 上 无 功 , 本 上 0 考 基
是一条特高压输 电线路的 自然功率 ;超高压输电线
路 每条 送 电约 1 0 , 虑 线 路 上无 功 , 基 本 0MW 考 0 也
( )长 距 7 高 压 输 电 b 哥超
线距离决定 , 而这些又与输电线 的电晕特性要求 、 输 电线路工 频 电场和 工频磁 场 限制 、绝 缘水 平 和输 电
国内电压等级划分及全球各国电压一览表
一、国内电压等级划分
电压等级的划分(国内):低压、高压、超高压、特高压、高压直流、特高压直流
低压(国内):交流电压为有效值1KV及以下的电压等级
高压(国内):交流电压为有效值1KV及以上、330kv以下的电压等级
超高压(国内):交流电压为有效值330kv及以上、1000KV以下的电压等级
特高压(国内):交流电压为有效值1000kv及以上的电压等级
高压直流(国内):直流电压为有效值±800kV以下的电压等级
高压直流(国内):直流电压为有效值±800kV以上的电压等级
中压:1kv至20kv的电压等级。
能承受此电压等级的电气设备,称为中压电气设备。
中压以上,有高压、超高压、特高压等级别。
二、国际电压等级划分
电压等级的划分(国际):高压、超高压、特高压、高压直流、特高压直流
高压HVAC(国际):交流电压为有效值35KV及以上、220KV以下的电压等级
超高压EHVAC(国际):交流电压为有效值330KV及以上1000KV以下的电压等级特高压UHVAC(国际):交流电为有效值1000KV及以上的电压等级
高压直流HVDC(国际):直流电压为有效值±600kv及以下的电压等级
特高压直接UHVDC(国际):直流电压为有效值±600KV以上的电压等级
备注:有效值在相同的电阻上分别通以直流电流和交流电流,经过一个交流周期的时间,如果它们在电阻上所消耗的电能相等的话,则把该直流电流(电压)的大小作为交流电流(电压)的有效值,正弦电流(电压)的有效值等于其最大值(幅值)的1/√2,约0.707倍。
全球各国电压一览表。
超高压输电和特高压输电【可编辑】
超高压输电和特高压输电超高压输电开放分类:电子工程超高压输电是指使用超高电压等级输送电能。
若以220千伏输电指标为100%,超高压输电每公里的相对投资、每千瓦时电输送百公里的相对成本以及金属材料消耗量等,均有大幅度降低,线路走廊利用率则有明显提高。
超高压输电- 正文使用超高电压等级输送电能。
超高电压是指330千伏至765千伏的电压等级,即330(345)千伏、400(380)千伏、500(550)千伏、765(750)千伏等各种电压等级。
超高压输电是发电容量和用电负荷增长、输电距离延长的必然要求。
超高压输电是电力工业发展水平的重要标志之一。
随着电能利用的广泛发展,许多国家都在兴建大容量水电站、火电厂、核电站以及电站群,而动力资源又往往远离负荷中心,只有采用超高压输电才能有效而经济地实现输电任务。
超高压输电可以增大输送容量和传输距离,降低单位功率电力传输的工程造价,减少线路损耗,节省线路走廊占地面积,具有显著的综合经济效益和社会效益。
另外,大电力系统之间的互联也需要超高压输电来完成。
超高压输电的使用范围大致如表所列。
若以220千伏输电指标为100%,超高压输电每公里的相对投资、每千瓦时电输送百公里的相对成本以及金属材料消耗量等,均有大幅度降低,线路走廊利用率则有明显提高(图1~4)。
超高压输电超高压输电超高压输电超高压输电超高压输电1952年瑞典首先建成了380千伏超高压输电线路,由哈什普龙厄到哈尔斯贝里,全长620公里,输送功率45万千瓦。
1956年,苏联从古比雪夫到莫斯科的400千伏线路投入运行,全长1000公里,并于1959年升压至500千伏,首次使用500千伏输电。
