小学奥数-简单逻辑推理习题
小学奥数---逻辑推理
小学奥数---逻辑推理一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.64.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.65.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.06.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第位是疯子.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃,红桃,方块,梅花.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?小学奥数---逻辑推理参考答案与试题解析一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁【分析】①根据如果甲去,那么乙也去,可得甲在,乙必然也在;②又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,同时满足①②的条件和“如果丙去;那么丁不去”只能是乙、丙参加了活动,据此解答即可.【解答】解:根据如果甲去,那么乙也去,可得甲在,乙必然也在,又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,如果丙去;那么丁不去,可得:如果丙不去;那么丁去,同时乙也不去,则根据“甲去,那么乙也去”可得甲也不去,这样只有丁去,这与两个人参加一项活动相矛盾.同时满足条件只能是乙、丙参加了活动.故选:B.2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象【分析】通过分析可知:从题意出发:(1)狮子去则老虎去,逆否命题:老虎不去则狮子也不去,(2)不派豹子则不派老虎,逆否命题:派老虎则要派豹子,(3)派豹子则大象不愿意去,逆否命题:大象去则不能派豹子从(2)出发可以看出答案为B.据此解答即可.【解答】解:题目要求有两个动物去,可以使用假设法,若狮子去,则老虎去,老虎去则豹子也去.三个动物去,矛盾,所以狮子不去.若豹子不去则老虎不去,那么只有大象去,矛盾,所以豹子去.豹子去则大象不去,由两种动物去得到结论,老虎要去.所以答案是B,豹子和老虎去.故选:B.3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.6【分析】6人参加乒乓球赛,每两人都要比赛一场,即每人都要与另外5人赛一场,又比赛是在两人之间进行的,所以共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分为一人五场全胜5×2=10分,又比赛结果有两人并列第二名,两人并列第5名,由于30=10+6+6+4+2+2,所以第四名是4分.【解答】解:共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分5×2=10分,由于30=10+6+6+4+2+2,所以第四名是4分.故选:B.4.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.6【分析】第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.【解答】解:第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.因此第一名得了胜五场,因此得2×5=10(分)故选:A.5.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.0【分析】四人比赛乒乓球,每两人要赛一场,则每人都要和其他三人赛一场,每人要赛三场,共比赛4×3÷2=6场,由于没有平局,则每场都有一队胜,一队负.由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.【解答】解:由题意可知,每人要赛三场,共比赛4×3÷2=6场,由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.故选:D.6.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁【分析】由题意知,一排1号至4号的座位上分别坐一人,由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;据此解答.【解答】解:由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;故选:B.二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是2314.【分析】4人都是诚实的好孩子,也就是4人都是说真话,丁说它的右边没有人,那么丁排在4号;再从甲乙的话可知甲乙都不排在1号,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号,从而求解.【解答】解:首先根据“丁:我右边没有人”可以得出丁在4号;再根据“甲:我左右两人都比我高.乙:我左右两人都比我矮.”可知,甲乙两边都有人,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号;剩下的乙排在3号;综上可知:甲、乙、丙、丁的编号按顺序组成的4位数是2314.