(完整版)高等数学——导数练习题
高中数学导数练习题
高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
高等数学——导数练习题
高等数学——导数练习题1. 求导练习题1.1 一元函数求导求下列函数的导数: 1. y=x2−3x+2 2. $y = e^x + \\ln(x)$ 3. $y = \\sin(x) \\cos(x) - \\tan(x)$1.2 二元函数求导求下列函数的偏导数: 1. z=x2+y2 2. $z = x \\cos(y)$ 3. $z = \\ln(x) \\cdot \\sin(y)$2. 函数求导规则练习题2.1 基本导数法则利用基本导数法则求下列函数的导数: 1. $y = \\sin(x)$ 2. $y = \\cos(x)$ 3. $y = \\ln(x)$ 4. y=e−x 5. $y = \\tan(x)$2.2 组合函数求导法则利用组合函数求导法则求下列函数的导数: 1. $y = \\sin(x^2)$ 2. $y =e^{\\cos(x)}$ 3. $y = \\ln(\\sin(x))$ 4. $y = \\tan(\\ln(x))$2.3 高级导数法则利用高级导数法则求下列函数的导数: 1. $y = \\frac{\\sin(x)}{x}$ 2. $y =\\frac{x^2}{\\cos(x)}$ 3. $y = \\frac{\\ln(x)}{x^2}$ 4. $y = \\frac{e^x}{x}$3. 高阶导数练习题3.1 一元函数高阶导数求下列函数的高阶导数: 1. y=x3+3x2−2x 2. $y = \\cos(x) + \\sin(x)$ 3. $y = e^x \\cdot \\ln(x)$3.2 二元函数高阶导数求下列函数的高阶偏导数: 1. z=x3+y3 2. $z = x^2 \\sin(y) + y^2\\cos(x)$ 3. $z = e^{\\sin(x)} \\cdot \\ln(y)$4. 导数应用题4.1 切线与法线求曲线y=x2−2x+1在点(1,0)处的切线和法线方程。
导数的计算练习题及答案
导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。
解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。
f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。
化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。
2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。
求导练习题带答案
求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。
以下是一些求导的练习题及其答案,适合初学者练习。
练习题1:求函数 f(x) = x^3 的导数。
解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。
因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。
练习题2:求函数 g(x) = sin(x) 的导数。
解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。
所以,g'(x) = cos(x)。
练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。
解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。
对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。
练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。
解:这里我们使用链式法则和幂函数的求导法则。
首先,设 u = x^2- 1,那么 k(x) = u^3。
u 的导数是 u' = 2x,而 u^3 的导数是3u^2。
应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。
练习题5:求函数 m(x) = e^x 的导数。
解:根据指数函数的求导法则,e^x 的导数是它自身。
所以,m'(x) = e^x。
练习题6:求函数 n(x) = ln(x) 的导数。
解:自然对数函数 ln(x) 的导数是 1/x。
因此,n'(x) = 1/x。
练习题7:求函数 p(x) = (3x - 2)^5 的导数。
解:使用链式法则和幂函数的求导法则。
(完整版)高等数学——导数练习题
一.选择题1.若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A.k 2 B.k C.k 21D.以上都不是2.若f (x )=sinα-cosx ,则f ′(a )等于 ( )A .sinαB .cosαC .sinα+cosαD .2sinα3.f (x )=ax 3+3x 2+2,若f ′(−1)=4,则a 的值等于( )A .319 B .316 C .313D .3104.函数y =x sin x 的导数为( )A .y ′=2x sin x +x cos xB .y ′=x x 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x5.函数y =x 2cos x 的导数为( )A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x6.函数y =22xax +(a >0)的导数为0,那么x 等于( )A .aB .±aC .-aD .a 27. 函数y =xxsin 的导数为( )A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin x xx x -D .y ′=2cos sin x xx x +8.函数y =2)13(1-x 的导数是( )A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x9.已知y =21sin2x +sin x ,那么y ′是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数10.函数y =sin 3(3x +4π)的导数为( )A .3sin 2(3x +4π)cos (3x +4π)B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)11.函数y =cos (sin x )的导数为( )A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )12.函数y =cos2x +sin x 的导数为( )A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos13.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为( )A .2y -8x +7=0B .2y +8x +7=0C .2y +8x -9=0D .2y -8x +9=014.函数y =ln (3-2x -x 2)的导数为( )A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x15.函数y =lncos2x 的导数为( )A .-tan2xB .-2tan2xC .2tan xD .2tan2x16.