1965年加拿大首先建成735千伏的输电线路。
1969年美国又实现765千伏的超高压输电。
在直流输电方面,苏联于1965年建成±400千伏的超高压直流输电线路,此后美国、加拿大等国又建成±500千伏直流输电线路。
哈工大高电压技术 总复习
气体分子在外界因素的作用下,发生电离而
分解成电子和正离子。 ☆ 、电离的主要形式 碰撞电离、光电离、热电离、金属表面电离
☆ 、气体放电的主要形式
辉光放电、火花放电、电晕放电、刷状放电、 电弧放电
☆、汤逊理论的实质
电子碰撞电离是气体放电的主要原因,二次
电子来源于正离子撞击阴极表面逸出电子,逸出
电子是维持气体放电的必要条件。
☆、极间距离相同的正、负极性“棒—板”气隙在自持放 电前、后气体放电的差异 自持放电前的阶段(电晕放电阶段) 正极性“棒 — 板”:因棒极带正电位,电子崩中的电
子迅速进入棒极,正离子暂留在棒极附近,这些空间电荷
消弱了棒极附近的电场而加强了外部空间的电场,阻止了 棒极附近流注的形成,使得电晕起始电压有所提高 负极性“棒 — 板”:因棒极带负电位,电子崩中电子 迅速向板极扩散,正离子暂留在棒极附近,这些空间电荷 加强了棒极附近的电场而消弱了外部空间的电场,使得棒
污闪过程: 积污 电晕或辉光放电出现
受潮
干区形成 沿面闪络
局部电弧出现
积污地点:城市 > 农村;化工厂、火电厂、冶炼厂等重 污染地区 污层受潮条件:多雾;常下毛毛雨;易凝露地区;长期 干旱 积污是发生污闪的温床,治理环境可以防止积污;污层 受潮或湿润是污闪的催化剂
☆、污闪事故的对策
(一)调整爬电比距
在操作冲击电压作用下:其击穿特性具有“U形曲线”
特性和“饱和”特性;其击穿电压不仅远低于雷电冲击电 压,有时在波前时间内比工频击穿电压还低;且其击穿电 压和放电时间的分散性比雷电冲击电压下要大得多
☆、表征气隙冲击击穿特性的两种方法是:
50%冲击击穿电压和伏秒特性曲线 1、50%冲击击穿电压(U50%) 工程上常采用50%冲击击穿电压(U50%)来描述气隙的 冲击击穿特性。 50%冲击击穿电压(U50%):在多次施加同一电压时,
超高压输电和特高压输电
超高压输电和特高压输电超高压输电开放分类:电子工程超高压输电是指使用超高电压等级输送电能。
若以220千伏输电指标为100%,超高压输电每公里的相对投资、每千瓦时电输送百公里的相对成本以及金属材料消耗量等,均有大幅度降低,线路走廊利用率则有明显提高。
超高压输电- 正文使用超高电压等级输送电能。
超高电压是指330千伏至765千伏的电压等级,即330(345)千伏、400(380)千伏、500(550)千伏、765(750)千伏等各种电压等级。
超高压输电是发电容量和用电负荷增长、输电距离延长的必然要求。
超高压输电是电力工业发展水平的重要标志之一。
随着电能利用的广泛发展,许多国家都在兴建大容量水电站、火电厂、核电站以及电站群,而动力资源又往往远离负荷中心,只有采用超高压输电才能有效而经济地实现输电任务。
超高压输电可以增大输送容量和传输距离,降低单位功率电力传输的工程造价,减少线路损耗,节省线路走廊占地面积,具有显著的综合经济效益和社会效益。
另外,大电力系统之间的互联也需要超高压输电来完成。
超高压输电的使用范围大致如表所列。
若以220千伏输电指标为100%,超高压输电每公里的相对投资、每千瓦时电输送百公里的相对成本以及金属材料消耗量等,均有大幅度降低,线路走廊利用率则有明显提高(图1~4)。
超高压输电超高压输电超高压输电超高压输电超高压输电1952年瑞典首先建成了380千伏超高压输电线路,由哈什普龙厄到哈尔斯贝里,全长620公里,输送功率45万千瓦。