故答案为:2314.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.【分析】若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则小光要的是鸡块,然后进一步解答即可.【解答】解:若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则根据(1)小光只要的是鸡块,那么小亮要的是汉堡,也可以是鸡块;所以,已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.故答案为:小亮.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第3位是疯子.【分析】按题意,运用假设法,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,最后不难得出结论.【解答】解:根据分析,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,所以第三位是疯子.故答案是:3.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃A,红桃Q,方块K,梅花J.【分析】由(1)(2)(3)先排出个别扑克牌的顺序,再根据它们之间的位置关系,推出问题的答案.【解答】解:由(1)可知顺序为:红桃,A,J;由(2)可知顺序:Q,K由(3)可知顺序:黑桃,J由(1)(3)知,A是黑桃.由(1)(2)(3)可知顺序:K,Q,A,J,由A的左边是红桃,可知Q是红桃.又因为黑桃与方块不相邻,因此J不是方块,只能是梅花,因此,K是方块.黑桃是A 红桃是Q,方块是K,梅花是J.故答案为:A,Q,K,J.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是乙.【分析】据题意,假设结论(即会开车的分别是甲、乙或丙),然后根据他们所说的话,推出与题意矛盾的即为错误结论,从而得出正确答案.【解答】解:假设甲会开车,那么,甲和乙说的是真话,所以和已知矛盾,所以甲不会开车,假设乙会开车,那么甲和乙说的是假话,丙说的是真话,符合题意,假设丙会开车,那么乙和丙说的是真话,也和题意矛盾,所以,乙会开车.故答案为:乙.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?【分析】小强比小杰大4岁,小虎比小杰大3岁,则小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,所以小虎大.【解答】解:小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,答:小虎大.13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.【分析】由小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”,我们用大于号进行排列,小鹿>小兔,小兔>乌龟,所以,小鹿>小兔>乌龟.据此解答即可.【解答】解:由题意可知:小鹿>小兔小兔>乌龟所以小鹿>小兔>乌龟.所以小鹿最高,乌龟最矮.答:小鹿最高,乌龟最矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?【分析】因为他们中只有一个人讲的话错了,也就是只有一个人说了假话,从题中分析,因为乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断是乙是罪犯.【解答】解:乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断乙是罪犯.综上所述,罪犯一定是乙.答:乙是罪犯.15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?【分析】这四人中只有丁说了实话,那么根据“乙说是丁打的”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个,然后根据甲和丙说的话进行判断(甲丙说谎),从而得出结论.【解答】解:这四人中只有丁说了实话,那么根据丁说:“乙说得不对.”、乙说:“是丁打的.”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个;又因为甲说谎,所以可能是甲或丙;又因为丙也说谎,且丙说:“不是我打的.”,从而可以肯定是丙打碎了玻璃.答:是丙打碎了玻璃.第11页(共11页)。
13题奥数逻辑推理专题
13题奥数逻辑推理专题精选13题奥数逻辑推理专题1.有甲、乙、丙、丁四人同住在一座四层的楼房里,已知:甲比乙住的楼层高,比丙住的楼层低,丁住四层。
试问:甲、乙、丙、丁各住在这座楼的几层?2.有三个小伙子,他们分别姓牛、姓马、姓龙,凑巧他们三人的属相恰好也是牛、马、龙。
属龙的说:“我们每个人的属相都跟自己的姓的不同。
”姓牛的小伙表示赞同,他说:“对!我姓牛,就不属牛。
”你能说出这三个人的姓和属相的对应关系吗?3.康大一校四年级有四个班,每个班都有正、副班长各一人。
平时如召开年级的班长会议时,各班都只派一名班长参加。
参加第一次会议的是小叶、小景、小汪和小刘;参加第二次会议的是小杨、小叶、小景、小徐。
三次会议小金因病没有参加。