已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( )A. 21>-<b b ,或B.21≥-≤b b ,或C. 21<<-bD. 21≤≤-b 17.函数的单调递增区间是 ( )x e x x f )3()(-=A. B.(0,3) C.(1,4) D. 18.函数y =xxa 22-(a >0且a ≠1),那么y ′为( )A .xxa 22-ln aB .2(ln a )xx a 22- C .2(x -1)xx a 22-·ln aD .(x -1)xx a22-ln a19.函数y =sin32x 的导数为( )A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x20.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .421.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y22.函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .423.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为( ) A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f24.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A.2B.3C.4D.525.函数32()31f x x x =-+是减函数的区间为( )A.(2,)+∞B.(,2)-∞C.(,0)-∞D.(0,2) 26.函数323922yx x x x 有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大 27.三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则( )A.0>aB.0<a)2,(-∞),2(+∞C.1=aD.31=a 28.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .029.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个C .3个D .4个 30.下列求导运算正确的是( ) A 、3211)1(xx x -='+B 、(log 2x )′=1xln2C 、(x 2cosx )′=−2xsinxD 、 (3x )′=3x log 3e 31.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A .0 B .2 C .-1 D .1 32.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 33. 函数y =x ln 的导数为( )A .2x x lnB .x x ln 2C .xx ln 1 D .xx ln 2134.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 35.函数x x y 33-=的极大值为m ,极小值为n ,则n m +为( ) A .0 B .1 C .2D .436.函数xx y 142+=单调递增区间是( )A .),0(+∞B .)1,(-∞C .),21(+∞ D .),1(+∞37.函数在上( )A .是增函数B .是减函数C .有最大值D .有最小值 38.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 二.填空题1.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
导数复习导数大题练习(含详解答案)
1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。
〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。
完整版)导数测试题(含答案)
完整版)导数测试题(含答案)1.已知函数y=f(x)=x^2+1,则在x=2,Δx=0.1时,Δy的值为0.41.2.函数f(x)=2x^2-1在区间(1,1+Δx)上的平均变化率为4+4Δx。
3.设f′(x)存在,则曲线y=f(x)在点(x,f(x))处的切线与x 轴相交但不垂直。
4.曲线y=-1/x在点(1,-1)处的切线方程为y=x-2.5.在曲线y=x^2上,且在该点处的切线倾斜角为π/4的点为(2,4)。
6.已知函数f(x)=1/x,则f′(-3)=-1/9.7.函数f(x)=(x-3)ex的单调递增区间是(2,∞)。
8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的充要条件。
9.函数f(x)在开区间(a,b)内的极小值点有2个。
10.函数f(x)=-x^2+4x+7,在x∈[3,5]上的最大值和最小值分别是f(3)和f(5)。
11.函数f(x)=x^3-3x^2-9x+k在区间[-4,4]上的最小值为-71.12.速度为零的时刻是0,1,4秒末。
13.已知函数 $y=f(x)=ax^2+2x$,且 $f'(1)=4$,则 $a=3$。
14.已知函数 $y=ax^2+b$ 在点 $(1,3)$ 处的切线斜率为 $2$,则 $b=a+1$。
15.函数 $y=x e^x$ 的最小值为 $-1/e$。
16.有一长为 $16$ m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 $64$ $m^2$。
17.(1) $y'=6x+\cos x$;(2) $y'=\dfrac{1}{(1+x)^2}$;(3)$y'=\dfrac{1}{x}-e^x$。
18.(1) 解方程 $x^2+4=x+10$ 得 $x=3$ 或 $x=-2$,故交点为 $(3,13)$ 或 $(-2,0)$;(2) 在交点 $(3,13)$ 处,抛物线的斜率为 $6$,故该点处的切线方程为 $y=6x-5$。
(完整版)导数的运算经典习题
(完整版)导数的运算经典习题1. 概述本文档列举了一些有关导数的运算的经典题,以帮助读者巩固和提高对该知识点的理解和应用能力。
2. 题集2.1 一阶导数1. 计算函数 $f(x) = 3x^2 + 2x + 1$ 的导函数 $f'(x)$。
2. 求函数 $g(x) = \sqrt{x}$ 的导数 $g'(x)$。
3. 计算函数 $h(x) = e^x - \sin(x)$ 在 $x = 0$ 处的导数 $h'(0)$。
4. 求函数 $k(x) = \ln(x)$ 的导函数 $k'(x)$。
2.2 高阶导数1. 计算函数 $f(x) = \cos(x)$ 的二阶导数 $f''(x)$。
2. 求函数 $g(x) = \frac{1}{x^2}$ 的二阶导数 $g''(x)$。
3. 计算函数 $h(x) = e^x \cos(x)$ 的二阶导数 $h''(x)$。
4. 求函数 $k(x) = \ln(x^2)$ 的二阶导数 $k''(x)$。
2.3 乘积法则和商积法则1. 使用乘积法则计算函数 $f(x) = (3x^2 + 2x + 1)(4x + 1)$ 的导函数 $f'(x)$。
2. 使用商积法则计算函数 $g(x) = \frac{x^2 + 1}{x}$ 的导数$g'(x)$。
2.4 链式法则1. 使用链式法则计算函数 $f(x) = \sin(3x^2 + 2x + 1)$ 的导数$f'(x)$。
2. 使用链式法则计算函数 $g(x) = e^{2x^3}$ 的导函数 $g'(x)$。
