机器人本体结构描述

合集下载

8第四章 机器人本体基本结构(1)

8第四章 机器人本体基本结构(1)


机器人常用材料简介 1)碳素结构钢和合金结构钢——这类材料强度好,特 别是合金结构钢,其强度增大了4~5倍,弹性模量E大,抗 变形能力强,是应用最广泛的材料。适合制造传动件、连 接件、连杆体支承件骨架等。 2)铝、铝合金及其他轻合金材料——这类材料的共同 特点是重量轻,弹性模量E并不大,但是材料密度小,故 E/之比仍可与钢材相比。适合制造连杆体等。 3)纤维增强合金——这类合金如硼纤维增强铝合金、 石墨纤维增强镁合金等。这种纤维增强金属材料具有非常 高的E/比,而且没有无机复合材料的缺点,但价格昂贵。 适合制造连杆体等


机身回转运动可采用:回转轴液压(气)缸直接驱动; 直线液压(气)缸驱动的传动链(齿轮齿条、链条链 轮);电动机驱动齿轮和蜗轮蜗杆传动。 机身的升降运动可以采用:直线液压(气)缸直接驱动; 直线液压(气)缸驱动的连杆式升降台;电动机驱动丝 杠螺母传动。 俯仰运动大多采用摆式直线液压(气)驱动,液压(气) 驱动齿条齿轮或四连杆机构传动;也有电动机驱动齿轮 和蜗轮蜗杆传动。 直移型机器人多为悬挂式的,其机身实际上就是悬挂手 臂的横梁。为使手臂能沿横梁平移,除了要有驱动和传 动机构外,导轨是一个重要的构件。

4.1 概述

机器人本体是机器人的重要组成部分,所有的计算、分析和编程最终要通过本体的 运动和动作完成特定的任务。机器人本体各部分的基本结构、材料的选择将直接影 响整体性能。

4.1.1 机器人本体的基本结构形式 机器人本体基本结构组成


机器人本体主要包括:
1) 传动部件; 2) 机身及行走机构; 3) 臂部; (见六伺服机械手臂视频) 4) 腕部;



机身回转运动可采用:回转轴液压(气)缸直接驱动; 直线液压(气)缸驱动的传动链(齿轮齿条、链条链 轮);电(b)双杆活塞气缸驱动链条链轮传 传动机构) 动机构 图4-1 链条链轮传动实现机身回转的原理图(P104)

机器人本体结构描述

机器人本体结构描述

3.三自由度手腕
1)液压直接驱动三自由度 BBR手腕
M1、M2、M3是液压马达,直接驱动手腕,实现 偏转、俯仰和翻转三个自由度。
M1
M2
M3
关键是设计和加工出尺寸小、重量轻、驱动力矩 大,驱动特性好的液压驱动马达。
2) 齿轮-链轮传动三自由度 RBR腕部
齿轮链轮传动三自由度手腕原理图 1—油缸; 2—链轮; 3、4—锥齿轮; 5、6—花键轴 T;7—传动轴 S;8—腕架; 9—行星架; 10、11、22、24—圆柱齿轮; 12、13、14、15、16、17、18、20—锥齿轮; 19—摆动轴;
l
l
F ? k(l ? l0 )
M0
?
k(l
? l0 )r1r2 l
cos?
3. 气动和液压平衡方法 平衡的原理和弹簧平衡的原理很相似 优点:
1)平衡缸中的压力恒定; 2)平衡缸的压力容易调节和控制 . 缺点: 1)需要动力源和储能器,系统比较复杂 2)需考虑动力源一旦中断时的防范措施。
6.3 腕部及手部结构
三、机器人本体结构
手部
机器人本体结构:机械
小臂
结构和机械传动系统。
包括:
传动部件
腕部
机身及行走机构
大臂
臂部
腕部
手部
腰部
基座
6.2 机身及臂部结构
机器人机身又称为立柱,是支撑臂部的部件,能 实现手臂的升降、回转或俯仰运动。 机器人必须有一个便于安装的基础件,这就是机 器人的机座,机座往往与机身做成一体。 机身设计要求:
T手腕
二自由度手腕图例:
BR手腕
BB手腕
RR手腕(属于单自由度)
三自由度手腕的结合方式:
RRR型手腕结构示意