问每个班是哪两位班长?4.一次羽毛球邀请赛中,来自湖北、广东、福建、北京和上海的五名运动员相遇在一起。
据了解:(1)李平仅和其它两名运动员比赛过;(2)上海运动员和其它三名运动员比赛过;(3)陈兵没有和广东运动员交过锋;(4)福建运动员和林华比赛过;(5)广东、福建和北京的三名运动员相互交过手;(6)赵欣仅与一名地运动员比赛过。
问:李平、陈兵、林华、赵欣、张强各是哪个省的运动员?5.A、B、C三个合唱队,每个合唱队都有一名指挥,他们是:小明、小芳(女)、小华(女);每个合唱队有一名伴奏,他们是琪琪、军军、斌斌。
已知:(1)A队和琪琪所在的队都是女指挥;(2)B队的女指挥不是小芳;请你判断,各队的指挥和伴奏是谁?6.在某旅馆里住着国籍不同的六个人。
他们的国籍分别是美、德、英、法、日和意大利。
他们的名字为了好记分别叫做A、B、C、D、E、F。
现在已知:(1)A和美国人是医生;(2)E和日本人是教师;(3)C和德国人是技师;(4)B和F曾经当过兵,而德国人从未参过军;(5)法国人比A年龄大,意大利比C年龄大;(6)B同美国人下周要去英国旅行,而C和法国人下周瑞士渡假。
试问:A、B、C、D、E、F各是哪国人?7.已知张新、李敏和王强三同学在北京、苏州、南京的大学里学习化学、地理、物理,张新不在北京学习;李敏不在苏州学习;在北京学习的同学不学物理;在苏州学习的同学是学化学;李敏不学地理。
小学奥数思维训练-逻辑推理问题(通用,含答案)
小学奥数思维训练-逻辑推理问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.填数使下列竖式成立:(1)(2)二、排序题2.200米赛跑,张强比李军快0.2秒,王明的成绩是39.4秒,赵刚的成绩比王明慢0.9秒,但比张强快0.1秒,林林比张强慢3秒,请你给这五人排出名次来。
三、解答题3.有三个和尚,一个讲真话,一个讲假话,另外一个有时讲真话,有时讲假话。
一天,一位智者遇到这三个和尚,他先问左边的那个和尚:“你旁边的是哪一位?”和尚回答说“讲真话的。
”他又问中间的和尚:“你是哪一位?”和尚答:“我是半真半假的。
”他最后问右边的和尚:“你旁边是哪一位?”答:“讲假话的。
”根据他们的回答,智者马上分清了他们,你能分清吗?4.一次全校数学竞赛,A、B、C、D、E五位同学取得了前五名,发奖后有人问他们的名次,回答是:A说:“B是第三名,C是第五名.”B说:“D是第二名,E是第四名.”C说:“A是第一名,E是第四名.”D说:“C是第一名,B是第二名.”E说:“D是第二名,A是第三名.”最后,他们都补充说:“我们的话半真半假.”请你判断一下他们每个人的名次.5.老师有一黑两白三顶帽子,给两个学生看后,让他们闭上眼睛,从中取出两顶给他们戴上,然后让他们睁开眼睛,互相看清对方戴的帽子,并立即说出自己头上戴的帽子是什么颜色,两位同学都不能立即说出,请问你知道这两位学生戴的各是什么颜色的帽子吗?6.曾实、张晓、毛梓青在一起,一位是工程师、一位是医师、一位是教师。
现在只知道:(1)毛梓青比教师年龄大;(2)曾实和医师不同岁;(3)医师比张晓年龄小。
你能确定谁是工程师?谁是医师?谁是教师吗?7.某公安人员需查清甲、乙、丙三人谁先进办公室,三人口供如下:甲:丙第二个进去,乙第三个进去。
乙:甲第三个进去,丙第一个进去。
丙:甲第一个进去,乙第三个进去。
小学五年级奥数逻辑推理问题
小学奥数题:专题训练之逻辑推理问题1、甲、乙、丙、丁四位同学的运动衫上印了不同的号码。
赵说:甲是2号,乙是3号;钱说:丙是4号,乙是2号;孙说:丁是2号,丙是3丙;李说:丁是1号,乙是3号。
又知道赵、钱、孙、李每人都说对了一半,那么,丙的号码是( )号。
2、有一种俱乐部,里面的成员可以分成两类。
第一类是老实人,永远说真话。
第二类是骗子,永远说假话。
某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。
记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。
李四说:张三是老实人,那么李四是老实人还是骗子?3、一次游泳比赛,由甲、乙、丙、丁四个人参加决赛,赛前他们对比赛各说了一句话。
甲说:我第一,乙第二。
乙说:我第一,甲第四。
丙说:我第一,乙第四。
丁说:我第四,丙第一。
比赛结果无并列名次,且各人都只说对了一半。
那么,丁是第()4、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有()人。
5、甲、乙、丙、丁四人进行羽毛球双打比赛,已知:(1)甲比乙年轻;(2)丁比他的两个对手年龄都大;(3)甲比他的同伴年龄大;(4)甲与乙的年龄差距要比丙与丁的年龄差距大。
试判断谁与谁是同伴,并说出四人年龄从小到大的顺序。
6、一次国际足球邀请赛上,来自欧洲、美洲、亚洲、大洋洲、非洲的5支队伍均已到齐了,分组抽签仪式上,几位记者对各队的编号展开了讨论。
A记者:3号是欧洲队,2号是美洲队;B记者:4号是亚洲队,2号是大洋洲队;C记者:1号是亚洲队,5号是非洲队;D记者:4号是非洲队,3号是大洋洲队;E记者:2号是欧洲队,5号是美洲队。
结果,每人都只猜对了一半,那么1号是()队,3号是()队。
7、老师给甲、乙、丙各发一张写着不同整数的卡片。
老师:甲的卡片上写着一个两位整数,乙的卡片上写着一个一位整数,丙的卡片上写着一个比60小的两位整数,且甲的数×乙的数=丙的数。
小学三年级奥数逻辑推理专题训练
小学三年级奥数逻辑推理专题训练
1.三只盒子里装有不同颜色的球,标签贴错了。
你能否从一只盒子里拿出一个球,确定这三只盒子里各装的是什么颜色的球?