3. 总结本文档提供了一些有关导数的运算的经典习题,涵盖了一阶导数、高阶导数、乘积法则和商积法则、链式法则等知识点。
通过完成这些习题,读者可以巩固对导数运算的理解,并提高应用能力。
希望这些习题对您有所帮助!。
完整版)导数大题练习带答案
完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。
Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。
+\infty)$。
Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。
m+3]$ 上的最值。
$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。
m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。
Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。
证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。
2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。
Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。
$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。
(完整版)导数测试题(含答案)
B.(0,3)
C.(1,4)
D.(2,+∞)
解析:选 D.f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,
令 f′(x)>0,解得 x>2,故选 D. 8.“函数 y=f(x)在一点的导数值为 0”是“函数 y=f(x)在这点取极值”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选 B.对于 f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出 f(x)在 x=0 处取极值,反之 成立.故选 B. 9.函数 f(x)的定义域为开区间(a,b),导函数 f′(x)在(a,b)内的图象如图所示,则函数 f(x)在开区间(a,b)内的极小值点有( )
B.(2,4)
11
11
C.(4,16) 故选 D.
1
D.(2,4)
6.已知函数 f(x)=x,则 f′(-3)=( ) 1
A.4 1
B.9 1
C.-4
D.-9
1
1
解析:选 D.∵f′(x)=-x2,∴f′(-3)=-9. 7.函数 f(x)=(x-3)ex 的单调递增区间是( )
A.(-∞,2)
三、解答题 x
17.求下列函数的导数:(1)y=3x2+xcosx; (2)y=1+x; (3)y=lgx-ex.
18.已知抛物线 y=x2+4 与直线 y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程.
1 19.已知函数 f(x)=3x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.
解析:令 y′=(x+1)ex=0,得 x=-1. 当 x<-1 时,y′<0;当 x>-1 时,y′>0.
(完整版)导数大题练习带答案
导数解答题练习1.已知f (x )=x ln x -ax ,g (x )=-x 2-2,(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围; (Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 21-成立.2、已知函数2()ln 2(0)f x a x a x=+->. (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区间[e ―1,e]上有两个零点,求实数b 的取值范围.3、设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值;(Ⅱ)若函数f (x )在1[,2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点.4、已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.5、已知函数1ln ()xf x x+=. (1)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围.1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x2在),0(+∞∈x 恒成立.………1分 令xx x x F 2ln )(++= , 则F '2222)1)(2(2211)(x x x x x x x x x -+=-+=-+=,……2分在)10(,上F '0)(<x ,在)1(∞+,上F '0)(>x , 因此,)(x F 在1=x 处取极小值,也是最小值, 即3)1()(min ==F x F ,所以3≤a .……4分(Ⅱ)当时,1-=a x x x x f +=ln )(, f '2ln )(+=x x ,由f '0)(=x 得21ex =. ………6分 ①当210em <<时,在)1,[2e m x ∈上f '0)(<x ,在]3,1(2+∈m e x 上f '0)(>x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min 1)(ex f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+<m m m f m f 因此,]1)3)[ln(3()3()(max +++=+=m m m f x f………8分②当时21em ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增, 所以)1(ln )()(min +==m m m f x f ,]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分(Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x ee x x x x x ,………10分 由(Ⅱ)知1-=a 时,x x x xf +=ln )(的最小值是21e-,当且仅当21e x =时取得,……11分 设)),0((2)(+∞∈-=x e e x x G x ,则G 'xexx -=1)(,易知eG x G 1)1()(max -==,当且仅当1x =时取到, ………12分但,e e112->-从而可知对一切(0,)x ∈+∞, 都有exe x x 211ln ->+成立. ………13分 2、解:(Ⅰ)直线y =x +2的斜率为1.函数f (x )的定义域为(0,+∞),因为22'()a f x x x=-+,所以22'(1)111af =-+=-,所以a =1.所以2()ln 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).…… 4分(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a>;由'()0f x <解得20x a <<.所以f (x )在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a=时,函数f (x )取得最小值,min 2()y f a=. 因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可. 