第4章 机器人本体结构

第4章 机器人本体结构

4.2 机身及臂部结构
• 机器人机械结构由三大部分构成:机身、 手臂(含手腕)、手部。其中机身又称立 柱,是支承臂部的部件。同时,大多数工 业机器人必须有一个便于安装的基础部件, 这就是机器人的基座,基座往往与机身做 成一体。有些机器人需要行走,机身下面 还会安装有行走机构。机身和臂部相连, 机身支承臂部,臂部又支承腕部和手部。 机身和臂部运动的平稳性也是应重点注意 的问题。
• (3) 连杆驱动扭矩的瞬态过程在时域中的变化非常 复杂,且和执行器反馈信号有关。连杆的驱动属 于伺服控制型,因而对机械传动系统的刚度、间 隙和运动精度都有较高的要求。 • (4) 连杆系的受力状态、刚度条件和动态性能都是 随位姿的变化而变化的,因此,极容易发生振动 或出现其他不稳定现象。 • 综合以上特点可见,合理的机器人本体结构应当 使其机械系统的工作负载与自重的比值尽可能大, 结构的静动态刚度尽可能高,并尽量提高系统的 固有频率和改善系统的动态性能。
• 二、机器人本体基本结构的举例 • 下面以关节型机器人为例来说明机器人本 体的基本结构。 • 进行机器人本体的运动学、动力学和其他 相关分析时,一般将机器人简化成由连杆、 关节和末端执行器首尾相接,通过关节相 连而构成的一个开式连杆系。在连杆系的 开端安装有末端执行器(也简称为手部),如 图所示。
一、 机身的自由度和运动
1.机身的自由度:
• 机身往往具有升降、回转及俯仰三个自由度。 • 机身结构一般由机器人总体设计确定。比如, 圆柱坐标型机器人把回转与升降这两个自由度 归属于机身;球坐标型机器人把回转与俯仰这 两个自由度归属于机身;关节坐标型机器人把 回转自由度归属于机身;直角坐标型机器人有 时把升降(Z轴)或水平移动(X轴)自由度归属于 机身。现介绍回转与升降机身和回转与俯仰机 身。

工业机器人本体的基本组成

工业机器人本体的基本组成

工业机器人本体的基本组成
工业机器人本体的基本组成通常包括以下几个部分:
1. 机械结构:这是机器人的主体框架,包括底座、腰部、臂部、腕部和末端执行器等组成部分。

机械结构的设计需要考虑到机器人的负载能力、运动范围、精度要求等因素。

2. 驱动系统:驱动系统是为机器人提供动力的关键组件,它可以根据需要调节机器人的运动速度和方向。

常见的驱动方式有电动、液压、气压和伺服电机等。

3. 传感系统:传感系统用于感知机器人周围环境的变化,例如位置、速度、力/扭矩、温度等参数。

常用的传感器包括编码器、激光雷达、摄像头、红外线传感器等。

4. 控制系统:控制系统是机器人的“大脑”,负责接收传感器反馈的数据并进行处理,然后发出指令来控制机器人的动作。

控制系统通常由嵌入式处理器、操作系统、编程语言和人机界面等组成。

5. 执行机构:执行机构是机器人完成特定任务的关键组件,例如抓手、喷涂枪、焊接头等。

执行机构通常与末端执行器相连,可以根据需要进行调节和更换。

6. 配套软件和设备:除了机器人本体外,还需要相应的配套软件和设备来支持机器人的运行和维护。

例如机器人操作系统、编程软件、调试工具、维护手册等。

综上所述,工业机器人本体的基本组成包括机械结构、驱动系统、传感系统、控制系统、执行机构和配套软件和设备等多个部分,它们相互协作,共同实现机器人的功能和任务。

第5章 机器人本体结构

第5章 机器人本体结构

5.3.2 机器人手部结构的基本形式和特点 一、机器人手部的特点 (1) 手部与手腕相连处可拆卸。 (2) 手部是机器人末端执行器。 (3) 手部的通用性比较差。 (4) 手部是一个独立的部件。
二、手部的分类 1.按用途分 1) 手爪 2) 工具
2.按夹持原理分
3.按手指或吸盘数目分 (1) 按手指数目可分为二指手爪及多指手爪。 (2) 按手指关节可分为单关节手指手爪及多关节手 指手爪。 (3) 吸盘式手爪按吸盘数目可分为单吸盘式手爪及 多吸盘式手爪。
5.3.1 机器人腕部结构的基本形式和特点
驱动方式:远程驱动和直接驱动。 直接驱动:驱动器安装在手腕运动关节的附近 传动路线短,传动刚度好,尺寸和质量大,惯量大。 远程驱动:驱动器安装在机器人的大臂、基座或小 臂远端上,通过连杆、链条或其他传动机构间接驱动腕 部关节结构紧凑,尺寸和质量小,但传动设计复杂,传 动刚度也降低了。
油缸和齿轮齿条手臂机构
气缸和齿轮齿条增倍手臂机构
1—运动齿条;2—齿轮;3—活塞杆
三、传动件的定位和消隙
1.传动件的定位 1) 电气开关定位 2) 机械挡块定位 3) 伺服定位
利用机械插销定位的结构 1—节流阀;2—圆盘;3—插销;4—定位油缸;
2.传动件的消隙
消隙齿轮
1、2—薄齿轮;3—螺钉
k (l l0 )r1r2 M0 cos l
三、气动和液压平衡方法 气动和液压平衡的原理和弹簧平衡的原理很相似 优点: 1)平衡缸中的压力是恒定的; 2)同时平衡缸的压力很容易得到调节和控制. 缺点: 1)需要动力源和储能器,系统比较复杂 2)需考虑动力源一旦中断时的防范措施。
5.3 腕部及手部结构
(3) 链轮传动机构。回转角度可大于360°。