1956年,苏联从古比雪夫到莫斯科的400千伏线路投入运行,全长1000公里,并于1959年升压至500千伏,首次使用500千伏输电。
1965年加拿大首先建成735千伏的输电线路。
1969年美国又实现765千伏的超高压输电。
在直流输电方面,苏联于1965年建成±400千伏的超高压直流输电线路,此后美国、加拿大等国又建成±500千伏直流输电线路。
远距离输电电压的名称
远距离输电电压的名称全文共四篇示例,供读者参考第一篇示例:远距离输电电压是指在输电线路中传输电能时所使用的电压水平。
在电力系统中,远距离输电是必不可少的,因为需要将发电厂产生的电能传输到远处的用户,供给城市、乡村、工厂等地方的用电需求。
远距离输电的电压水平是根据具体的输电距离、输电线路的材料、负载需求等因素来确定的。
远距离输电电压通常分为高压、超高压和特高压三个等级。
高压输电是指工频交流电压在110千伏及以上,通常包括110千伏、220千伏等电压等级。
超高压输电是指工频交流电压在330千伏及以上,通常包括330千伏、500千伏等电压等级。
特高压输电是指工频交流电压在750千伏及以上,通常包括750千伏、1000千伏等电压等级。
高压输电主要用于城市和农村的输电,可以减小输电线路的损耗,提高输电效率,降低输电线路的投资成本。
超高压输电主要用于在城市与城市之间、城市与大型工业区之间、城市与远方水电站之间的电力输送。
特高压输电主要用于长距离的大容量输电,例如长距离输电线路、跨国输电等。
远距离输电电压的选择与输电线路的设计息息相关。
为了减小线路损耗、提高输电效率、降低输电线路的投资成本,必须合理选择输电线路的电压等级。
还需要考虑到输电线路的绝缘、电气间隙、电磁兼容等技术要求,确保输电线路的可靠性和稳定性。
在远距离输电过程中,还需要考虑到输电线路的电磁场对周围环境和人体的影响。
在设计输电线路时,需要合理布置输电线路,减小电磁场辐射对周围环境和人体的影响。
还需要加强对输电线路的运行监测和维护,及时发现和处理线路故障,确保输电线路的运行安全。
远距离输电电压的选择对于电力系统的运行和发展至关重要。
合理选择输电电压等级,设计合理的输电线路,加强线路的运行监测和维护,可以提高输电效率、降低输电成本,确保电力系统的安全稳定运行。
希望本文对远距离输电电压的了解有所帮助。
第二篇示例:远距离输电电压,也称为高压输电电压,是指在电力输送过程中,用于减少输电损耗和提高输电效率而采用的一种电压等级。
特高压输电技术PPT讲稿
美国邦维尔电力局(BPA)有2处特高压试验站。
国外发展概况
•
意大利
全国各地参 加 1000kV 科研规划的 单位共有7 个试验场和 2个雷电记 录站。
意大利1000kV工程雷电冲击试验
国外发展概况
•
瑞典
查麦斯大学高电压试验场可进行交流 1000kV 电 气 试 验 , 试 验 场 内 建 有 240m 特 高 压 试验线段。另有180m的绝缘子试验线段。
特高压输电技术课件
电网的发展历程
• 输电电压一般分高压、超高压和特高压
高压(HV):35〜220kV; 超高压(EHV):330 〜750kV; 特高压(UHV):1000kV及以上。 高压直流(HVDC):±600kV及以下; 特高压直流(UHVDC):±750kV和±800kV。
根据国际电工委员会的定义:交流特高压是指 1000kV 以 上 的 电 压 等 级 。 在 我 国 , 常 规 性 是 指 1000kV以上的交流,800kV以上的直流。
国 外 发 展 概 况
国外发展概况
•
前苏联