则22ln 22(1)2a a a a+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e. ……………… 8分(Ⅲ)依题得2()ln 2g x x x b x=++--,则222'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1,e]上有两个零点,所以1()0()0(1)0g e g e g -⎧≥⎪≥⎨⎪<⎩.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e+-. (13)分3.解:(Ⅰ)f (x )的定义域为(0,+∞).……………… 1分因为1'()20f x x x=+>,所以f (x )在[1,e]上是增函数, 当x =1时,f (x )取得最小值f (1)=1. 所以f (x )在[1,e]上的最小值为1.……………… 3分(Ⅱ)解法一:21221'()2()x ax f x x a x x-+=+-=设g (x )=2x 2―2ax +1,……………… 4分依题意,在区间1[,2]2上存在子区间使得不等式g (x )>0成立.…… 5分注意到抛物线g (x )=2x 2―2ax +1开口向上,所以只要g (2)>0,或1()02g >即可……………… 6分由g (2)>0,即8―4a +1>0,得94a <, 由1()02g >,即1102a -+>,得32a <,所以94a <,所以实数a 的取值范围是9(,)4-∞.……………… 8分解法二:21221'()2()x ax f x x a x x-+=+-=,……………… 4分依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax +1>0成立. 又因为x >0,所以12(2)a x x<+. ……………… 5分设1()2g x x x =+,所以2a 小于函数g (x )在区间1[,2]2的最大值. 又因为1'()2g x x=-,由21'()20g x x=->解得2x >;由21'()20g x x =-<解得02x <<.所以函数g (x )在区间2)2上递增,在区间1(,22上递减. 所以函数g (x )在12x =,或x =2处取得最大值. 又9(2)2g =,1()32g =,所以922a <,94a <所以实数a 的取值范围是9(,)4-∞.……………… 8分(Ⅲ)因为2221'()x ax f x x-+=,令h (x )=2x 2―2ax +1①显然,当a ≤0时,在(0,+∞)上h (x )>0恒成立,f '(x )>0,此时函数f (x )没有极值点; ……………… 9分 ②当a >0时,(i )当Δ≤0,即0a <≤时,在(0,+∞)上h (x )≥0恒成立,这时f '(x )≥0,此时,函数f (x )没有极值点;……………… 10分(ii )当Δ>0时,即a >x <<h (x )<0,这时f '(x )<0;当02a x <<或2a x >时,h (x )>0,这时f '(x )>0;所以,当a >2a x =是函数f (x )的极大值点;2a x +=是函数f (x )的极小值点.……………… 12分综上,当a ≤f (x )没有极值点;当a >x =是函数f (x )的极大值点;x =是函数f (x )的极小值点.4.解:2()(21)f x ax a x '=-++(0)x >. ………1分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………4分 ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………5分 ②当102a <<时,12a>, 在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. ………6分③当12a =时,2(2)()2x f x x -'=,故()f x 的单调递增区间是(0,)+∞. ………7分 ④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………8分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………9分由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……10分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-. ………12分5、(Ⅰ)直线y =x +2的斜率为1, 函数f (x )的定义域为 ()+∞,0因为x a x x f +-=2'2)(,所以()111212'-=+-=a f ,所以a =1 所以()()2'2,2ln 2xx x f x x x f -=-+= 由()0'>x f解得x >2 ; 由()0'<x f 解得0<x <2所以f (x )得单调增区间是()+∞,2,单调减区间是()2,0 ………4分(Ⅱ)22'22)(x ax x a x x f -=+-= 由()0'>x f 解得;2a x >由()0'<x f 解得a x 20<<所以f (x )在区间),2(+∞a 上单调递增,在区间)2,0(a 上单调递减所以当a x 2=时,函数f (x )取得最小值)2(min af y =因为对于任意()())1(2,0->+∞∈a x f x 都有成立, 所以)1(2)2(->a af 即可则)1(222ln 22->-+a a a a,由a a a >2ln 解得e a 20<< 所以a 得取值范围是)2,0(e……… 8分(Ⅲ)依题意得b x xx g --+=2ln 2)(,则22'2)(x x x x g -+= 由()0'>x g 解得x >1,由()0'<x g 解得0<x <1所以函数g (x )在区间[]e ,e 1-上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤<e e b所以b 得取值范围是]12,1(-+e e……… 12分6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()xf x x'=-, …1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. ∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减, ∴函数()f x 在1x =处取得极大值.………3分∵函数()f x 在区间1(,)2a a +(其中0a >)上存在极值,∴1,11,2a a <⎧⎪⎨+>⎪⎩解得112a <<.……….5分(2)不等式()1k f x x ≥+,即为(1)(1ln )x x k x++≥, ………7分记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x xg x x x'++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增, ∴min [()](1)2g x g ==,∴2k ≤.………12分。
高等数学-——导数与微分练习题.pdf
C:若函数 f (x) 在点 x0 处不可导,则函数 f (x) 在点 x0 处左、右导数只有一个不存在
x≥0
()
(5)若 f (x) = x −1 , 则 f (x) 在 x = 1 处可导
()
(6) f (x) = 3 x 在 (−∞, +∞) 内均可导
()
(7)若函数 f (u) 可导,则 [ f (ln x)]′ = f ′(ln x)
()
(8)若 y = x2ex ,则 y′′ − 2 y′ + y = 0
dx
五、证明题
1.