工业机器人本体结构解析

工业机器人本体结构解析

工业机器人本体结构解析
关于机器人本体结构,我们先来看一张本体结构形式图。

再来看一个拆解视频,直观的了解下机器人本体的内部构成!
好了,最后我们按照组成结构一一详解!
一、机器人驱动装置
概念:要使机器人运行起来, 需给各个关节即每个运动自由度安置传动装置作用:提供机器人各部位、各关节动作的原动力。

驱动系统:可以是液压传动、气动传动、电动传动, 或者把它们结合起来应用的综合系统; 可以是直接驱动或者是通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接驱动。

1、电动驱动装置
电动驱动装置的能源简单,速度变化范围大,效率高,速度和位置精度都很高。

但它们多与减速装置相联,直接驱动比较困难。

电动驱动装置又可分为直流(DC)、交流(AC)伺服电机驱动和步进电机驱动。

直流伺服电机电刷易磨损,且易形成火花。

无刷直流电机也得到了越来越广泛的应用。

步进电机驱动多为开环控制,控制简单但功率不大,多用于低精度小功率机器人系统。

电动上电运行前要作如下检查:
1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);
2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);
3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。

4)一定要搞清楚接地方法,还是采用浮空不接。

5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发。

简述机器人各部分的名称和作用

简述机器人各部分的名称和作用

简述机器人各部分的名称和作用机器人是指能够执行一系列任务或指令的自动化设备,它由多个部分组成,每个部分都具有特定的名称和作用。

下面是对机器人各部分的简要描述:1.机器人结构:机器人结构是机器人的基本框架,一般由金属材料制成。

机器人结构的作用是提供支撑和保护机器人的其他部分,同时也决定了机器人的外观和形状。

机器人结构还包括关节和链条等机械连接部件,用于实现机器人各部分的协调运动。

2.机器人传感器:机器人传感器用于感知周围环境的信息。

常见的机器人传感器包括摄像头、红外线传感器、超声波传感器、激光雷达等。

这些传感器能够实时监测和测量周围环境的各种参数,如距离、温度、湿度等,为机器人执行任务提供必要的信息。

3.机器人执行机构:机器人执行机构是机器人的动作执行部分,用于实现机器人的运动和操作。

常见的机器人执行机构包括电动机、液压系统、气动系统等。

这些执行机构能够通过控制机器人关节的运动,实现机器人在空间中的各种动作,如抓取、举起、运输等。

4.控制系统:机器人的控制系统负责对机器人的各个部分进行协调和控制,使机器人能够按照预定的任务执行指令。

控制系统包括硬件和软件两个部分。

硬件部分主要由控制器和传感器接口组成,用于接收传感器的输入信号和发送执行机构的控制信号。

软件部分主要由控制算法和编程语言组成,用于处理和分析传感器信息,并生成相应的控制指令。

5.人机交互界面:人机交互界面用于人类和机器人之间的信息交流和指令输入。

常见的人机交互界面包括触摸屏、语音识别、虚拟现实、手势识别等。

人机交互界面使得人类能够通过简单直观的方式与机器人进行交互,有效地控制和操作机器人。

6.电源和能源管理系统:机器人需要能量来支持其运行和执行任务,因此电源和能源管理系统是机器人的重要组成部分。

电源系统提供机器人所需的电能,能源管理系统用于对机器人的能源进行管理和优化。

这样可以确保机器人在执行任务过程中能够持续稳定地运行,提高机器人的工作效率和续航能力。

机器人本体结构_图文

机器人本体结构_图文

腕部及手部结构
机器人腕部结构的基本形式和特点
机器人的手部作为末端执行器是完成抓握工件或执行特定作业的重要部件,也需要有多种结构。腕部是 臂部与手部的连接部件,起支承手部和改变手部姿态的作用。目前,RRR型三自由度手腕应用较普遍。
腕部是机器人的小臂与末端执行器(手部或称手爪)之间的连接部件,其作用是利用自身的活动度确定手部 的空间姿态。对于一般的机器人,与手部相连接的手腕都具有独驱自转的功能,若手腕能在空间取任意 方位,那么与之相连的手部就可在空间取任意姿态,即达到完全灵活。 从驱动方式看,手腕一般有两种形式,即远程驱动和直接驱动。直接驱动是指驱动器安装在手腕运动关 节的附近直接驱动关节运动,因而传动路线短,传动刚度好,但腕部的尺寸和质量大,惯量大。远程驱 动方式的驱动器安装在机器人的大臂、基座或小臂远端上,通过连杆、链条或其他传动机构间接驱动腕 部关节运动,因而手腕的结构紧凑,尺寸和质量小,对改善机器人的整体动态性能有好处,但传动设计 复杂,传动刚度也降低了。 按转动特点的不同,用于手腕关节的转动又可细分为滚转和弯转两种。滚转是指组成关节的两个零件自 身的几何回转中心和相对运动的回转轴线重合,因而能实现360°无障碍旋转的关节运动,通常用R来标 记。弯转是指两个零件的几何回转中心和其相对转动轴线垂直的关节运动。由于受到结构的限制,其相 对转动角度一般小于360°。弯转通常用B来标记。
一、腕部的自由度
手腕按自由度个数可分为单自由度手腕、二自由度手腕和三自由度手腕。
腕部实际所需要的自由度数目应根据机器人的工作性能要求来确定。在有些情况下,腕部具 有两个自由度,即翻转和俯仰或翻转和偏转。一些专用机械手甚至没有腕部,但有些腕部为 了满足特殊要求还有横向移动自由度。
6种三自由度手腕的结合方式示意图

