智能路灯管理系统
智能路灯管理系统的设计与实现
智能路灯管理系统的设计与实现随着社会科技的发展和智能化的趋势,人们对于城市基础设施的要求也越来越高。
作为城市基础设施的一部分,路灯的管理也面临着新的挑战。
为了更好地管理路灯,提高道路安全性和节约能源,智能路灯管理系统应运而生。
一、智能路灯管理系统的概述智能路灯管理系统是基于物联网技术的一种新型的城市道路照明管理系统。
它采用多种传感器技术、通信技术和数据分析技术,实现灯具的智能控制、故障监测、能耗管理和设备维护等功能。
通过对路灯进行远程监控和控制,实现对路灯的全方位管理和智能化运营,从而提高路灯的使用寿命和节约能源成本。
二、智能路灯管理系统的设计要求智能路灯管理系统的设计要求必须满足以下几个方面:1. 灵活通用的控制手段智能路灯管理系统必须能够在各种复杂的城市环境下进行控制,具备丰富的控制手段。
例如,手动控制、计时开关控制、光敏控制等模式。
2. 数据采集和变换功能智能路灯管理系统需要采集和处理灯具的各种数据,例如温度、亮度、电流、电压等数值。
将这些数据进行变换处理,输出可供实时调整控制的数据,为灯具的运营提供更为科学和高效的支持。
3. 故障检测和远程预警功能智能路灯管理系统必须具备故障检测和远程预警功能,能够在发生灯具故障后及时警报。
通过对故障信息的采集和分析,系统能够自动检测出灯具的故障,向管理人员发送预警信息,在第一时间解决故障,提高管理效率和效果。
4. 智能化的能耗管理功能智能路灯管理系统必须具备能耗管理功能,要能够实时监测路灯的能耗情况,实现精准的能耗分析和统计。
通过对路灯的智能控制和灯光调节,在保证照明质量的前提下,减少能耗成本,提高能源利用效率。
5. 健全的灯光设备维护管理体系智能路灯管理系统必须具备健全的灯光设备维护管理体系。
例如,设备的维护保养,设备的巡查和维修,故障设备的更新更换等。
这些管理措施可以提高路灯灯光的使用寿命,减小路灯的维修和管理成本。
三、智能路灯管理系统的实现方案智能路灯管理系统的实现方案主要分为硬件和软件两个部分。
基于NB-IoT的智能路灯管理系统
基于NB-IoT的智能路灯管理系统随着物联网(IoT)的快速进步,城市智能化建设成为了将来城市进步的趋势,而智能路灯作为城市基础设施的重要组成部分,其管理与运营已经成为智慧城市建设中的重要任务之一。
本文提出一种基于窄带物联网(NB-IoT)技术的智能路灯管理系统,该系统能够实现路灯的遥程控制、故障检测和运营管理等功能,能够大大提高路灯的智能化程度和城市管理的效能,具有宽广的应用前景。
关键词:NB-IoT;智能路灯;遥程控制;故障检测;运营管理第一章绪论1.1 探究背景与意义随着城市化进程的不息加快,城市基础设施建设也随之日益完善。
作为城市基础设施的重要组成部分,路灯的建设和管理一直备受关注。
智能路灯作为新型城市基础设施解决方案,能够实现路灯的遥程控制、故障检测和运营管理,提高路灯管理的效率和效益,从而为城市的安全和舒适性提供更好的保障。
1.2 探究现状与挑战目前,智能路灯的探究热点集中于智能化控制技术及其应用、节能与环保设计、信息化管理与服务等方面。
传统的路灯控制方式多为人工巡视,对于路灯故障的检测和维护效率低下,不能满足现代城市对高效智能化管理的需求。
因此,如何构建一种可靠、高效的智能路灯管理系统,成为当前探究的热点和难点。
第二章窄带物联网(NB-IoT)技术概述2.1 窄带物联网(NB-IoT)技术基本原理NB-IoT是一种低功耗广域物联网(LPWAN)技术,其基于窄带频谱,能够实现遥程物联网设备的长时间运行。
NB-IoT在低功耗、广域、负载容量和安全性等方面具有优势,是物联网领域的重要进步方向之一。
2.2 NB-IoT在智能路灯中的应用NB-IoT技术应用于智能路灯中,可以实现路灯的精确控制、遥程升级和故障检测等功能。
同时,还可以实现能耗监测、状态反馈、数据采集和分析等功能,实现路灯的智能管理和运营。
第三章设计3.1 系统总体设计本文基于NB-IoT技术,设计了一种智能路灯管理系统,可以实现路灯的遥程控制、故障检测和运营管理等功能。
勤上光电首创智能LED路灯管理系统
勤 光 电智 慧 宅 远 程 无 线 控 制 系 统 采 用 最 新 Z g e 和 G R 技 术 的无 线 监 控 系 统 ,主 要 由 iB e P S 无 线 终 端 、 现 场 控 制 器 和 监 控 中心 软 件 构 成 ,
美 的L D 明产 品和 技术 ,而 且 在 照 明方 案 设 计 E照 及 工 程 施 工 方 面 ,拥 有 高水 准 的 专 项 照 明 T 程 公司,凝聚大批 专业人员 ,可为客户提 供审 1 人 J 外 照 明 工 程 设 计 、 施 工 及 维 护 全 方位 的 “ 条 一 龙 ”解 决方案 。 勤 上 光 电是 广 东 省 “ 里 十 万 ” 、 科 技 部 千 “ 城万 盏 ”大 功 率L D 十 E 路灯 推 广 示 范 项 目重 点
的好 评 。在广 东省 L D 灯 应用 推 广 现 场会 上 , E路
“ 慧 宝 ”智 能系 统 在 节 能 及 便 利 方 面 的 优 势 智 得 到 了 广 东 省 委 常 委 、 常 务 副 省 长 朱 小 丹 及 与 会 代 表 的 高 度 肯 定 , 并 希 望 勤 上 光 电 发 挥 研 发
送 中心 。
年 的市 场 运 营 策 略 探 索 , 目前 勤 上 光 电 已形 成 了一 套 独 具特 色 的 “ 上 模 式 ” , 即 “ 品 + 勤 产
技 术 +系 统 + 方 案 +创 意 ”立 体 化 市 场 拓 展 模
式 。通 过 该模 式 ,勤 上 光 电不 仅 为 客 户 提 供 完
I 。 技术 透析 T^c dy en li ci a a t
勤上光 电首创智能LD E 路灯管理系统
智能路灯控制系统方案
对项目相关人员开展培训,包括设备操作、系统维护等。
5.运营维护
建立完善的运营维护体系,确保系统的稳定运行。
五、项目效益