2.四位同学的运动衫上印有不同的号码。
他们每人都说对了一半,那么丙的号码是几号?
3.八位同学获得数学竞赛前八名,老师让他们猜一下谁是第一名。
其中有三人猜对了,那么第一名是谁?
4.参观团从五个地方中选定参观地点,有一些地点有限制条件。
那么参观团所去的地点是哪些?
5.房间里有12个人,其中有些人总说假话,其余的人说真话。
问房间里究竟有多少个老实人?
6.四个人在公园门口集合,他们每个人提前或者迟到了几分钟。
请根据他们的谈话分析,谁的表最快,快多少分钟?
7.四个同学在教室里做不同的事情,已知一些条件。
请问
每个人在做什么?
在这个场景中,四位朋友正在国际饭店的宴会桌旁进行交谈。
他们使用了汉语、英语、法语和日语四种语言。
根据已知信息,甲、乙、丙、丁中,甲、乙、丙各会两种语言,而
XXX只会一种语言。
同时,有一种语言在这四个人中有三个
人都会。
甲会日语,丁不会日语,乙不会英语。
最后,甲与丙、丙与丁不能直接交谈,但是乙与丙可以直接交谈。
最新版 四年级奥数 逻辑推理
逻辑推理例1:卢刚、丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。
现在只知道:卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大。
问:谁是工程师、谁是医生、谁是飞行员?练习1:(1)有三个小朋友们在谈论谁做的好事多。
冬冬说:“兰兰做的比静静多。
”兰兰说:“冬冬做的比静静多。
”静静说:“兰兰做的比冬冬少。
”这三位小朋友中,谁做的好事最多?谁做的好事最少?(2)小李、小徐和小张是同学,大学毕业后分别当了教师、数学家和工程师。
小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。
谁是教师、谁是数学家、谁是工程师?例2:有一个正方体,每个面分别写上汉字:数学奥林匹克。
三个人从不同角度观察的结果如下图所示。
这个正方体的每个汉字的对面各是什么字?(1)奥匹林(2)数奥学(3)林数克练习2:(1)下面三块正方体的六个面都是按相同的规律涂有红、黄、蓝、白、绿、黑六种颜色。
请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?(2)一个正方体,六个面分别写上A 、B 、C 、D 、E 、F ,你能根据这个正方体不同的摆法,求出相对的两个面的字母是什么吗?例3:甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。
”乙说:“我没有打碎破璃。
”丙说:“是乙打碎的。
”他们当中有一个人说了谎话,到底是谁打碎了玻璃?练习3:(1)已知甲、乙、丙三人中,只有一人会开汽车。
甲说:“我会开汽车。
”乙说:“我不会开。
”丙说:“甲不会开汽车。
”如果三人中只有一人讲的是真话,那么谁会开汽车?(A )黄黑白(B )红白绿(C )红蓝黄D A FA CBCD E(2)某学校为表扬好人好事核实一件事,老师找了A、B、C三个学生。
A说:“是B做的。
”B说:“不是我做的。
”C说:“不是我做的。
”这三个学生中只有一人说了实话,这件好事是谁做的?例4:A、B、C、D与小强五个同学一起参加象棋比赛,每两人都赛一盘,比赛一段时间后统计:A赛了4盘,B赛了3盘,C赛了2盘,D赛了一盘。
小学奥数之逻辑推理专题训练(附详解)
三年级奥数之逻辑推理专题训练:1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?从标签为(黑+白)箱子里抽出一个球来,如果是黑球(白球),那么这个箱子里应该是两个黑球(白球),贴了(2黑)标签的箱子里应该是2白球(白+黑),贴了(2白)的箱子里应该是黑+白(2黑)2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?应该是4号,假设甲是2号,则丁是1号,丙是3号,乙是2号,与甲重复,假设不成立。
假设乙是3号,则丙是4号,丁是2号,甲是1号。
符合要求。
3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G 是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?B和D两个人中一个对一个错,假设A对则H对E和F错,并且C、G错。
那么C是第一名,这样就和A说的矛盾,所以假设不成立。
所以A错且H错,则E 对F对,C、G也错,同样推出C是第一名。
4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?假设C、D两地都去,则没去B地,再假设去了E地,则一定去了A地,也必须去B地,矛盾,所以没去E地,同样也没有去A地;假设C、D两地都不去,则去了E地,去了E地,一定要去A、D地,矛盾。
小学二年级奥数-逻辑推理题
小学二年级奥数-逻辑推理题1、某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍。