工业机器人结构设计ppt课件

工业机器人结构设计ppt课件

2.2.1 钳爪式手部的设计
四、钳爪式手部结构及其夹紧力的计算公式举例
N
N
P
N=P/2 注:①两手指平移 ②增力比(N/P)小
齿轮齿条式手部结构
No.32
2.2.1 钳爪式手部的设计
四、钳爪式手部结构及其夹紧力的计算公式举例
α
γB A β
P
C
EN
N
N=PLcos(α+β+γ)/(2lsinαcosβ)
2、开式连杆系中的每根连杆都 具有独立的驱动器,属于主动连 杆系,连杆的运动各自独立,不 同连杆的运动之间没有依从关系, 运动灵活。
No.5
2.1 机器人本体的基本结构
二、机器人本体基本结构特点:
3、连杆驱动扭矩的顺态过程在 时域中的变化非常复杂,且和执 行器反馈信号有关。连杆的驱动 属于伺服控制型,因而对机械传 动系统的刚度、间隙和运动精度 都有较高的要求。
应根据被抓取工件的要求确定吸盘的形 状。由于气吸式手部多吸附薄片状的工 件,故可用耐油橡胶压制不同尺寸的盘 状吸头。
No.41
2.2.2 吸附式手部的设计
三、气吸式手部的吸力计算
吸盘吸力的大小主要取决于真空度(或 负压的大小)与吸附面积的大小。
真空吸盘吸力F计算公式:
F nD2 ( H )
4K1K2K3 76
注:①AB=DE,DB=AE,L=BC杆长,l=AB杆长; ②两手指保持平行;③当α角较小时,可获得较大的力比。
平行连杆杠杆式手部结构
No.33
2.2.1 钳爪式手部的设计
四、钳爪式手部结构及其夹紧力的计算公式举例
P
φ
α
c
bN
N
N=Pcsin(α+φ)/2bsinαsinφ

工业机器人技术-机器人本体结构

工业机器人技术-机器人本体结构

工业机器人技术与应用项目三工业机器人的机械系统任务二机器人的本体结构导入●什么是机器人的本体结构?●机器人的本体结构在哪里?目录学习目标知识准备任务实施主题讨论12学习目标机器人基座、腰部结构机器人上、下臂结构知识目标机器人基座、腰部及上、下臂结构一、机器人基座、腰部结构1. 基座及腰部结构基座7是整个机器人的基础件,机器人通过基座与地基或者其它工作平台固定,同时机器人的电缆、气管等也是通过基座上的连接插座进入机器人的。

腰体6位于基座和下臂之间,可以带动下臂及以上部分在基座上回转。

腰体上凸耳,凸耳一侧通过下臂安装端面5与下臂连接,另一侧安装下臂驱动电机。

一、机器人基座、腰部结构视频:基座及腰部结构二、机器人的上、下臂结构1. 下臂结构下臂安装在腰部和上臂之间,可以带动上臂及以后部分一同摆动。

下臂断面呈U形结构,用于布置各种电缆及管线。

二、机器人的上、下臂结构视频下臂结构二、机器人的上、下臂结构2. 上臂后段结构上臂后段是连接下臂和上臂前段的中间体,可带动上臂前段及手腕部分一起,相对于下臂旋转。

上臂后段为箱体结构,上方箱体内安装R轴(J4)回转电机(对于前驱RBR 结构)。

二、机器人的上、下臂结构视频上臂后段结构二、机器人的上、下臂结构3. R 轴传动结构谐波减速器的刚轮3.1与电机1的外壳、电机座2一起,固定在上臂后段6的壳体中;谐波减速器的柔轮3.3与过渡轴5的后端面、径向轴承4的里圈连接,轴承4的外圈安装在上臂后段6的壳体中作为支撑;过渡轴5的前端与上臂前段8、CRB轴承的里圈连接,轴承外圈固定在上臂后段6的前端面上作为支撑。

电机1的输出轴与谐波减速器的谐波发生器3.2连接,动力传递给柔轮,通过柔轮带动过渡轴5旋转,进而带动上臂后段8作手腕回转运动(J4轴)。

二、机器人的上、下臂结构视频R轴传动结构任务实施学习视频,完成工作页内容主题讨论讨论问题◆基座、腰部及上、下臂由哪些部分组成?◆基座、腰部及上、下臂结构的特点?小结完成本任务学习后,掌握了机器人基座、腰部及上、下臂结构,为后续学习打下了基础。