设函数
f (x) = arctan 1+ x ,证明 dy 1− x
=
x
1 2+
1
dx
2.
证明:函数
f
(
x
)
=
⎧ ax + b, ⎨⎩ex −1, x
x ≤
> 0
0
在 x = 0 处可导的充要条件是 a = 1, b = 0 .
3.
证明:
f
(
x)
=
⎧⎪ ⎨
x3
sin
1 x
,
x
≠
0
在定义域内处处可微.
则 a, b 之值为(
)
A: a = 2,b = −1 B: a = 1,b = −3
C: a = 0,b = −2
D: a = −3,b = 1
(5)下列结论正确的是(
)
A:若左、右导数都存在,则函数 f (x) 在点 x0 处可导
B:函数 f (x) 在点 x0 处不可导的充要条件是左、右导数都不存在
⎛ ⎜⎝
arctan
高等数学——导数练习题
一.选择题1.若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A.k 2 B.k C.k 21D.以上都不是2.若f (x )=sinα-cosx ,则f ′(a )等于 ( )A .sinαB .cosαC .sinα+cosαD .2sinα3.f (x )=ax 3+3x 2+2,若f ′(−1)=4,则a 的值等于( )A .319 B .316 C .313D .3104.函数y =x sin x 的导数为( )A .y ′=2x sin x +x cos xB .y ′=x x 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x5.函数y =x 2cos x 的导数为( )A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x6.函数y =22xax +(a >0)的导数为0,那么x 等于( )A .aB .±aC .-aD .a 27. 函数y =xxsin 的导数为( )A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin x xx x -D .y ′=2cos sin x xx x +8.函数y =2)13(1-x 的导数是( )A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x9.已知y =21sin2x +sin x ,那么y ′是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数10.函数y =sin 3(3x +4π)的导数为( )A .3sin 2(3x +4π)cos (3x +4π)B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)11.函数y =cos (sin x )的导数为( )A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )12.函数y =cos2x +sin x 的导数为( )A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos13.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为( )A .2y -8x +7=0B .2y +8x +7=0C .2y +8x -9=0D .2y -8x +9=014.函数y =ln (3-2x -x 2)的导数为( )A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x15.函数y =lncos2x 的导数为( )A .-tan2xB .-2tan2xC .2tan xD .2tan2x16.已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( )A. 21>-<b b ,或B.21≥-≤b b ,或C. 21<<-bD. 21≤≤-b 17.函数的单调递增区间是 ( )A. B.(0,3) C.(1,4) D.x e x x f )3()(-=)2,(-∞),2(+∞18.函数y =xx a22-(a >0且a ≠1),那么y ′为( )A .xxa 22-ln aB .2(ln a )xx a 22- C .2(x -1)xx a 22-·ln aD .(x -1)xxa 22-ln a19.函数y =sin32x 的导数为( )A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x20.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .421.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y22.函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .423.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为( ) A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f24.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A.2B.3C.4D.525.函数32()31f x x x =-+是减函数的区间为( )A.(2,)+∞B.(,2)-∞C.(,0)-∞D.(0,2) 26.函数323922yx x x x 有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大 27.三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则( )A.0>aB.0<aC.1=aD.31=a28.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .029.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个C .3个D .4个 30.下列求导运算正确的是( ) A 、3211)1(xx x -='+B 、(log 2x )′=1xln2C 、(x 2cosx )′=−2xsinxD 、 (3x )′=3x log 3e 31.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A .0 B .2 C .