1985年建成埃基巴斯图兹——科克切塔夫——库斯 坦奈特高压线路,全长900km,按1150kV电压投入运 行,至1994年已建成特高压线路全长2634km 。
运行情况表明:所采用的线路和变电站的结构基本 合理。特高压变压器、电抗器、断路器等重大设备经受 了各种运行条件的考验。
❖1989年建成±500kV葛洲坝-上海高压直流输电
线,实现了华中-华东两大区的直流联网。
我国电网的发展历程
❖2005年9月,中国在西北地区(青海官厅—兰州
东)建成了一条750kV输电线路,长度为140.7 km。输、变电设备,除GIS外,全部为国产。
高压特高压超高压的划分
高压特高压超高压的划分
高压、特高压和超高压的划分主要依据是电压等级的高低。
具体来说,高压通常指的是10kV至220kV之间的电压,而特高压则是在330kV至750kV之间,超高压则是在500kV至1000kV之间。
在电力传输领域,35kV级以下电压等级称为配电电压,110kV\~220kV电压等级称为高压,330kV\~500kV电压等级称为超高压,1000kV级以上电压等级则称为特高压。
此外,对于直流输电,±400kV\~±660kV为超高压,±800kV及以上为特高压。
需要注意的是,高压、特高压和超高压的划分并非绝对,具体的电压范围可能因不同的国家和地区、不同的行业标准而有所差异。
国标爬电距离
国标爬电距离国标爬电距离是指在使用安全用电时,人体与地面之间的安全距离。
国家标准规定,不同的电压等级下,人体与地面之间的最小安全距离是不同的,目的是保障人体安全,防止因电击事故而带来的伤害和财产损失。
在了解电距离之前,需要先了解以下的几个概念。
一、线路电压等级线路电压等级是指供电系统中的电压等级,分为低压、中压、高压、超高压和特高压。
低压为220V,中压为10kV-35kV,高压为66kV-220kV,超高压为330kV-750kV,特高压为1000kV及以上。
二、触电危害触电危害是指人体接触有电设备或接地体时,电流经过人体而造成的伤害。
通常包括电击、电休克、电烧伤等。
三、电路状态电路状态分为断开和接通,当线路断开时,人体与地面之间不会产生电位差,因此不会导致电击危险。
电路接通时,通过地线和接地体,形成了一个闭合电路,会产生电位差,人体接触到有电设备或接地体时,会引起电流经过人体而产生电击危险。
四、电距离电距离是指人体与地面之间的最小安全距离,也称空气间隙。
为了使人体在不同电压等级下不产生电击危险,国家制定了相应的电距离标准。
五、国标爬电距离国标爬电距离是指人体在某一电压等级下,在一定条件下,能安全通过电场的距离。
当人体在该距离以下时,可能会受到电击危险;当人体在该距离以上时,电击危险较小。
通常,为了保险起见,应该将距离再增加一定的安全系数,这个距离就是国标爬电距离。
对于低压线路,国标爬电距离为0.5m;中压线路的国标爬电距离为1.0m;高压线路的国标爬电距离为2.0m;超高压和特高压线路的国标爬电距离为3.5m。
六、安全措施在现代社会,电力使用已经离不开我们,但是电击事故发生频率也是非常高的,因此,保障人民群众的电安全已经成了社会的共识。
在日常生活中,我们需要遵守一下规则:1、不要在有电器的情况下,赤脚或穿湿鞋进入房间;2、不要将电器放置在水泥、瓷砖等导体上,避免发生漏电;3、在使用家用电器时,要确保插座良好、线路按规定布置;4、尽可能的使用带地线的电器;5、不要随便拆动外壳,避免接触有电部分;6、不要随便修理发热电器;7、不要在湿地操作电器。
特高压交流输电与超高压交流输电的优劣
采用特高压交流输电与采用超高压交流输电的优劣1)经济性角度:特高压交流输电具有大容量、远距离、低损耗、输电走廊明显减少等优点,在输送同容量、等距离情况下,其经济性比超高压交流输电更好。