机器人本体的五大组成

机器人本体的五大组成

机器人本体的五大组成
机器人本体包括:驱动系统、机械系统、传感系统、控制系统和系统接口五大部分组成,下面来分类讲一下机器人本体包括哪几部分。

1、机械系统:机器人的机械本体机构基本上分为两大类,一类是操作本体机构,它类似人的手臂和手腕,另一类为移动型本体结构,主要实现移动功能。

2、驱动系统:工业机器人驱动系统又叫伺服单元的作用是使驱动单元驱动关节并带动负载按预定的轨迹运动。

已广泛采用的驱动方式有:液压伺服驱动、电机伺服驱动,气动伺服驱动,市场上主流的伺服电机厂家有安川、三菱、松下等。

3、控制系统:各关节伺服驱动的指令值由主计算机计算后,在各采样周期给出。

机器人通常采用主计算机与关节驱动伺服计算机两级计算机控制,计算机控制系统包括电机驱动软件和轨迹控制软件。

4、传感系统:除了关节伺服驱动系统的位置传感器(称作内部传感器)外,还需要搭配视觉、力觉、触觉、接近等多种类型的传感器(称作外部传感器)。

5、输出/输入系统接口:为了与周边系统及相应操作进行联机与应答,会开放各种通信接口和人机通信装置。

ABB工业机器人3-机器人本体

ABB工业机器人3-机器人本体

6轴原点-2轴
机 器 人 2轴 本 体
2轴原点
6轴原点-3轴
机 器 3轴 人 本 体
3轴原点
6轴原点-4轴
机 器 4轴 人 本 体
4轴原点
6轴原点-5轴轴
机 器 6轴 人 本 体
6轴原点
THANKS
谢谢
FOR LISTENING
您的聆听
11
4. 手动松闸按钮:用于维修时使用 5.平衡气缸或弹簧 6. 串口测量板(SMB):测量板带有六节可 充电的镍铬电池,起保存数据作用。
6轴运动方向
机 器 人
6轴
5轴 4轴

体 1轴
1轴:左右
3轴 2轴:前后
3轴:上下
2轴 4轴:左右
5轴:上下
6轴:左右
6轴原点-1轴
机 器 人 本 1轴 体
1轴原点
工业机器人3 ——机器人本体
席玉青
实物图
机 型号:120-506916 器 人 本 体
机器人本体的6轴
1.组成:六个转轴组成的空间六杆开链机构, 理论上可达到运动范围内空间任何一点。
2.转轴:六个转轴均有AC伺服电机驱动,每 个电机后均有编码器。
3.运动精度:每个转轴均带有一个齿轮箱,运 动精度(综合)可达到±0.05mm至±0. 2mm

工业机器人技术第3章

工业机器人技术第3章

3.1
垂直串联机器人
图3.1-5 RV减速器
3.1Biblioteka 垂直串联机器人3.1.2 机身结构与传动系统
2.传动系统 (1)腰回转S轴。采用RV减速器的垂直串联机器人腰回转轴S的传动系统 参考结构如图3.1-6所示。 (2)上/下臂摆动L/U轴。采用RV减速器的垂直串联机器人上/下臂摆动轴 L/U的传动系统参考结构如图3.1-7所示。
3.1
垂直串联机器人
图3.1-6 S轴传动系统 1—基座 2—CRB轴承 3—腰体 4—驱动电机 5—RV减速器
图3.1-7 L/S轴机械传动系统结构 1—支承部件 2—RV减速器 3—驱动电机 4—回转部件 5—减速器壳体(针轮) 6—减速器输出轴 7—减速器输入轴
3.1
垂直串联机器人
3.1.3 手腕的基本形式
3
工业机器人机械结构
3.1
垂直串联机器人
3.1.1 本体基本结构
1.基本结构 垂直串联结构是工业机器人最常见的结构形态,它被广泛用于加工、搬 运、装配、包装等场合。虽然垂直串联工业机器人的形式多样,但是总体 而言,它都是由关节和连杆依次串联而成的,而每一关节都由一台伺服电 机驱动,因此,如将机器人分解,它便是由若干台伺服电机经减速器减速 后,驱动运动部件的机械运动机构的叠加和组合。 常用的小规格、轻量6轴垂直串联机器人的外观和参考结构如图3.1-1所示。
3.1
垂直串联机器人
图3.1-9 谐波减速器
3.1
垂直串联机器人
3.1.3 手腕的基本形式
2.手腕结构形式 垂直串联机器人的手腕结构形式主要有图3.1-10所示的3种。图中的回转 轴(Roll)能够在4象限进行360°或接近360°的回转,称R型轴;摆动轴 (Bend)一般只能在3象限以下进行小于270°的回转,称B型轴。