1.节能降耗:通过智能调控,降低路灯能耗,实现节能降耗。
2.提高管理效率:实现路灯的远程监控,提高管理效率。
3.降低护成本:提高路灯使用寿命,降低维护成本。
4.提升城市形象:提高城市道路照明水平,提升城市形象。
(3)远程控制:通过应用层,实现对路灯的远程开关、亮度调节等操作。
(4)故障检测与报警:自动检测路灯故障,并及时发送报警信息。
(5)能耗统计与分析:统计路灯能耗,分析节能效果。
3.技术参数
(1)通信方式:采用有线和无线相结合的方式,实现数据传输。
(2)通信协议:采用国际标准通信协议,确保系统的稳定性和兼容性。
(3)控制系统:采用微电脑控制系统,实现路灯的智能调控。
(4)传感器:采用高精度传感器,实现环境因素的实时监测。
四、实施方案
1.设备选型
根据项目需求,选择合适的路灯、传感器、通信设备等。
2.设备安装
按照设计图纸,对路灯、传感器、通信设备等进行安装。
3.系统调试
在设备安装完成后,进行系统调试,确保系统正常运行。
2.根据环境光线和交通流量,自动调节路灯亮度,降低能耗。
3.提高路灯使用寿命,降低维护成本。
4.确保路灯系统安全可靠,提升城市道路照明水平。
三、系统设计
1.系统架构
本系统采用分层架构,分为感知层、传输层、平台层和应用层。
(1)感知层:负责实时采集路灯的运行状态、亮度、能耗等数据。
(2)传输层:通过有线和无线网络,将感知层的数据传输至平台层。
4.人员培训
智慧城市下的智能路灯管理系统设计
智慧城市下的智能路灯管理系统设计随着城市的不断发展和变化,人们对城市的要求也越来越高。
城市的高效、便捷、绿色和人性化成为了城市建设和管理的重要目标。
智慧城市的概念由此应运而生,它通过信息技术的应用和城市系统的智能化改造,实现城市的智能化、绿色化和便捷化。
而智能路灯管理系统作为智慧城市建设中的重要组成部分,具有非常重要的地位和作用。
一、智能路灯管理系统的意义传统的路灯只能完成照明的功能,无法对城市的环境、交通、治安等问题进行有效的管理和监控。
而智能路灯管理系统则完全不同,它能够对路灯的能耗、亮度、照明范围等进行精准管理和控制。
同时,智能路灯管理系统还能够实现路灯的监控和报警,监测城市环境的各项指标,同时对交通和治安进行智能化管控。
因此,智能路灯管理系统的意义在于:1. 提高城市能源利用效率:智能路灯管理系统可以通过光控、温控、时间控等方式,实现路灯的自动控制和调节,从而降低城市能源的消耗,提高城市能源利用效率。
2. 提高城市环境质量:智能路灯管理系统可以监测城市环境指标,如空气质量、声音等级、温度湿度等,实时获取城市的环境状态,并根据实际情况自动调节路灯亮度和照明范围,从而提高城市的环境质量。
3. 提高城市交通安全性:智能路灯管理系统可以通过交通控制,对城市的路况和车辆进行监控和管理,从而提高城市的交通安全性。
4. 提高城市治安防范能力:智能路灯管理系统可以通过视频监控和报警功能,实现对城市的治安情况进行实时监测和预警,从而提高城市的治安防范能力。
二、智能路灯管理系统的设计要素智能路灯管理系统的设计需要考虑多方面的因素,如硬件设备、软件系统、数据传输、数据存储等。
以下是智能路灯管理系统的设计要素:1. 硬件设备:智能路灯管理系统需要配备多款硬件设备,如路灯控制器、环境监测器、摄像头等,以实现对路灯、环境、交通、治安等方面的全面管理和监控。
2. 软件系统:智能路灯管理系统需要配备完备的软件系统,包括路灯控制软件、环境监测软件、交通管制软件、报警软件等,以实现对路灯的远程控制、监测、报警等动作。
路灯智能照明系统的管理控制系统设计
科技创新22产 城路灯智能照明系统的管理控制系统设计娄嘉骏摘要:随着都市路灯建设全面铺开、设施管控规模增加、需要更多元、节约电量需求更急切,对应的都市智慧照明监控体系的需求也变得更高。
全新一代都市智慧照明监控体系将使用计算机讯息管控和工业自动操控科技以及各种领先的无线传送方式,对都市路灯采取点线操控、点检测等多种科学效率的操控管理,实践远距离操控、节能电能和提升作业效率的领先管控方法,提升都市照明设备现代管控水平的科学方式,为了完成这个目标需要明确这个管理体系操控规划的原则和方向。
关键词:路灯智能照明;节能;系统设计作为都市基础设施中的重要构成部分,路灯照明对人们生产生活产生很大的影响。
但是传统路灯照亮管理体系存在一些难题,比如系统维护开支较大、用户感受较差;各个部分重复过大,在体系集成、可拓展、可研发投入等方面很难让人满意;经常发生服务器超载、超过负荷运转;陈旧的数据库进入技术给反应速度和特性造成很大的影响;人工参与太多,导致体系管理效率和智慧程度较低。
因此,设计一套系统架构合理、通信接口和数据库访问技术先进的路灯智能照明系统,可实现路灯照明系统的高能性、高可靠性、高扩展性和智能化,并降低系统的维护成本、提高用户体验。
1 远程智能路灯控制系统远距离智慧路灯操控体系,主要包含智慧节能操控器、智慧网关操控器、移动通讯板块、通讯和以太网络通讯板块、远距离智慧监控中心和手机监视板块。
无线局域网络主要采用以太网络协定数据通讯,使用国内的三个主要移动通讯企业的现有基站。
把智慧节点操控器、智慧网关操控器、远距离智慧监控中心和手机监视板块当成实际开发的设施软件。
其实际通讯链路是:向上链路是智慧节点操控器,把搜集到的路灯健康信息通过无线局域网络传输给智慧网关操控器,智慧网关操控器利用移动通讯网络和以太网络把数据传送给远距离智慧监控中心,手机应用可以和远距离智慧监控中心通讯查看路灯网络整体运转情况;下行链接路是从远距离智慧监控中心到智慧节点操控器的通讯,可以操控单独路灯的实际工作情况。
基于人工智能的智能路灯控制系统设计与优化
基于人工智能的智能路灯控制系统设计与优化智能路灯控制系统是基于人工智能技术的一种智能化系统,旨在优化路灯的控制和管理效率,提高能源利用率,同时减少能源消耗和环境污染。
本文将深入探讨基于人工智能的智能路灯控制系统的设计与优化。
一、智能路灯控制系统的设计理念智能路灯控制系统的设计理念是通过感知环境信息、分析数据,并根据预设的算法和策略实现对路灯的智能控制。