照这样计算,每天的利润比原来增加几元?2、甲、乙两列火车的速度比是5:4。
乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A、B 两站距离的比是3:4,那么A、B两站之间的距离为多少千米?3、大、小猴子共35只,它们一起去采摘水蜜桃。
猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克。
猴王在场监督的时候,每只猴子不论大小每小时都可以多采摘12千克。
一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃。
在这个猴群中,共有小猴子几只?4、某次数学竞赛设一、二等奖。
已知,(1)甲、乙两校获奖的人数比为6:5,(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%,(3)甲、乙两校获二等奖的人数之比为5:6。
问甲校获二等奖的人数占该校获奖总人数的百分数是几?5、已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5。
已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?6、加工一批零件,原计划每天加工15个,若干天可以完成。
当完成加工任务的3/5时,采用新技术,效率提高20%。
结果完成任务的时间提前10天,这批零件共有几个?7、甲、乙二人在400米的圆形跑道上进行10000米比赛。
两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米。
这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点。
那么领先者到达终点时,另一人距离终点多少米?8、小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?9、加工一批零件,原计划每天加工30个。
小学奥数之逻辑推理题(详细解析)
小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。
说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。
2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。
A说:“我肯定考得最好”。
-------(1)|B说:“我不会是最差的”。
-------(2)C说:“我没有A考得好,但也不是最差的”。
--------(3)D说:“可能我考得最差。
”-------(4)成绩一公布,只有一人说错了。
请你按照考试分数由高到低排出他们的顺序。
分析:假设法。
假设A是最差的,那么第(1)和(2)都是错的话。
矛盾了。
假设B是最差的,那么第(2)和(4)都是错的话。
矛盾了。
假设C是最差的,那么第(3)和(4)都是错的话。
矛盾了。
、所以证明了D是最差的。
那么第(4)句话是对的。
第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。
所以:第(1)句话是错的,第(3)必须对的。
根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。
所以A 是第二好,C是第三好,D是最差的。
由高到低排列为:B、A、从、D。
3、王涛、李明、江兵三人在一起谈话。
他们当中一位是校长,一位是老师,一位是学生家长。
现在只知道:(1)江兵比家长年龄大。
(2)王涛和老师不同岁。
(3)老师比李明年龄小。
你能确定谁是校长、谁是老师、谁是家长吗?:分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。
因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。
小学奥数:逻辑推理(二)计算逻辑
逻辑推理(二)计算逻辑莫泽凡例1:在一座办公大楼里,有30名办事员。
某天上班有一名办事员没有和其他办事员见面。
请问这一天在大楼里办公的人最多能遇到几位同事?随堂练习1:某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子。
问戴红帽子的人数比戴蓝帽子的人数多了多少个人?例2:如图。
六张四位数的纸片互相纵横交错叠在一起。
其中有且只有一个数是完全平方数。
这个数是多少?例3:伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者。
C年4月D日逝世于美国,享年E岁。
请将下列给出的一组数正确的填入A、B、C、D、E中。
(1)1955 (2)3 (3)1879 (4)76 (5)18随堂练习2:A年B月16日在德意志的波恩附近,一件破旧的阁楼上诞生了以后影响百年的音乐奇才——贝多芬。