工业机器人的基本组成结构

工业机器人的基本组成结构

工业机器人的基本构成构造工业机器人是面向工业领域的多关节机械手或许多自由度机器人,它的出现是为认识放人工劳动力、提升公司生产效率。

工业机器人的基本构成构造则是实现机器人功能的基础,下边一同来看一下工业机器人的构造构成。

工业机器人,现代工业机器人大多数都是由三大多数和六大系统构成。

1.机械部分机械部分是机器人的血肉构成部分,也就是我们常说的机器人本体部分。

这部分主要能够分为两个系统:(1)驱动系统要使机器人运转起来,需要各个关节安装传感装置和传动专治,这就是驱动系统。

它的作用是供给机器人各部分、各关节动作的原动力。

驱动系统传动部分能够是液压传动系统、电动传动系统、气动传动系统,或许是几种系统联合起来的综合传动系统。

(2)机械构造系统工业机器人机械构造主要由四大多数构成:机身、臂部、腕部和手部,每一个部分拥有若干的自由度,构成一个多自由的机械系统。

尾端操作器是直接安装在手段上的一个重要零件,它能够是多手指的手爪,也能够是喷漆枪或许焊具等作业工具。

2.感觉部分感觉部分就好似人类的五官,为机器人工作供给感觉,帮助机器人工作过程更为精准。

这部分主要能够分为两个系统:( 1)感觉系统感觉系统由内部传感器模块和外面传感器模块构成,用于获得内部和外面环境状态中存心义的信息。

智能传感器能够提升机器人的灵活性、适应性和智能化的水平。

关于一些特别的信息,传感器的敏捷度甚至能够超越人类的感觉系统。

( 2)机器人 - 环境交互系统机器人 - 环境交互系统是实现工业机器人与外面环境中的设施互相联系和协调的系统。

工业机器人与外面设施集成为一个功能单元,如加工制造单元、焊接单元、装置单元等。

也能够是多台机器人、多台机床设施或许多个零件储存装置集成为一个能履行复杂任务的功能单元。

3.控制部分控制部分相当于机器人的大脑部分,能够直接或许经过人工对机器人的动作进行控制,控制部分也能够分为两个系统:(1)人机交互系统人机交互系统是使操作人员参加机器人控制并与机器人进行联系的装置,例如,计算机的标准终端、指令控制台、信息显示板、危险信号警报器、示教盒等。

机器人本体结构

机器人本体结构

三、手爪的典型结构
1.机械手爪
气动手爪 1—扇形齿轮;2—齿条; 3—活塞;4—气缸;5—爪钳
V形爪钳
四种手爪传动机构
2.磁力吸盘
电磁吸盘结构 l—电磁吸盘;2—防尘盖;3—线圈;4—外壳体
3.真空式吸盘
1—电动机;2—真空泵;3、4—电磁阀;5—吸盘;6—通大气
四、机器人传动机构
1.齿轮传动 行星齿轮传动
二、RRR型手腕
RRR型手腕结构示意图
RRR型手腕容易实现远距传动。 为了实现运动的传递,RRR型手腕的中间关节是斜置 的,三根转动轴内外套在同一转动轴线上,最外面 的转动轴套直接驱动整个手腕转动,中间的轴套驱 动斜置的中间关节运动,中心轴驱动第三个滚转关 节。 RRR型手腕制造简单,润滑条件好,机械效率高,应 用较为普遍。
一、腕部的自由度
手腕按自由度个数可分为单自由度手腕、二自由度手腕和三自由度手腕。 腕部实际所需要的自由度数目应根据机器人的工作性能要求来确定。在有些情况下,腕部具 有两个自由度,即翻转和俯仰或翻转和偏转。一些专用机械手甚至没有腕部,但有些腕部为 了满足特殊要求还有横向移动自由度。
6种三自由度手腕的结合方式示意图
谐波传动
1—刚轮;2—刚轮内齿圈;3—输入轴; 4—谐波发生器;5—轴;6—柔轮;7—柔轮齿圈 液压静压谐波发生器的谐波传动
1—凸轮;2—柔轮;3—小孔
2.丝杠—螺母;3—滚珠;4—导向槽
3.带传动与链传动 4.绳传动与钢带传动 5.连杆与凸轮传动 6.流体传动
RRR型手腕关节远程传动示意图
三、腕部的典型结构
1.单自由度回转运动手腕
单自由度回转运动手腕用回转油缸或气缸直接驱动实现腕部回转运动。这种手腕具有结构紧凑, 体积小,运动灵活,响应快,精度高等特点,但回转角度受限制,一般小于270°

工业机器人本体的基本结构和功能

工业机器人本体的基本结构和功能

工业机器人本体的基本结构和功能下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!工业机器人本体:基本结构与功能解析在现代制造业中,工业机器人已经成为不可或缺的自动化设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.回转与俯仰机身
二、机身驱动力(力矩)计算 1. 垂直升降运动驱动力Pq 的计算 需克服摩擦力、总重力、惯性力:
Pq Fm Fg W
Fm为各支承处的摩擦力(N);
Fg 为启动时的总惯性力(N);
W 为运动部件的总重力(N) 。
2. 回转运动驱动力矩的计算
Mq Mm Mg
M m 为总摩擦阻力矩(N· m);
三、机器人手部 机器人的手部也叫做末端执行器,装在机器人手 腕上直接抓握工件或执行作业的部件。 手部是完成作业好坏以及作业柔性好坏的关键部 件之一。
1. 特点:
(1) 手部与手腕相连处可拆卸。
(2) 手部是机器人末端执行器。
(3) 手部的通用性比较差。
2. 手部的设计要求:
(1)具有足够的夹持力。 (2)保证适当的夹持精度: 手指应能顺应被夹持工件的形状,应对被夹持工 件形成所要求的约束。 (3)手部自身的大小、形状、机构和运动自由度: 主要是根据作业对象的大小、形状、位置、姿态、 重量、硬度和表面质量等来综合考虑。
3)运动要平稳、定位精度高 臂部高速运动,惯性力引起的冲击大,运动不平 稳,定位精度也不高,采用缓冲措施。 4)重量轻、转动惯量小。
为提高机器人的运动速度,要尽量减少臂部运动 部分的重量,以减少手臂对回转轴的转动惯量。
5)合理设计与腕和机身的连接部位。
臂部安装形式和位置不仅关系到机器人的强度、 刚度和承载能力,还直接影响机器人的外观。
第 6章
机器人本体结构
6.1