系统需要能够实时监测路灯的亮度、光线强度、人流情况、车流情况等多种参数,通过人工智能技术进行分析和决策,并实现智能调光、智能预警等功能。
二、智能路灯控制系统的关键技术1. 传感技术:智能路灯控制系统需要通过传感器来感知环境信息,如光线、温度、湿度、噪声等数据。
常用的传感器包括光敏电阻、红外传感器、声音传感器等。
2. 数据分析与决策:采集到的环境信息需要通过数据分析和决策算法,进行智能控制。
常用的算法包括神经网络算法、支持向量机算法、遗传算法等。
3. 通信技术:智能路灯控制系统需要通过无线通信技术实现与管理中心的数据传输和控制指令的下发。
常用的通信技术包括无线射频技术(如Wi-Fi、蓝牙)、NB-IoT等。
4. 能源管理:智能路灯控制系统需要对能源进行合理管理和优化,通过智能调光、智能休眠等功能,降低能源的消耗,提升能源利用效率。
三、智能路灯控制系统的优化策略1. 路灯亮度自适应:智能路灯控制系统可以根据环境亮度和人流情况,自动调整路灯的亮度。
在夜间、行人较多的区域,可以适当提高亮度,提供更好的照明效果,同时在低流量区域进行智能调光,达到节能的目的。
2. 实时监测与预警:智能路灯控制系统可以通过感知车流和人流情况,实时监测路灯状况,并在出现异常情况时发出预警信号。
例如,当人流密集或车辆速度异常时,系统可以发送报警信息给相关部门或管理人员。
3. 故障检测与维护:智能路灯控制系统可以通过自动故障检测功能,实时监测路灯的运行状态,并在发现故障时发送维修请求,进行及时维护和修复,提高路灯的可靠性和稳定性。
智慧路灯监测管理系统设计方案
智慧路灯监测管理系统设计方案一、引言智慧路灯监测管理系统是一种利用物联网技术对城市道路上的路灯进行实时监测和管理的系统。
通过智能传感器、通信设备和云平台等技术手段,实现对路灯的能耗、亮度、故障等信息进行监测和控制,提高路灯的能效和管理效率,同时为城市居民提供更加舒适、安全的路灯照明环境。
本文将从系统架构、功能模块等方面进行设计方案的详细阐述。
二、系统架构智慧路灯监测管理系统的整体架构可分为三层:感知层、传输层和应用层。
1. 感知层:感知层主要包括路灯传感器、视频监控设备等,用于采集路灯的亮度、能耗、故障等信息。
2. 传输层:传输层主要通过物联网技术将感知层采集到的信息传输到云平台。
传输方式可以采用无线通信技术,如Wi-Fi、NB-IoT等。
3. 应用层:应用层是整个系统的核心,主要包括云平台和系统管理终端。
云平台用于接收、存储和处理传感层的数据,提供数据分析、决策支持等功能;系统管理终端用于对路灯进行远程监控和管理。
三、功能模块1. 数据采集模块:负责采集路灯的亮度、能耗、故障等信息,并将数据传输到云平台。
该模块可以通过安装在路灯杆上的传感器实现。
2. 数据传输模块:负责将采集到的数据通过物联网技术传输到云平台。
传输方式可以采用无线通信技术,如Wi-Fi、NB-IoT等。
3. 数据存储与管理模块:负责接收、存储和管理云平台上的数据。
该模块可以采用分布式数据库技术,实现数据的高效存储和管理。
4. 数据分析与决策支持模块:负责对采集到的数据进行分析和处理,提供决策支持。
该模块可以利用数据挖掘和机器学习等技术,实现路灯能耗预测、故障检测、节能调度等功能。
5. 远程监控和管理模块:负责对路灯进行远程监控和管理。
通过系统管理终端可以实时监测路灯的状态、进行亮度调节、故障排查等操作。
四、系统优势1. 节能减排:通过对路灯能耗进行实时监测和分析,系统可以优化路灯的能效,减少能源浪费,实现节能减排的目标。
2. 故障检测与维护:系统能够及时发现路灯的故障,并通过远程监控和管理进行维护。
智慧路灯控制系统有哪些部分组成
智慧路灯控制系统有哪些部分组成智慧路灯控制系统是一种集智能化、自动化、可视化等功能于一体的道路照明系统。
在传统的路灯管理模式下,经常存在诸如灯具损坏、控制不及时、能耗浪费等问题。
而智慧路灯控制系统通过引入网络通信技术、云计算技术、计算机视觉技术等,实现了对路灯的实时监测、智能控制、报警处理等功能,提高了路灯管理的效率和质量。
智慧路灯控制系统主要由以下几部分组成:硬件部分智慧路灯控制系统的硬件部分主要包含路灯管理中心、智能路灯控制器、路灯节点和传感器等。
路灯管理中心是智慧路灯控制系统的核心,可以获取路灯的远程实时数据、基础设施监测数据和管理策略等信息。
管理中心通常由多种现有技术组成,例如,云计算、云存储、物联网等等。
智能路灯控制器是智慧路灯控制系统中的关键部件。
它是一种能够实现路灯互联的设备,具有智能计算、通信、自适应网络等功能,负责控制路灯的亮灭调节、电流电压等能量参数。
通过智能控制器,可以实现远程调光和远程开关等功能。
路灯节点包括智能控制器和LED光源,可以实现路灯的智能控制。
传感器是一种集成在路灯灯杆上的设备,能够实现对路灯周围环境的温度、湿度、风速等参数的监测。
软件部分智慧路灯控制系统的软件部分主要包括管理平台、智能算法和应用程序。
管理平台是智慧路灯控制系统中的关键部分,负责路灯的实时监测、监控和控制。
管理平台主要功能包括能源管理、运营管理、报警管理、设备管理等。
通过管理平台,可以实现远程总控、遥控等操作。
智能算法是智慧路灯控制系统的核心部分,它通过数据分析、模式识别等技术,对路灯的实时状态和数据进行分析和处理,提供适当的控制策略和方案。
通过智能算法,可以实现路灯亮度自适应、节能控制等功能。
应用程序是一种基于智能算法的开发软件,可以实现更加具体的功能需求。
例如,应用程序可以实现路灯的故障诊断和维修管理、路灯故障自动报警等功能。
总结智慧路灯控制系统是一种集智能、自动化、可视化等功能为一体的系统,系统中包含了硬件和软件部分。
智慧公共照明管理系统(智慧路灯)方案
智慧公共照明管理系统(智慧路灯)方案1. 引言公共照明是城市的重要基础设施之一,传统的公共照明系统存在诸多问题,如能耗高、运维成本高、管理效率低等。
为了提升城市照明管理的智能化水平,智慧公共照明管理系统(智慧路灯)应运而生。