-1 D .1 32.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 33. 函数y =x ln 的导数为( )A .2x x lnB .x x ln 2C .xx ln 1 D .xx ln 2134.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 35.函数x x y 33-=的极大值为m ,极小值为n ,则n m +为( ) A .0 B .1 C .2D .436.函数xx y 142+=单调递增区间是( )A .),0(+∞B .)1,(-∞C .),21(+∞ D .),1(+∞37.函数在上( )A .是增函数B .是减函数C .有最大值D .有最小值 38.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 二.填空题1.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
(完整版)导数的计算练习题及答案
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
高数导数练习题
高数导数练习题高数导数练习题高等数学是大学数学的一门重要课程,而其中的导数是一个基础而又关键的概念。
导数的概念和运算方法是我们在学习高数的过程中必须要掌握的内容之一。
为了更好地理解和掌握导数的概念和运算方法,下面我将给大家提供一些高数导数练习题。
1. 求函数f(x) = x^2的导数。
解析:根据导数的定义,我们知道导数表示的是函数在某一点的变化率。
对于函数f(x) = x^2,我们可以使用导数的定义来求出它的导数。
根据导数的定义,我们有:f'(x) = lim(h->0) [f(x+h) - f(x)] / h将函数f(x) = x^2代入上式,得到:f'(x) = lim(h->0) [(x+h)^2 - x^2] / h展开并化简上式,得到:f'(x) = lim(h->0) [x^2 + 2xh + h^2 - x^2] / h化简后,得到:f'(x) = lim(h->0) [2xh + h^2] / h继续化简,得到:f'(x) = lim(h->0) 2x + h由于h趋近于0,所以上式中的h可以忽略不计,最终得到:f'(x) = 2x所以,函数f(x) = x^2的导数为2x。
2. 求函数g(x) = sin(x)的导数。
解析:对于函数g(x) = sin(x),我们可以使用导数的运算法则来求出它的导数。
根据导数的运算法则,我们知道sin(x)的导数等于cos(x)。
所以,函数g(x) =sin(x)的导数为cos(x)。
3. 求函数h(x) = e^x的导数。
解析:对于函数h(x) = e^x,我们同样可以使用导数的运算法则来求出它的导数。
根据导数的运算法则,我们知道e^x的导数等于e^x。
所以,函数h(x) =e^x的导数为e^x。
通过以上三个例子,我们可以看到,求导数的过程并不是很复杂。
我们只需要根据导数的定义或者运算法则,将函数代入相应的公式中,然后进行化简即可得到导数。
导数的练习题及答案
导数的练习题及答案导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。
掌握导数的概念对于解决各种数学和物理问题至关重要。
在这篇文章中,我们将给出一些关于导数的练习题及其答案,帮助读者更好地理解和应用导数。
练习题一:求函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数。
解答一:根据导数的定义,我们知道导数可以通过函数的极限来求解。
在这个例子中,我们可以使用直接求导的方法来计算导数。
首先,我们对每一项使用求导法则。
对于 $2x^3$,它的导数是$6x^2$;对于 $-5x^2$,它的导数是 $-10x$;对于 $3x$,它的导数是$3$;对于常数项 $-1$,它的导数是 $0$。
然后,将这些导数相加,得到函数 $f(x)$ 的导数 $f'(x)$。
所以,$f'(x) = 6x^2 - 10x + 3$。
接下来,我们求函数 $f(x)$ 在 $x = 2$ 处的导数。
将 $x$ 替换为 $2$,得到 $f'(2) = 6(2)^2 - 10(2) + 3 = 28$。
所以,函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数为 $f'(2) = 28$。
练习题二:求函数 $y = e^x \sin(x)$ 的导数。
解答二:这个问题涉及到两个函数的乘积,所以我们需要使用乘积规则来求解。
首先,我们将函数 $y = e^x \sin(x)$ 分解为两个函数的乘积:$y =u(x) v(x)$,其中 $u(x) = e^x$,$v(x) = \sin(x)$。
然后,我们求出每个函数的导数。
对于 $u(x) = e^x$,它的导数仍然是 $e^x$;对于 $v(x) = \sin(x)$,它的导数是 $\cos(x)$。
根据乘积规则,函数 $y$ 的导数为 $y' = u'v + uv'$。
高等数学——导数练习题含答案
高等数学——导数练习题含答案1. 基本概念1.1 导数的定义导数是数学中的一种重要概念,是描述函数变化速率的工具。
假设函数f(f)在某一点f=f的某个邻域内有定义,若极限$$ \\lim_{\\Delta x \\to 0} \\frac{f(a + \\Delta x) -f(a)}{\\Delta x} $$存在,则称此极限为函数f(f)在f=f处的导数,记作f′(f)或 $\\frac{{df}}{{dx}}|_{x=a}$。
1.2 常见函数的导数一些常见的函数的导数如下:•f=f,其中f为常数,导数为零:f′=0•f=f f,其中f为常数,导数为ff(f−1):f′= ff f−1•$y = \\sin x$,导数为 $\\cos x$:$y' = \\cos x$•$y = \\cos x$,导数为 $-\\sin x$:$y' = -\\sin x$•f=f f,导数为f f:f′=f f2. 练习题2.1 求导练习1.求函数f(f)=f3−2f2+f+1在f=1处的导数。
2.求函数 $f(x) = \\sin(2x) + \\cos(3x)$ 的导数。
3.求函数 $f(x) = e^{2x} \\cos x$ 的导数。
2.2 高阶导数4.已知函数f(f)=f3−2f2+f+1,求f″(f),f‴(f)和ff(f)。