他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章。
在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世。
一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁。
请将下列给出的一组数正确的填入A、B、C、D、E中。
(1)26 (2)57 (3)1827 (4)12 (5)1770例4:10个好朋友彼此住得很远,没有电话,只能靠写信互通消息。
现在这10个人每人都知道一条好消息,这10条好消息彼此不同,为使这10个人都知道所以的好消息,只能通过相互写信通报。
请问至少要让邮递员传送几封信?例5:甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分。
结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得分。
随堂练习3:五个选手进行象棋比赛,每两个人之间都要赛一盘。
规定胜一盘得2分,平一盘各得1分,输一盘不得分。
已知比赛后,其中4位选手共得16分,则第5位选手得了分。
小学奥数-逻辑推理
小学奥数-逻辑推理逻辑推理(一)解题思路:以重要的条件为突破口,用排除、假设、反证、筛选等方法有条理地进行推理例1公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。
请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?例2XXX、XXX、XXX三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,XXX和XXX对XXX和XXX;第二盘,XXX和XXX对XXX和XXX的妹妹。
请你判断,XXX、XXX和XXX各是谁的妹妹。
例3“迎春杯”数学竞赛后,甲、乙、丙、XXX四名同砚推测他们之中谁能获奖.甲说:“假如我能获奖,那么乙也能获奖.”乙说:“假如我能获奖,那么丙也能获奖.”丙说:“假如丁没获奖,那么我也不能获奖.”实践上,他们之中只有一小我没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同砚是___。
例4数学竞赛后,XXX、XXX、XXX各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.XXX猜测:“XXX得金牌;XXX不得金牌;XXX不得铜牌.”结果XXX只猜对了一个.那么XXX得___牌,XXX得___牌,XXX得___牌。
例5有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的XXX只从一只盒子里掏出一个砝码,放到天平上称了一下,就把所有标签都矫正过来了.你晓得这是为何吗?例6四人打桥牌,某人手中有13张牌,四种花色样样有;四种花色的张数互不相同.红桃和方块共5张;红桃与黑桃共6张;有两张将牌(主牌).试问这副牌以什么花色的牌为主?1例7S、B、J、R四人分别获数学、英语、语文和逻辑学四个学科的奖学金,但他们都不知道自己获得的是哪一门获学金.他们相互猜测:S:“R得逻辑学奖”;B:“J得英语奖”;J:“S得不到数学奖”;R:“B得语文奖”。
趣味奥数题6年级逻辑推理
趣味奥数题6年级逻辑推理一、题目。
1. 甲、乙、丙三人进行跑步比赛。
甲说:“我跑得不是最快的,但比丙快。
”请你说出他们三人的跑步速度顺序。
- 解析:根据甲说的话,甲不是最快的且比丙快,那么最快的只能是乙,其次是甲,最后是丙。
所以三人的速度顺序为乙>甲>丙。
2. 有A、B、C、D四位同学参加数学竞赛。
他们对自己的成绩进行了预测。
A 说:“我肯定得第一名。
”B说:“我不会得最后一名。
”C说:“我不可能得第一名。
”D说:“我肯定得最后一名。
”竞赛结果出来后,发现他们四人中只有一人预测错误。
那么谁预测错误了呢?- 解析:假设A预测错误,那么A不是第一名,C说自己不可能得第一名是正确的,D说自己肯定得最后一名是正确的,B说自己不会得最后一名也是正确的,这样就符合只有一人预测错误;假设B预测错误,那么B就是最后一名,可是D说自己是最后一名,这样就矛盾了;假设C预测错误,那么C就是第一名,这与A说自己是第一名矛盾;假设D预测错误,那么D不是最后一名,B说自己不是最后一名,这样就没有人是最后一名了,也矛盾。
所以A预测错误。
3. 张、王、李三位老师分别教语文、数学、英语。
已知:张老师不教英语;王老师不教语文;教英语的老师不教数学;教语文的老师和王老师是好朋友。
请问三位老师分别教什么科目?- 解析:由可知张老师不教英语;由可知王老师不教语文;由可知王老师不教语文。
从知道教英语的老师不教数学,那么英语老师只能教语文或者英语。
假设张老师教语文,因为王老师不教语文,教英语的老师不教数学,所以王老师教数学,李老师教英语;假设张老师教数学,因为张老师不教英语,王老师不教语文,所以王老师教英语,李老师教语文。