本文将详细介绍智慧公共照明管理系统的方案,包括系统的架构、功能模块以及实施计划等。
2. 系统架构智慧公共照明管理系统的架构主要包括以下几个组件:•智能路灯:采用LED灯和传感器技术,能够根据环境亮度自动调节亮度,实现能耗优化。
•路灯控制器:连接智能路灯与中控系统,负责对路灯的开关和亮度进行远程控制。
•中控系统:集中管理和监控路灯的运行状态,包括能耗统计、故障诊断、远程控制等功能。
•云平台:提供对中控系统的云端存储和分析处理能力,实现大规模路灯管理和数据分析。
3. 功能模块智慧公共照明管理系统的主要功能模块包括:•远程控制:通过中控系统和云平台,实现对路灯的远程开关和亮度调节,方便运维人员进行管理。
•能耗统计:记录路灯的能耗数据,并进行统计分析,为优化能耗提供数据支持。
•环境感知:通过路灯上的传感器监测环境亮度、天气情况等信息,并根据实时数据调整路灯亮度。
•故障诊断:智能路灯故障发生时,系统能够自动诊断故障原因并及时报警,提高故障处理效率。
•智能调度:通过路灯控制器和云平台的协作,实现对路灯的智能排程,根据实时需要进行路灯开启和关闭。
4. 实施计划智慧公共照明管理系统的实施计划可以按以下步骤进行:1.需求分析:与城市相关部门和运维人员沟通,了解实施智慧公共照明管理系统的具体需求。
2.系统设计:基于需求分析结果,设计系统的架构和功能模块,并确定系统的硬件和软件需求。
3.系统采购:根据系统设计结果,采购所需的智能路灯、路灯控制器、中控系统和云平台等设备。
4.系统实施:安装智能路灯和路灯控制器,搭建中控系统和云平台,进行系统的调试和配置。
5.系统测试:对已实施的系统进行全面测试,确保各个功能模块的正常运行和协作。
智能交通中的智能路灯控制系统
智能交通中的智能路灯控制系统智能交通是当今社会高科技的缩影。
随着人工智能、物联网、云计算等技术的成熟,智能交通被赋予更多更广泛的含义。
其中智能路灯控制系统是智慧城市的一种基础设施,为交通管理和公共安全提供了更加便捷和高效的服务。
一、智能路灯控制系统的功能智能路灯控制系统是指对路灯进行监控、控制和管理的系统。
传统路灯控制系统主要依靠计时器、光控开关等方式进行控制,缺乏精确性和智能性。
而智能路灯控制系统采用无线通信技术将路灯信息传输至后台服务器,通过云计算、物联网等技术实现对路灯的远程监控和管理。
智能路灯控制系统的功能包括:1、实时监测和控制路灯的亮度和开关状态;2、自动检测人员、车辆等运动状态以及周围环境的光强度等参数,自动进行智能控制;3、智能判断交通流量和拥堵情况,调节路灯亮度,提高能源利用效率;4、实现远程手动控制和管理路灯的开关。
二、智能路灯控制系统的优势与传统路灯控制系统相比,智能路灯控制系统具有以下优势:1、精准控制和管理:传统路灯控制系统只能进行简单的时间控制和光控开关控制,而智能路灯控制系统可以实现对路灯的精细化、智能化控制。
2、智能化管理:智能路灯控制系统通过云计算、物联网等技术实现对路灯的远程管理,可以实时监控路灯的状况,并进行实时控制,提高管理效率和节能效果。
3、能源节约:智能路灯控制系统可以根据环境光强和交通流量等参数进行智能控制,节省能源和减少污染。
4、提高公共安全:智能路灯控制系统可以实时监测和报警,对于路灯故障、短路等情况进行智能判断和排查,提高公共安全。
三、智能路灯控制系统的应用智能路灯控制系统在智慧城市建设、交通管理、公共安全等方面都得到了广泛应用。
在智慧城市建设中,智能路灯控制系统可以实现路灯的精准化控制,帮助城市节省能源和减少污染。
在交通管理中,智能路灯控制系统可以通过实时监测和控制,减轻交通拥堵,提高车辆通行效率。
同时,在公共安全方面,智能路灯控制系统可以实时监测和报警,对于路灯故障、短路等情况进行智能判断和排查。
路灯照明智能控制管理系统(单灯控制)
路灯照明智能控制管理系统(单灯控制) 1·引言1·1 编写目的1·2 读者对象本文档适用于项目开发人员、系统维护人员以及相关利益相关方等。
2·系统概述2·1 系统简介路灯照明智能控制管理系统(单灯控制)是一个基于智能控制技术的路灯照明管理系统,旨在通过对路灯的远程控制和智能管理,提高能源利用效率和照明效果。
2·2 功能特点2·2·1 单灯控制该系统支持对每个路灯进行独立的控制,用户可以通过系统进行远程开启、关闭、调光等操作。
2·2·2 定时控制系统支持根据用户设定的时间表来自动开关灯,能够根据不同时间段的需求进行智能控制。
2·2·3 节能模式系统具有节能模式功能,可以根据交通流量、环境亮度等因素自动调整照明亮度,以实现节能效果。
3·系统需求3·1 硬件需求3·1·1 控制器:支持智能控制功能的控制器设备。
3·1·2 传感器:用于感知周围环境亮度、交通流量等参数的传感器设备。
3·1·3 通信设备:支持与控制中心进行远程通信的网络设备。
3·2 软件需求3·2·1 操作系统:支持安装系统软件的操作系统,如Windows、Linux等。
3·2·2 数据库:用于存储系统相关数据的数据库管理系统。
3·2·3 开发工具:用于系统开发和维护的集成开发环境,如Eclipse、Visual Studio等。
4·系统设计4·1 系统架构4·1·1 硬件架构系统的硬件架构包括控制器、传感器和通信设备等组件,通过这些硬件设备实现对路灯的智能控制和管理。
4·1·2 软件架构系统的软件架构包括前端界面、后端服务器和数据库等组件,通过这些软件组件实现对路灯控制和管理的功能。
路灯智能管理系统使用说明
路灯智能管理系统使用说明一、简介路灯智能管理系统是一种基于物联网技术的智能化管理系统,旨在提高路灯管理的效率和便利性。
该系统通过传感器、网络通信和数据分析等技术,能够实现对路灯的远程监控、智能调光、故障报警和节能管理,为城市道路照明带来了新的管理模式和技术手段。
二、系统组成1. 路灯智能控制器:每盏路灯都配备有智能控制器,用于接收指令、发送数据和控制灯光的亮度。
2. 中心管理平台:负责整个系统的监控、数据分析和指令下发,是系统操作的核心部分。