机器人主要由驱动系统、机械系统、感知系统、 控制系统四个系统组成。 机械系统又叫操作机,是工业机器人的执行机构。 可分成基座、腰部、臂部、腕部和手部。
一、机器人结构特点 1.工业机器人操作机可以简化成各连杆首尾相接、 末端开放的一个开式运动链,操作机的结构刚度差, 并随空间位姿的变化而变化。
机器人必须有一个便于安装的基础件,这就是机 器人的机座,机座往往与机身做成一体。 机身设计要求: (1) 刚度和强度大,稳定性好。
(2) 运动灵活,导套不宜过短,避免卡死。
(3) 驱动方式适宜。
(4) 结构布置合理。
一、机身的典型结构 机身结构一般由机器人总体设计确定。 1.回转与升降机身 (1) 回转运动采用摆动油缸驱动 升降油缸在下,回转油缸在上,升降活塞杆 杆的尺寸要加大。 回转油缸在下,升降油缸在上,回转油缸的 驱动力矩要设计得大一些。 (2) 链传动机构 回转角度可大于360°。
M g 为回转运动部件的总惯性力矩 (N· m)
Mg J0 t
3.升降立柱下降不卡死(不自锁)的条件计算
偏重力矩:是指臂部全部零部件与工件的总重量 对机身回转轴的静力矩。 当手臂悬伸为最大行程时,其偏重力矩为最大。 偏重力臂L :手臂总重量的重心位置距机身立柱 轴的距离,根据静力平衡计算。
3. 气动和液压平衡方法 平衡的原理和弹簧平衡的原理很相似 优点: 1)平衡缸中的压力恒定; 2)平衡缸的压力容易调节和控制. 缺点:
1)需要动力源和储能器,系统比较复杂
2)需考虑动力源一旦中断时的防范措施。
6.3
腕部及手部结构
手腕结构是机器人中最复杂的结构,因传动系 统互相干扰,增加了手腕结构的设计难度。
偏转运动 在上图示两自由度手腕增加一个偏转运动。 油缸1活塞移动→链轮2 →锥齿轮3、4 →花键轴5、6转动, 花键轴6与行星架9连成一体,行星架作偏转运动。
回转运动: 轴S旋转→Z10/Z23、Z23/Z11→Z12、Z13→Z14、Z15
→手腕与锥齿轮Z15为一体→手腕实现旋转运动
俯仰运动:
(4)智能化手部还应配有相应的传感器:
由于感知手爪和物体之间的接触状态、物体表面 状况和夹持力的大小等,以便根据实际工况进行 调整等。
3. 手部的分类 按用途分 手爪:抓住工件,握持工件,释放工件 工具:进行某种作业的专用工具,如喷漆枪、 焊具等
按夹持原理分
机械式手爪设计 驱动:气动、液动、电动
臂部的常用机构 1.直线运动机构
油(气)缸直接驱动
行程小时;
油(气)缸驱动齿条传动的倍增机构 行程较大时 ;
丝杠螺母或滚珠丝杠传动。
为了增加手臂的刚性,臂部伸缩机构需设置导向 装置,或设计方形、花键等形式的臂杆。
常用的导向装置有单导向杆和双导向杆等,可根 据手臂的结构、抓重等因素选取。
图示为采用四根导向柱的臂部伸缩结构。 手臂垂直运动由油缸驱动,行程长,抓重大。
传动:运动要求和夹紧力要求
爪钳:形状、材料、与工件的接触面积
磁力吸盘设计
不需夹具,要求工件表面清洁、平整、干燥 只适合对工件要求不高或不考虑剩磁的影响, 不适合高温 真空式吸盘设计
要求工件表面清洁、平整、干燥、能气密
按手指或吸盘数目分 (1) 手指数目:二指手爪及多指手爪。
(2) 手指关节:单关节手指手爪及多关节手指手爪。
轴B旋转→Z24/Z21,Z21/Z22→Z20、Z16 →Z16、Z17→Z17、Z18→轴19旋转
手腕壳体与轴19固联,实现手腕的俯仰运动
诱导运动:轴B、轴S不转而T轴回转 轴B、轴S不转→齿轮Z23、Z21不转 1. T轴回转→行星架回转→齿轮Z22绕齿轮Z21的过程中自 转 →Z20、Z16、Z17、Z18 实现附加俯仰运动 2. T轴回转→行星架回转→齿轮Z11绕齿轮Z23的过程中自 转→经过Z12、Z13、Z14、Z15 实现附加回转运动
二、本体基本结构要求 1. 机械系统抓重一自重比尽量大 臂杆的质量小有利于改善操作机工作的动态性能, 抓重一自重比大意味着工作效率高,造价低。