5.已知函数 $f(x) = \\sin(2x) + \\cos(3x)$,求f″(f)和f‴(f)。
3. 答案3.1 求导练习答案1.根据导数的定义,函数f(f)=f3−2f2+f+1在f=1处的导数为:\begin{align} f’(1) &= \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{(1 + \Delta x)^3 - 2(1 + \Delta x)^2 + (1 + \Delta x) + 1 - (1^3 - 2 \cdot 1^2 + 1 + 1)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{\Delta x^3 + 3 \Delta x^2 + 3 \Delta x + 1 - 2 \Delta x^2 - 4 \Delta x - 2 + \Delta x + 1}{\Delta x} \\ &= \lim_{\Delta x \to 0} (3 \Delta x^2 + 2\Delta x + 2) \\ &= 2 \end{align}所以,f′(1)=2。
高等数学导数求导练习题
高等数学导数求导练习题一、基本初等函数求导1. 求函数 f(x) = x^3 3x^2 + 2x 5 的导数。
2. 求函数 f(x) = (3x + 1)^4 的导数。
3. 求函数 f(x) = 1/(x^2 1) 的导数。
4. 求函数f(x) = √(x^2 + 3) 的导数。
5. 求函数 f(x) = 2^x 3^x 的导数。
二、复合函数求导6. 求函数 f(x) = (x^2 + 1)^3 的导数。
7. 求函数 f(x) = sin(2x + 1) 的导数。
8. 求函数 f(x) = ln(e^x + 1) 的导数。
9. 求函数 f(x) = cos^2(x) 的导数。
10. 求函数 f(x) = (1 + x^2)^5 的导数。
三、隐函数求导11. 已知 y = x^3 + y^3,求 dy/dx。
12. 已知 x^2 + y^2 = 25,求 dy/dx。
13. 已知 e^y = x^2 + y^2,求 dy/dx。
14. 已知 sin(x + y) = y^2,求 dy/dx。
15. 已知 ln(x^2 + y^2) = 2x,求 dy/dx。
四、参数方程求导16. 已知参数方程 x = t^2,y = t^3,求 dy/dx。
17. 已知参数方程 x = cos(t),y = sin(t),求 dy/dx。
18. 已知参数方程 x = 2t + 1,y = 3t^2 2,求 dy/dx。
19. 已知参数方程 x = e^t,y = e^(2t),求 dy/dx。
20. 已知参数方程 x = asin(t),y = acos(t),求 dy/dx。
五、高阶导数21. 求函数 f(x) = x^4 2x^3 + 3x^2 的二阶导数。
22. 求函数 f(x) = e^x sin(x) 的一阶和二阶导数。
23. 求函数 f(x) = ln(x^2 + 1) 的一阶和二阶导数。
24. 求函数 f(x) = (x^2 + 1)^(3) 的一阶和二阶导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题1.若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A.k 2 B.k C.k 21D.以上都不是2.若f (x )=sinα-cosx ,则f ′(a )等于 ( )A .sinαB .cosαC .sinα+cosαD .2sinα3.f (x )=ax 3+3x 2+2,若f ′(−1)=4,则a 的值等于( )A .319 B .316 C .313D .3104.函数y =x sin x 的导数为( )A .y ′=2x sin x +x cos xB .y ′=x x 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x5.函数y =x 2cos x 的导数为( )A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x6.函数y =22xax +(a >0)的导数为0,那么x 等于( )A .aB .±aC .-aD .a 27. 函数y =xxsin 的导数为( )A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin x xx x -D .y ′=2cos sin x xx x +8.函数y =2)13(1-x 的导数是( )A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x9.已知y =21sin2x +sin x ,那么y ′是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数10.函数y =sin 3(3x +4π)的导数为( )A .3sin 2(3x +4π)cos (3x +4π)B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)11.函数y =cos (sin x )的导数为( )A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )12.函数y =cos2x +sin x 的导数为( )A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos13.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为( )A .2y -8x +7=0B .2y +8x +7=0C .2y +8x -9=0D .2y -8x +9=014.函数y =ln (3-2x -x 2)的导数为( )A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x15.函数y =lncos2x 的导数为( )A .-tan2xB .-2tan2xC .2tan xD .2tan2x16.已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( )A. 21>-<b b ,或B.21≥-≤b b ,或C. 21<<-bD. 21≤≤-b 17.函数的单调递增区间是 ( )x e x x f )3()(-=A. B.