3. 网络通信设备:负责路灯控制器和中心管理平台之间的数据传输和通信。
4. 传感器:用于感知环境数据,如光线强度、温度、湿度等,为系统提供实时的环境信息。
三、系统功能1. 远程监控:用户可以通过中心管理平台远程监控各个路灯的工作状态、能耗情况和亮度值,实现对路灯的全面管理。
2. 智能调光:系统根据光线强度和交通情况,自动调整路灯的亮度,提高能耗利用率,降低城市能耗成本。
3. 故障报警:系统能够及时感知路灯的故障情况并向中心管理平台发送报警信息,便于快速定位和处理故障。
4.节能管理:系统通过数据分析和调度算法,优化路灯的工作模式,实现节能运行,降低能耗成本。
四、操作流程1. 登录系统:用户使用指定的账号和密码登录中心管理平台。
2. 监控路灯状态:用户可以在系统界面上查看各个路灯的实时状态、能耗情况和亮度值。
3. 远程控制:用户可以通过系统界面远程控制路灯的开关、亮度和调光模式。
4. 故障处理:系统会及时向用户发送故障报警信息,用户可以远程定位故障并下发维修指令。
五、注意事项1. 系统维护:定期对系统设备进行检查和维护,确保设备的正常运行。
2. 数据安全:严格控制系统的权限和数据访问,保障系统数据的安全性和隐私性。
3. 系统升级:及时对系统进行升级和优化,保持系统的稳定性和功能完善性。
六、系统优势1. 高效节能:系统实现了根据实际需求调整路灯亮度,提高了能耗利用率,降低了能源浪费。
智能路灯控制系统设计方案
智能路灯控制系统设计方案一、引言随着科技的发展和智能化的趋势,智能路灯控制系统作为城市照明的重要组成部分,已成为城市管理者关注的热点。
智能路灯控制系统可以通过传感器、通信技术和智能算法实现对路灯的远程监控和控制,以提高路灯的能效性和服务质量。
本文将提出一种智能路灯控制系统的设计方案。
二、系统组成1.路灯节点智能路灯控制系统的核心是路灯节点,每个路灯节点均配备传感器、通信模块、控制模块等。
传感器用于感知周围环境的亮度、温度和人流量等信息,通信模块用于与上级控制中心进行数据传输,控制模块用于实现对灯具的远程开关和调光控制。
2.控制中心控制中心是智能路灯控制系统的数据处理和决策中心,负责接收路灯节点上传的传感器数据,根据预设的算法进行数据分析和决策,并通过通信模块将指令发送给路灯节点进行控制。
控制中心还负责系统的运行状态监控和故障诊断等。
3.数据存储和分析模块为了对路灯节点的历史数据进行分析和优化,系统需要具备数据存储和分析模块。
这个模块可以将路灯节点上传的数据进行存储,并提供数据查询和分析功能,以支持运营商对路灯控制系统的管理和优化。
三、系统功能和工作原理1.自动调光2.远程开关3.故障检测和报警四、系统优势1.能源节约:智能路灯控制系统可以根据实际需要调光,节约能源。
可以根据时间表和环境条件进行远程开关,减少不必要的能源消耗。
2.系统管理便捷:智能路灯控制系统可以实现对路灯节点的远程监控和控制,运维人员无需上门维修和调控,大大提高了管理效率。
3.数据分析优化:智能路灯控制系统可以通过对历史数据的分析优化路灯亮度调节策略,并预测路灯维护周期和寿命,提高路灯的使用寿命和运行效率。
五、系统实施和应用智能路灯控制系统可以根据具体的场景和需求进行实施和应用。
首先需要对路灯进行节点改造和设备安装,确保每个路灯节点都具备传感器、通信模块和控制模块。
然后,需要搭建控制中心和数据存储和分析模块,实现数据的采集、处理和决策。
智慧小区路灯管理系统开发设计方案
智慧小区路灯管理系统开发设计方案智慧小区路灯管理系统是基于物联网技术开发的一种智能化路灯管理系统,主要用于实时监测、控制和管理路灯的亮度、状态和能耗等信息,以提高路灯的效率、节能和安全性。
一、系统需求分析智慧小区路灯管理系统的主要功能包括:1. 实时监测:通过传感器获取路灯的亮度、温度、湿度等信息,并实时显示在管理平台上。
2. 远程控制:通过管理平台对路灯进行远程开关、亮度调节等控制操作,方便管理人员快速响应和处理问题。
3. 能耗管理:记录和统计路灯的能耗信息,实现灵活的能耗管理和分析,并提供相应的报表和图表。
4. 故障监测:通过故障检测算法对路灯进行实时监测,并在出现故障时发出警报或自动报修。
5. 安全管理:通过视频监控和智能报警系统实现对路灯周边环境的安全监测和管理。
二、系统设计方案1. 系统架构整个系统分为路灯节点、网关、服务器和管理平台四个部分。
路灯节点通过传感器采集路灯信息,并通过网关将数据发送至服务器。
服务器对数据进行存储、处理和分析,并提供相应的接口给管理平台进行访问。
2. 路灯节点设计路灯节点由一个具有通信功能的微控制器、光敏传感器、温湿度传感器、开关和传感器驱动电路等组成。
微控制器采集传感器数据并通过无线通信模块发送给网关,同时根据控制指令调整灯光亮度。
3. 网关设计网关负责与路灯节点通信,并将数据传输到服务器。
网关可以采用无线通信技术如Zigbee或LoRa,也可以使用有线通信技术如以太网或RS485。
4. 服务器设计服务器主要负责存储、处理和分析路灯数据,并提供相应的接口给管理平台进行访问。
服务器可以采用分布式架构,通过负载均衡和故障转移技术提高系统的可靠性和性能。
5. 管理平台设计管理平台提供用户界面,用于监测、控制和管理路灯。
用户可以通过管理平台查看路灯的亮度、状态和能耗等信息,并进行远程控制和设置。
管理平台还可以提供相应的报表和图表,帮助用户进行能耗分析和故障诊断。
三、系统开发与实施1. 软件开发根据系统设计方案,开发相应的路灯节点固件、网关程序、服务器应用程序和管理平台界面。
智能路灯控制系统设计
智能路灯控制系统设计智能路灯控制系统是一种利用先进的技术手段使路灯能够精准、智能地调控亮度和时间的系统。
它通过使用传感器、通信设备和控制算法等技术,实现对路灯的自动监测和控制,达到节能、环保和智能化的目的。
一、系统组成智能路灯控制系统主要包括传感器、通信设备和控制算法。
传感器用于实时感知环境亮度和人流量等信息,通过通信设备传输给控制中心。