具体如下:①建设成本:有资料测算,按相同容量分析,目前特高压等级的发电机升压变压器的成本还高于超高压,但特高压设备的费用均低于超高压的:线路为超高压的60%~70%,断路器为50%~70%,并联电抗器为90%,特高压升压和降压变压器(包括自耦变压器)与超高压大体相当。
采有空气绝缘的传统型变电所,整个造价将比超高压节省10%~15%。
一条传输容量为5 700MW的1 150 kV线路,可代替5~6条500 kV线路或3条750 kV线路。
施工中可节省铁塔用材近,节约导线近。
②输电成本:美国邦维尔电力局曾将500 kV与1 100 kV的输电成本进行了比较。
以322 km(200 mile)长的输电线路为例,经济转换点为2400 MW。
目前有关国家规划和建设的交流特高压线路的输送容量,远大于2400 MW,一般单回线路的输送容量为5 000~6 000MW,且多数线路长度也超过322 km,因此特高压输电线路的经济性显而易见的。
上述比较是建立在相同线路损耗的基础上,实际上特高压输电线路可大大减少输电损耗,输送同样的容量,1100 kV线路的损耗为500 kV 线路的20%~50%,由此可见,提高输电电压对减少传输能量的损失有很大的作用。
③输电走廊利用率:随着经济的发展,征地费用在输电工程建设投资中所占的费用比例将越来越高,在人口稠密地区和林区,处理走廊所需赔偿费用有的已占总投资的30%以上。
这就要求电网的规划、发展要立足于综合、长远的考虑,充分挖掘每一走廊的容量输送潜力。
据估计,1条1150kV输电线路的输电能力可代替5~6条500kV线路,如1150kV特高压输电线路按环境要求走廊宽度约为90m,6回500kV线路的走廊宽度约为360m,则1150kV特高压线路走廊宽度约仅为同等输送能力的500kV线路所需走廊宽度的,采用特高压输电提高了走廊利用率。
特高压交直流输电与超高压交直流输电的比较
特高压交直流输电与超高压交直流输电的比较作者:黎志山来源:《城市建设理论研究》2013年第24期摘要:随着交直流输电工程的应用,远距离、跨区域输电已经实现,特高压建设的速度加快。
文章将首先对国家大力建设特高压电网的原因进行分析,然后介绍特高压和超高压的概念,对特高压输电以及超高压输电进行对比。
关键词:特高压输电;超高压输电;交直流输电中图分类号: TF351 文献标识码: A 文章编号:现阶段,我国的电网骨干架实行的是500kV的交流、±500kV的直流,电力输送的能力以及电力输送的规模受到限制。
从我国的实际情况考虑,负荷受端电网比较密集,开辟新的输电线路存在较大的难度,负荷受端电流短路的情况比较突出,实行长距离送电会产生较大的电力损耗。
笔者将主要对特高压输电以及超高压输电进行对比,分析两者存在的差异,以便作为参考。
一、分析国家大力建设特高压电网的原因近几年来,我国电源发展的速度比较快,但是电网的建设相对落后,输电能力有待加强,电源的发展和电网的发展不协调。
在当前情况下,500kV跨区同步的电网之间的联系较为薄弱,输电的能力受到一定的限制,大型电网不能发挥出它的优越性,跨区域的电网对电力的补偿明显不够,现有的电网在远距离和大容量输电方面存在不足,需要引入特高压电网进行输电。
二、特高压和超高压的概念根据电压的不同,交流输电电压主要分为三种:第一,高压;第二,超高压;第三,特高压。
超高压简称EHV,国际上定义的电压范围是330 kV~1000 kV,特高压简称UHV,电压为1000 kV,特高压直流简称UH-VDC,电压为±600 kV以上。
从我国的实际情况来看,超高压分为三个层次:第一,330 kV;第二,500 kV;第三,750 kV。