人类手臂的抓重大约为自重的3—4倍,从统计资料 看,操作机的抓重一自重比约为1/20—1/15,与 人类手臂相比,相去甚远。 2. 结构的静动态刚度尽可能好
二自由度手腕图例:
BR手腕
BB手腕
RR手腕(属于单自由度)
三自由度手腕的结合方式:
RRR型手腕结构示意 RRR型手腕,制造简单,机械效率高,应用普遍
RRR型手腕关节远程传动示意图 好处:把尺寸、重量都较大的驱动放在远离手腕 的手臂后端,作平衡重量用,减轻手腕重量,改 善了机器人结构的平衡性。
m2O2G2 m3O3G3 O2V m 则总力矩:
m3O3G3 SV m
M 0
2. 弹簧平衡方法
M 0 Fr1 sin
r2 sin(90 ) r2 cos sin l l
F k (l l0 )
k (l l0 )r1r2 M0 cos l
四导向柱式臂部伸缩机构 1—手部;2—夹紧缸;3—油缸;4—导向柱;5—运行架;6—行走车轮;7—轨道;8—支座
2.手臂俯仰运动机构
通常采用摆臂油(气)缸 驱动、铰链连杆机构传 动实现手臂的俯仰。 1—手部; 2—夹紧缸; 3—升降缸; 4—小臂; 5、7—摆动油缸; 6—大臂; 8—立柱
3.手臂回转与升降机构 常采用回转缸与升降缸单独驱动,适用于升降行 程短而回转角度小于360°的情况; 也有采用升降缸与气动马达-锥齿轮传动的结构。
腕部设计要求:
(1) 结构紧凑,重量轻。
(2) 动作灵活、平稳,定位精度高。 (3) 强度、刚度高。 (4) 合理设计与臂和手部的连接部位以及传感 器和驱动装置的布局和安装。
驱动方式:直接驱动和远程驱动。 直接驱动:驱动器安装在手腕运动关节的附近 传动路线短,传动刚度好,尺寸和质量大,惯量大。 远程驱动:为了保证具有足够大的驱动力,同时也 为了减轻手腕的重量,采用远距离的驱动方式。通 过连杆、链条或其他传动机构间接驱动。腕部关节 结构紧凑,尺寸和质量小,但传动设计复杂,传动 刚度也降低。
二、腕部的典型结构 1.单自由度回转运动手腕
ห้องสมุดไป่ตู้
回转油缸直接驱动的单自由度腕部结构 1—回转油缸;2—定片; 3—腕回转轴;4—动片;5—手腕
2. 二自由度BR腕部
采用轮系实现手腕翻转和俯仰
结构紧凑、轻巧、 传动扭矩大,能 提高机械手的工 作性能,在示教 型的机械手中应 用较多。
手腕的翻转:S轴传递,手腕与锥齿轮4为一体。 手腕的俯仰:传动轴B —锥齿轮5、6 —传动轴A,手腕的 壳体与A 连接为一体。 诱导运动: S轴不动传动轴B 运动
2. 操作机的每个连杆都具有独立的驱动器,连杆的 运动各自独立,运动更为灵活。
一般的连杆机构,有1-2个原动件,各连杆间的运动 是互相约束的。 3. 连杆驱动扭矩变化复杂,和执行件位姿相关。
连杆的驱动属于伺服控制,因而对机械传动系统的 刚度、间隙和运动精度都有较高的要求。
4. 操作机的受力状态、刚度条件和动态性能随位姿 变化而变化,极易发生振动或其它不稳定现象。
尽可能提高操作机结构的固有频率,避开机器人 工作时的工作频率。
三、机器人本体结构
手部
机器人本体结构:机械 结构和机械传动系统。 包括: 传动部件 机身及行走机构 臂部 腕部 手部
小臂
腕部 大臂
腰部 基座
6.2 机身及臂部结构
机器人机身又称为立柱,是支撑臂部的部件,能 实现手臂的升降、回转或俯仰运动。
3.三自由度手腕 1)液压直接驱动三自由度BBR手腕
M1、M2、M3是液压马达,直接驱动手腕,实现 偏转、俯仰和翻转三个自由度。
M1
M2 M3
关键是设计和加工出尺寸小、重量轻、驱动力矩 大,驱动特性好的液压驱动马达。
2) 齿轮-链轮传动三自由度RBR腕部
齿轮链轮传动三自由度手腕原理图 1—油缸;2—链轮;3、4—锥齿轮;5、6—花键轴T;7—传动轴S;8—腕架;9—行星架; 10、11、22、24—圆柱齿轮;12、13、14、15、16、17、18、20—锥齿轮;19—摆动轴; 21、23—双联圆柱齿轮;25—传动轴B
Gi Li L Gi
相关文档
最新文档