控制中心根据传感器信息和控制算法,决定路灯的亮度和工作时间。
1. 传感器传感器是智能路灯控制系统的重要组成部分。
常见的传感器有光敏传感器和人体红外传感器。
光敏传感器可以感知周围环境亮度的变化,根据亮度调整路灯的亮度;人体红外传感器可以感知人体的运动,根据人流量来决定是否延长路灯的工作时间。
2. 通信设备通信设备用于将传感器获取到的信息传输给控制中心,通常采用4G/5G通信技术,具备高速、稳定的数据传输能力。
控制中心通过通信设备接收并处理传感器的信息,做出相应的控制决策。
3. 控制算法控制算法是智能路灯控制系统的核心。
它通过分析传感器的数据,结合预设的亮度和时间策略,决定路灯的亮度和工作时间。
常见的控制算法包括PID控制算法、模糊控制算法和神经网络控制算法等。
二、系统工作流程智能路灯控制系统的工作流程包括传感器采集、数据传输和控制中心决策。
1. 传感器采集传感器采集环境亮度、人流量等信息,并将这些数据通过通信设备传输到控制中心。
传感器可以设置在路灯杆上或路灯附近,实时监测周围环境的变化。
2. 数据传输传感器将采集到的数据通过通信设备传输到控制中心。
通信设备使用高速、稳定的通信技术,确保数据的实时传输和可靠性。
3. 控制中心决策控制中心根据传感器的数据和预设的亮度、时间策略,做出相应的控制决策。
例如,当环境亮度较低时,控制中心将提高路灯的亮度;当检测到人流量较多时,控制中心将延长路灯的工作时间。
三、系统优势智能路灯控制系统具有多方面的优势,下面列举了其中几个典型的优点。
基于物联网的智能路灯管理系统设计与实现
基于物联网的智能路灯管理系统设计与实现智能路灯管理系统是基于物联网技术的一种创新应用。
它通过物联网网络,将路灯设备连接在一起,实现对路灯的智能管理和监控。
本文将探讨智能路灯管理系统的设计和实现。
一、需求分析智能路灯管理系统的设计和实现首先需要对需求进行分析。
从用户角度来看,智能路灯管理系统应该具备以下功能:1. 远程监控:可以通过云端平台远程监控路灯的状态,包括亮度、故障等。
2. 自动调节亮度:根据路灯周围光照情况和交通流量,自动调节路灯的亮度,提供合适的照明条件。
3. 故障检测与报警:及时检测路灯设备的故障并发送报警信息给维修人员。
4. 能耗监控与管理:对路灯的能耗进行统计、分析和管理,降低能耗成本。
二、系统架构设计智能路灯管理系统的设计需要考虑到系统的可扩展性和可靠性。
以下是一个基本的系统架构设计:1. 传感器层:通过安装光照传感器、温度传感器等传感器设备来获取路灯周围的环境信息。
2. 通信层:利用物联网技术,通过无线通信方式将传感器数据传输到云端平台。
3. 云端平台:接收来自路灯的传感器数据,并进行数据处理、存储和分析。
同时,提供对路灯状态的远程监控和控制功能。
4. 应用层:为路灯管理人员、维护人员和用户提供图形化的用户界面和功能操作。
三、系统实现1. 传感器设备安装:安装光照传感器、温度传感器等传感器设备,并利用适当的通信方式将数据传输到云端平台。
可以选择使用LoRa、NB-IoT等低功耗广域网技术。
2. 云端平台搭建:建立一个稳定的云端平台来接收和处理路灯传感器数据。
可以使用主流的云计算平台,如AWS、Azure等。
3. 数据处理与分析:对接收到的数据进行清洗、分析和存储。
通过数据分析算法,实现智能调节路灯亮度的功能,并对能耗进行统计和管理。
4. 远程监控和控制:通过云端平台提供远程监控和控制功能,可以实时查看路灯的状态、亮度等信息,并进行远程控制,如远程开关灯、调节亮度等。
5. 报警管理:实现路灯故障的实时检测和报警功能,并将报警信息发送给维护人员,以便及时处理故障。
智能路灯控制系统方案
智能路灯控制系统方案1. 引言智能路灯控制系统是一种基于物联网技术的智能化方案,旨在提高路灯的节能效率、管理效率和维护效率。
通过智能化的控制策略和实时监测,可以根据实际需要调整路灯的亮度和开关状态,实现有效的能源管理和智能化的路灯管理。
本文将针对智能路灯控制系统进行详细的方案介绍和设计说明,包括系统架构、主要功能模块、数据传输和通信方式以及系统的实施步骤等。
通过这些描述,读者将能够对智能路灯控制系统有一个全面的了解,并为相关项目的实施提供参考。
2. 系统架构智能路灯控制系统主要分为以下几个组成部分:2.1 路灯节点路灯节点是智能路灯控制系统的核心组成部分,它包括路灯控制器、光敏传感器和通信模块。
路灯控制器负责路灯的开关和亮度调节,光敏传感器用于感知周围环境光照强度,通信模块负责与总控制中心进行数据传输。
2.2 总控制中心总控制中心是智能路灯控制系统的管理核心,它负责监控和管理所有路灯节点。
总控制中心可以通过通信模块实时接收和发送路灯节点的状态和控制指令,并根据预设的控制策略对路灯进行智能化控制。
2.3 数据存储和分析平台数据存储和分析平台负责接收、存储和分析智能路灯控制系统的数据。
通过对数据的分析和统计,可以实现路灯的故障检测、能耗分析和管理优化等功能,并为后续系统优化提供依据。
3. 主要功能模块智能路灯控制系统具有以下主要功能模块:3.1 路灯控制路灯控制模块负责对路灯的开关和亮度进行控制。
通过光敏传感器实时感知环境光照强度,路灯控制器可以根据预设的控制策略自动调整路灯的亮度。
此外,路灯控制模块还可以实现远程开关和调节路灯亮度的功能。
3.2 能源管理能源管理模块负责对路灯的能耗进行实时监测和统计。
通过对路灯能耗数据的分析,可以发现能源消耗过大的路灯,并进行相应的优化措施,以提高能源利用效率。
3.3 故障检测与维护故障检测与维护模块负责监测路灯的状态和运行情况。
通过实时监测路灯节点的工作状态,可以及时发现并处理异常情况,避免路灯故障长时间未被修复。
智能路灯控制系统的设计
智能路灯控制系统的设计随着物联网技术的快速发展,越来越多的城市开始采用智能路灯控制系统来提高城市能耗的效率和减少维护成本。
智能路灯控制系统通过感知环境光照、交通流量、天气等因素,实现智能化的路灯调控,从而提供更加舒适和安全的城市环境。