特高压交流为1000kV电压,特高压直流为±800kV电压。
在特高压电网建成之后,我国的电网骨干架将变成交流输电网1000kV、直流系统±800kV电压,可以和各级输配电网相互协调,使电网的结构变得更加清晰。
输电电压的发展历史和特高压的定义
输电电压的发展历史和特高压的定义2006年01月03日00:00字体【大中小】【查看留言】【打印】【关闭】开栏的话国家电网公司提出建设以特高压电网为核心的坚强国家电网,得到了社会各界的普遍认同和支持。
为让读者更多地了解特高压电网,在国家电网公司特高压办公室的支持下,本报开辟了“特高压知识问答”专栏,从本期开始在本版连续刊登有关特高压电网的知识。
敬请关注。
问:输电电压的分类情况如何?特高压又是怎样定义的?答:交流输电电压一般分高压、超高压和特高压。
国际上,高压(HV)通常指35~220千伏电压。
超高压(EHV)通常指330千伏及以上、1000千伏以下的电压。
特高压(UHV)定义为1000千伏及以上电压。
高压直流(HVDC)通常指的是±600千伏及以下的直流输电电压,±600千伏以上的电压称为特高压直流(UHVDC)。
就我国而言,交流高压电网指的是110千伏和220千伏电网;超高压电网指的是330千伏、500千伏和750千伏电网;特高压电网指的是1000千伏电网。
高压直流指±500千伏及以下直流系统,特高压直流指±800千伏直流系统。
以上的电压等级均为标称电压。
特高压电网建成后,将形成以1000千伏交流输电网和±800千伏直流系统为骨干网架,具有坚强的超高压输电网和可靠的高压输电网,以及高压直流输电和配电网构成的分层、分区,结构清晰的现代化大电网。
问:国内外电网电压等级的发展情况如何?答:为了提高输电经济性能,不断满足大容量和长距离输电的需求,电网电压等级在不断提高。
100多年来,输电网电压从最初的13.8千伏,逐步发展到高压20千伏、35千伏、66千伏、110千伏、134千伏、220千伏、230千伏;20世纪50年代后迅速向超高压330千伏、345千伏、380千伏、400千伏、500千伏、735千伏、750千伏、765千伏发展;20世纪60年代末,开始进行1000千伏(1100千伏、1150千伏)和1500千伏电压等级特高压输电工程的可行性研究和特高压输电技术的研发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国有世界第一条特高压电网线路:起于山
西省长治变电站,经河南省南阳开关站,止 于湖北省荆门变电站,联接华北、华中电网, 全长654公里,申报造价58.57亿元,动态投 资200亿元,已于2008年12月28日建成进行商 业化运营。
国家特高压电网发展情况及规划
2010年,国家特高压电网将在华北、华中
和华东地区形成晋东南~南阳~荆门~武 汉~芜湖~杭北~上海~无锡~南~徐 州~安阳~晋东南双环网作为特高压主网 架;西北、华北火电通过蒙西~北~石家 庄~安阳以及蒙西~陕北~晋东南2个独立 送电通道注入特高压主网,西南水电通过 乐山~重庆~恩施~荆门双回路通道注入 特高压主网。 2010年特高压工程总规模将到20座交流变 电站(开关站),主变台数将达到26台, 总变电容量达到7725万千伏安,交流特高 压线路长度达到11580公里