(0,3) C.(1,4) D. 18.函数y =xxa 22-(a >0且a ≠1),那么y ′为( )A .xxa 22-ln aB .2(ln a )xx a 22- C .2(x -1)xx a 22-·ln aD .(x -1)xx a22-ln a19.函数y =sin32x 的导数为( )A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x20.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .421.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y22.函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .423.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为( ) A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f24.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A.2B.3C.4D.525.函数32()31f x x x =-+是减函数的区间为( )A.(2,)+∞B.(,2)-∞C.(,0)-∞D.(0,2) 26.函数323922yx x x x 有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大 27.三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则( )A.0>aB.0<a)2,(-∞),2(+∞C.1=aD.31=a 28.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .029.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个C .3个D .4个 30.下列求导运算正确的是( ) A 、3211)1(xx x -='+B 、(log 2x )′=1xln2C 、(x 2cosx )′=−2xsinxD 、 (3x )′=3x log 3e 31.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A .0 B .2 C .-1 D .1 32.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 33. 函数y =x ln 的导数为( )A .2x x lnB .x x ln 2C .xx ln 1 D .xx ln 2134.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 35.函数x x y 33-=的极大值为m ,极小值为n ,则n m +为( ) A .0 B .1 C .2D .436.函数xx y 142+=单调递增区间是( )A .),0(+∞B .)1,(-∞C .),21(+∞ D .),1(+∞37.函数在上( )A .是增函数B .是减函数C .有最大值D .有最小值 38.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 二.填空题1.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
2.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
4.若y =(2x 2-3)(x 2-4),则y ’= 。
5.若y =3cosx -4sinx ,则y ’= 。
6.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是 。
7.质点运动方程是s =t 2(1+sin t ),则当t =2π时,瞬时速度为 。
8.求曲线y=x3+x2-1在点P (-1,-1)处的切线方程 。
9.若21,2xy x +=-则y’= 。
10.若423335,x x y x -+-=则y’= 。
11.若1cos ,1cos xy x+=-则y’= 。
12.已知f (x )=354337xx x x ++,则f ′(x )=___________。
x x x f sin 2)(-=),(+∞-∞13.已知f (x )=xx++-1111,则f ′(x )=___________。
14.已知f (x )=xx2cos 12sin +,则f ′(x )=___________。
15.若y=(sinx-cosx 3),则y’= 。
16.若y=2cos 1x +,则y’= 。
17.若y=sin 3(4x+3),则y’= 。
18.函数y =(1+sin3x )3是由___________两个函数复合而成。
19.曲线y =sin3x 在点P (3π,0)处切线的斜率为___________。
20.函数y =x sin (2x -2π)cos (2x +2π)的导数是______________。
21.函数y =)32cos(π-x 的导数为______________。
22.函数y =cos 3x 1的导数是___________。
23.在曲线y =59++x x 的切线中,经过原点的切线为________________。
24.函数y =log 3cos x 的导数为___________。
25.函数y =x 2lnx 的导数为 。
26.函数y =ln (lnx )的导数为 。
27.函数y =lg (1+cosx )的导数为 。
28.设y =xx e e 2)12(+,则y ′=___________。
29.函数y =x22的导数为y ′=___________。
30.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________。
31.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
32.曲线3x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为__________。
33.已知曲线31433y x =+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是______________。