一、系统设计目标1.自动感知光照强度:系统需要能够感知环境光照强度,并根据需要自动调节路灯亮度。
2.交通流量感知:系统需要能够感知交通流量,根据交通状况调整路灯亮度,提供安全的行车环境。
3.天气感知:系统需要能够感知天气状况,根据实时天气情况调整路灯亮度。
4.远程控制和管理:系统需要支持远程控制和管理,方便维护人员进行监控和维护。
二、系统架构设计1.前端感知设备:包括光照传感器、交通流量传感器和天气传感器等。
光照传感器用于感知环境光照强度,交通流量传感器用于感知交通流量,天气传感器用于感知天气状况。
2.中间控制服务器:负责接收和处理前端感知设备发送的数据,并根据预设的策略来控制路灯亮度。
服务器还可以根据灯泡寿命和用电情况等信息进行智能化调度和能耗统计。
3.远程维护平台:提供远程监控和管理功能,可以通过云平台对路灯进行远程控制、故障诊断和数据分析等操作。
维护人员可以通过终端设备实时查看路灯的状态、报警信息和维护记录。
三、系统工作原理1.光照感知:光照传感器安装在每个路灯顶部,感知环境光照强度,并将数据发送给中间控制服务器。
2.交通流量感知:交通流量传感器安装在路灯附近的交通信号灯上,感知交通流量,并将数据发送给中间控制服务器。
3.天气感知:天气传感器安装在每个路灯上,感知天气状况,并将数据发送给中间控制服务器。
4.亮度调节:中间控制服务器根据接收到的光照、交通流量和天气数据,采用预设的策略来控制路灯的亮度。
例如,在白天和晴天,亮度较低,以达到节能的目的。
而在夜晚和雨天,亮度较高,以提供良好的照明和交通安全。
5.远程控制和管理:维护人员可以通过远程维护平台对路灯进行远程控制、故障诊断和数据分析等操作。
LED路灯智能控制系统设计方案
LED路灯智能控制系统设计方案智能LED路灯控制系统是一种基于物联网技术的路灯智能化管理系统,能够实时监测路灯的工作状态,并根据环境条件智能调节路灯的亮度,从而达到节能减排的目的。
系统设计方案如下:1.硬件设计:系统的硬件主要包括传感器、控制器、终端设备和通信模块等。
-传感器:采用光照度传感器、温度传感器和人体红外传感器等,用于实时监测路灯周围的环境条件,包括光照强度、温度和人流情况等。
-控制器:采用单片机或微处理器作为控制芯片,用于接收传感器的数据并进行处理,同时控制路灯的亮度和工作状态。
-终端设备:包括远程监控终端设备和管理终端设备,用于用户和管理人员查看和控制路灯的状态和亮度。
-通信模块:采用无线通信模块,如WiFi、蓝牙或NB-IoT等,与终端设备进行数据传输和控制指令的发送。
2.软件设计:系统的软件主要包括前端监控界面、后端数据处理和智能算法。
-前端监控界面:提供实时监控路灯状态和亮度的界面,用户可以通过终端设备查看路灯的工作情况,并对路灯进行远程控制。
-后端数据处理:接收传感器的数据,对数据进行处理和分析,生成报表和统计信息,并保存到数据库中。
-智能算法:根据传感器数据和用户的需求,采用智能算法来调节路灯的亮度。
例如,根据光照度传感器的数据,调节路灯的亮度,当光照强度较弱时,增加亮度,当光照强度较强时,减小亮度。
3.系统功能:-实时监测:通过传感器实时监测路灯的工作状态和周围环境条件,包括光照度、温度等。
-远程控制:用户可以通过终端设备远程控制路灯的开关、亮度等参数,方便管理和维护。
-灯光调节:根据传感器数据和智能算法,自动调节路灯的亮度,使其根据环境条件自适应调节,达到节能减排的目的。
-故障检测:系统能够检测路灯的故障情况,并及时报警,方便进行维修和更换。
-数据分析:系统能够对传感器数据进行分析和统计,生成报表和图表,为管理决策提供参考。
4.系统优势:-节能减排:智能控制系统能根据环境条件智能调节路灯的亮度,实现节能减排的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ZIGBEE子网-控制器 ZIGBEE子网协调器 ZIGBEE路灯控制柜
ZIGBEE组网演示图
短距离结合远距离组网传输
ZIGBEE短距离模块 ZIGBEE远距离模块
• • •
数据通讯可靠 减少网络延时 组网传输稳定
系 统 原 理
服务器
RS232
A
GPRS
控制柜2
控制命令:00001FFFF
路灯系统组成—简介
智能路灯管理系统的组成构架:
• 监控器:路灯监控器内嵌ZIGBEE和智能芯片,一般集成在灯具内,也可以安装
在灯具外面或安装在灯杆上,具有开关、亮度调节、电流电压采集等功能,并预留 了温度采集、灯杆倾斜检测等功能
• 子网协调器:协调器内嵌ZIGBEE、GPRS和智能芯片,一般安装在路灯控制箱
SZ10-系列单灯控制器
系 统 特 点
系统特点:
(1)节省成本:安装施工简易快捷,无需铺设专线, 模块化安装,可以系统自动检测生成故障报表。每个路灯只需要一个 路灯监控器,可达每200个路灯配备一台子网监控器,节省了GPRS流量。不用改变既有的电力线架设和配电监控网络, 一方面节省了人力物力;一方面自动组网的ZigBee模块不受天气和地形的影响,也保证了通讯的可靠性。 (2)每天可进行自动通、断电操作;可保证工作日、节假日按不同的时间自动通、断电;可对用电设备进行分区、分线 路管理。
(3)监控灯具的开/关和亮度,从而可以显著延长灯具的有效寿命,减少灯具更换次数,节约资源,减少有害气体污染环
境。可以远程设置节点监控参数,实现节点的灵活监控。在后半夜车稀人少时,则监控路灯保持较低照度的照明(或者实 行“半夜 灯”调节监控)。 这样做主要优点就是在调光的同时,也大幅降低了电耗,节约用电,同时还可以延长灯源寿 命。 (4)根据天气情况和实际光的照度,自动监控灯具的开/关和灯具的亮度,如在不好的天气时及时打开路灯,对于安装在 桥下或隧道的路灯,路据实测光强,来自动以最佳的亮度打开路灯,提高公众满意度,在灾害天气使路灯更人性化。 (5)通过系统中心设置,防止非授权人操作,确保系统监控安全可靠。依据采集数据情况,可判断终端设备运行状态情 况。所有运行参数(自动通断电时间,区域划分)可在管理终端随时设置,随时启用,管理方便。