2020年,国家特高压交流电网在华北、华中、华东负荷中心地区形成 坚强的多受端主网架,以此为依托延伸至陕北、蒙西、宁夏火电基地 和四川水电基地,呈棋盘式格局,主要输电通道包括:蒙西~石家 庄~济南~青岛通道,陕北~晋中~豫北~徐州~连云港通道,靖 边~西安~南阳~驻马店~滁州~泰州通道,乐山~重庆~恩施~荆 门~武汉~芜湖~杭北~上海通道;晋东南~南阳~荆门~长沙~广 东通道,北~石家庄~豫北~驻马店~武汉~南昌通道,唐山~天 津~济南~徐州~滁州~南通道,青岛~连云港~泰州~无锡~上 海~杭北~金华~福州通道;其中:锡盟~北东,锡盟~唐山装设串 补,串补度30%,蒙西~北东、蒙西~石家庄、陕北~晋中、陕北~ 晋东南、晋中~豫北、宁东~乾县、西安东~南阳、西安东~恩施、 乾县~达州、乐山~重庆、重庆~恩施、恩施~荆门、恩施~长沙等 线路均装设串补,串补度40%; 西北、东北电网均通过直流方式与华 北华中华东大同步网保持异步联系。 2020年规划建成特高压直流11回,包括:金沙江一期溪洛渡和向 家坝水电站、二期乌东德和白鹤滩水电站送电华东、华中;锦屏水电 站送电华东;哈密煤电送华中;呼盟煤电基地送电华北、辽宁;俄罗 斯送电辽宁。 2020年特高压工程规模将达到45座交流变电站(开关站),主变 台数将达到75台,总变电容量达到22350万千伏安,交流特高压线路 长度达到31490公里; 800千伏直流线路总数达到11回,包括21个直 流换流站,线路总长度17680公里(包括俄罗斯送电辽宁直流境内部 分)。
2015年,交流特高压骨干网架将形成长梯形、多受端的交流主 网架结构:在中部及东部地区分别建成一条南北方向的大通道, 即北东~石家庄~豫北~南阳~荆门~长沙的双回线路、唐山~ 天津~济南~徐州(连云港)~南(无锡)~芜湖~杭北~金 华~温州~福州~泉州,两条大通道间通过北东~唐山单回、石 家庄~济南单回、豫北~徐州双回、荆门~武汉~芜湖双回、长 沙~南昌~金华单回等共7回线路联系。蒙西火电、陕北火电、 宁夏火电及川西水电等大电源经各自的特高压站汇集后,通过百 万伏级线路注入中部大通道。沿海核电直接接入东部大通道,为 东部受端电网提供必要的电压支撑。华北、华中、华东等受端地 区分别形成北东~唐山~天津~济南~石家庄环网、荆门~武 汉~南昌~长沙环网、南~无锡~上海北~上海西~杭北~芜湖 双环网。 2015年规划建成特高压直流5回,包括:金沙江一期溪洛渡和 向家坝水电站送电华东、华中;锦屏水电站送电华东;呼盟煤电 基地送电华北,哈密送华中。 2015年特高压工程规模将达到38座交流变电站,主变台数将 达到55台,总变电容量达到16725万千伏安,交流特高压线路长 度达到23560公里;还将建成5条800千伏直流线路,包括10个直 流换流站,直流线路总长度达到7420公里。
特高压与超高压 分布及分析
特高压概念
特高压电网:指交流
1000千伏、直流正负 800千伏及以上电压等 级的输电网络。
在电力传输领域,""高压""的概念是不断 改变的鉴于实际研究工作与运行的需要 ,对电压等级范围的划分,目前通常统 一为: 35kv及以下电压等级称配电电压 。 110kv~220kv电压等级称高压。 330kv~500kv电压等级称超高压。 1000 kv及以上电压等级称特高压。
低压:24V、36V、127V、220V、380V 高压:3kV、6kV 、10kV、35kV、63kV、 110kV 、220kV 超高压:330KV、 550KV 、800KV 特高压: 1000KV
特高压电网优势
1000千伏特高压交流输电线路输送功率约为
500千伏线路的4至5倍;正负800千伏直 流特高压输电能力是正负500千伏线路的 两倍多。 特高压交流线路在输送相同功率的情况下, 可将最远送电距离延长3倍,而损耗只有5 0ห้องสมุดไป่ตู้千伏线路的25%至40%。输送同样 的功率,采用1000千伏线路输电与采用 500千伏的线路相比,可节省60%的土 地资源。