控制柜1
控制柜3
子网协调器 ZIGBEE+GPRS
路灯 路灯 路灯 路灯
路灯 路灯 路灯 路灯
路灯 路灯 路灯 路灯 ZIGBEE监控器
产品介绍SZ10-R1A控制器
照明可实现40%以上的节能,并提供灵活的无线单灯控制, 单灯在线监测功能,帮助管理者实时撑握各盏路灯的运行状况, 及时准确的提供故障路灯报警,彻底省去了人工巡视检修的麻烦。
系统应用-简介
智能路灯管理系统应用
智能路灯管理系统主要应用了ZigBee无线技术实现了单灯管理的功能
具有以下优点 :
系统通过ZIGBEE和GPRS的无线网络(物联网),在用户计算机上自动获得路灯 的各种参数状态,实现了自动巡检,可以判别出路灯的故障状况、老化程度、亮灯 状况等; 实现了路灯的调光和按需亮灯功能,即该亮时亮、该暗时暗,可以节约电能25% 左右(节能)。 应用无线的组网方式,可以节约大量电线电缆,节约了大量的物资(低碳)。
1095 KWH
支道
6~8M
高压钠灯
150W
0.15KW×12H×365
657 KWH
主干道/快速道
11~12M
LED灯
200W
0.2KW×12H×365
876 KWH次干道8~10MLED灯
120W
0.12KW×12H×365
525.6 KWH
支道
6~7M
LED灯
80W
0.08KW×12H×365
内,是路灯监控器和计算机监控中心的通讯桥梁。它负责监控子网内的路灯,将监 控中心的命令下达给路灯,将路灯及线路信息反馈给监控中心。子网协调器还可以
扩展回路控制功能。
• 监控中心:中心具有管理子网协调器、路灯监控器的功能,并对收集上来的数据
进行分析处理和反馈报警,可以及时进行管理调度和评估。
路灯系统应用-图例
市 场 需 求
市场需求:
当代社会,城市路灯照明已经成为展示城市魅力的名片和窗口,但是照明在带来辉煌、绚丽和方便的同时,也遇到了诸 多预料不到的问题如:费用问题、用电问题、管理问题,故障回报问题等。采用何种方案可以解决以上问题? 大家都知道,单独的GPRS路灯控制只是控制一条路上的路灯。无法实现更多系统控制及单双灯控制,且费用高; ZigBee+GPRS最新无线技术从根本上克服了前两者的缺陷,是真正的“无处不在”的技术。 就路灯领域来讲,节能问题自然是我们考虑的首选。据有关环保部门统计数字显示,海口地区现约有路灯2万盏,年耗 电费在1300万元至1500万元;每年西安市路灯照明的电费就超过1亿元;南京仅路灯的数量大约有20万盏,如果每天以 平均开灯10小时计算,那么每年的电费至少在2.2亿元左右…… 所有这些数字显示表明,我们正面临着严重的能源耗费问题!在电力能源紧张的今天,顺舟科技的无线技术,不但可以 帮助照明系统节省25%以上的用电量,而且还让照明灯具的使用寿命得到了极大限度的延长,不仅帮助解决城市路灯照 明经费问题,还可以帮助解决电力能源环保等相关领域问题。 这也正是顺舟科技人性化设计理念受到市场欢迎的根本原因。
(二)通过降低功率和部分亮灯方式节省的电费
节电经济效益分析图
国内道路照明常用灯具及其年用电量
用灯场所 灯具安装高度 光源类型 光源功率 单灯年用电量算法 单灯年耗电
主干道/快速道
10~12M
高压钠灯
400W
0.4KW×12H×365
1752 KWH
次干道
8~10M
高压钠灯
250W
0.25KW×12H×365
指标名称 技术参数
传输距离
网络拓扑 网络ID 网内节点 数据接口
100米—2000米
星型、树型、链型、网状 网 65535 65535 TTL收发、RS232、RS485、 USB、RJ45
其主要包含以下功能:
SZ10- R1A单灯控制器的主要性能特点:
● 工作于220VAC 市电交流线路 ● 继电器触点容量达30A/250VAC ● 提供1 路继电器输出(R2A 提供2路继电器输出) ● 具有电压、频率、温度检测功能; ● 具有一路电流、有功功率、无功功率检测功能; ● 具有一路开关和PWM、0~10V调光信号输出的功能; ● 具有TTL、232、485通讯接口; ● 具有过流保护、灯具状况检测、缺省亮灯等功能; ● 适用于LED灯、高压钠灯、金卤灯等灯具的开关和调光使用。 ● 基于安全的过载保护设计 ● 无线频点 2.4G ISM全球免费频段 ● 无线信道 16个。单网容量:65535个节点 ● 网络拓补、支持星型、树型、链型、网状网 ● ZIGBEE无线模块接收灵敏度高达-94DBM ● 完善的ZIGBEE无线组网通线协议 ● 工业级工作温度范围:-35℃~+75℃ ● 外形尺寸:100mm×100mm×50mm(L×W×H) ● 天线连接 胶棒天线、吸盘天线、馈线+胶棒天线、
串口信号
串口速率 调制方式 频率范围 无线信道 接收灵敏度 发射功率 天线连接 防止冲突 输入电压
TxD,RxD,GND
1200 - 115200 bps DSSS 直序扩频 2.405GHz - 2.480GHz 16 -94 dbm -27dBm - 25dBm 外置SMA天线 CSMA-CA和GTS的CSMA-CA DC 12V-24V
350.4 KWH
主干道/快速道
10~12M
高压钠灯
400W
0.4KW×12H×365
1752 KWH
次干道
8~10M
高压钠灯
250W
0.25KW×12H×365
1095 KWH
节电经济效益分析
城市无线照明控制系统采用Zigbee无线通信控制方式,从根本上解决了传统城市照明路检难、控制难等问题, 成为现代城市照明的根本解决方案。城市照明使用ZIGBEE技术后,可节省的费用分为两部分: (1)巡检费用(2)通过降低功率和部分亮灯方式节省的电费。
(一)可节省的巡检费用
以一个城市5万盏路灯为例每天晚上需要20辆车,每辆车平均3个人,一年的城市照明巡检费用为440万元。 一辆巡逻车年费用约10万元,巡逻人员年工资约4万元,20×10+3×20×4=440 单灯控制运用后,不再需要人工巡逻,每年能为一个地级市节省四百多万元人民币的巡检费用。