4. 有红、黄、蓝、白、黑五种颜色的小球,它们之间的关系是:红色球比白色球大;蓝色球比黄色球大且比黑色球小;黄色球比白色球大;黑色球比红色球小。
请按照球的大小顺序排列这五种颜色的球。
- 解析:由可知黄<蓝<黑;由可知白<红;由可知白<黄;由可知黑<红。
小学奥数逻辑推理题及答案
小学奥数逻辑推理题及答案1.世界级的马拉松选手每天跑步不超过6公里。
因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。
推理方法相同的选项是:(E) 油漆三小时之内都不干。
如果某涂料在三小时内干了,则不是油漆。
改写:油漆一般需要三小时以上才能干透,如果某种涂料在三小时内干了,那么它就不是油漆。
2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。
那些没有牛的,通常是好吃懒做的人。
因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。
相类似的选项是:(B) 这是一本好书,因为它的作者曾获诺贝尔奖。
改写:这本书的作者曾获得诺贝尔奖,因此它是一本好书。
3.有一天,某一珠宝店被盗走了一块贵重的钻石。
经侦破,查明作案人肯定在甲、乙、丙、丁之中。
于是,对这四个重大嫌疑犯进行审讯。
审讯所得到的口供如下:甲:我不是作案的。
___:丁是罪犯。
丙:乙是盗窃这块钻石的罪犯。
___:作案的不是我。
经查实:这四个人的口供中只有一个是假的。
那么,以下哪项才是正确的破案结果?正确的破案结果是:(B) 乙作案。
改写:在四个嫌疑犯的口供中,只有一个是假的,而乙嫌疑犯说丁是罪犯,因此乙是作案人。
4.古代一位国王和他的___、___、___、___、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。
打猎中,一只鹿中箭倒下,但不知是何人所射。
___说:"或者是我射中的,或者是___射中的。
"___:"不是___射中的。
"___:"如果不是___射中的,那么一定是王将军射中的。
"___:"既不是我射中的,也不是___射中的。
"钱说:"既不是___射中的,也不是___射中的。
"国王让人把射中鹿的箭拿来,看了看,说:"你们五位将军的猜测,只有两个人的话是真的。
"正确的结论是:(A) ___射中此鹿。
小学奥数逻辑推理练习题及答案
小学奥数逻辑推理练习题及答案1. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:蓝色、黄色和红色的旗帜分别代表国家A、B和C,以下是三个旗帜的信息:- A国的旗帜不是蓝色。
- B国的旗帜不是黄色。
- C国的旗帜不是红色。
结论:根据以上信息,以下结论正确的是:A. A国的旗帜是黄色。
B. B国的旗帜是蓝色。
C. C国的旗帜是红色。
D. A国的旗帜是蓝色。
答案:B. B国的旗帜是蓝色。
2. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:五位老师正在一起讨论他们教的学科和身高的关系,以下是一些信息:- 老师A比老师B矮,但比老师C高。
- 老师D比老师C矮,但比老师E高。
结论:根据以上信息,以下结论正确的是:A. 老师B比老师E矮。
B. 老师A比老师D矮。
C. 老师C比老师B高。
D. 老师A比老师C高。
答案:C. 老师C比老师B高。
3. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:请根据下面的数字序列推断下一个数字:1, 4, 9, 16, 25, __结论:根据以上数字序列,下一个数字应该是:A. 30B. 36C. 42D. 49答案:B. 364. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:小明、小红、小李和小刚四人排成一排,以下是一些信息: - 小明在小李的左边。
- 小红在小刚的右边。
结论:根据以上信息,以下结论正确的是:A. 小刚在小红的左边。
B. 小红在小李的右边。
C. 小明在小刚的左边。
D. 小红在小明的左边。
答案:C. 小明在小刚的左边。
5. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:请根据下面的图形选择正确的图形以继续图形序列:图形序列:△, ▢, ◯, __结论:根据以上图形序列,以继续序列的正确图形是:A. △B. ▢C. ◯D. ■答案:D. ■通过以上五个小学奥数逻辑推理练习题及答案的讲解,我们可以锻炼孩子们的逻辑思维和推理能力。
这些题目涵盖了不同类型的逻辑推理问题,包括旗帜推理、身高排列、数字序列推断、人物排列和图形推理。
小学生奥数逻辑推理练习题5篇
【导语】逻辑思维是指将思维内容联结、组织在⼀起的⽅式或形式。
思维是以概念、范畴为⼯具去反映认识对象的。
以下是⽆忧考整理的《⼩学⽣奥数逻辑推理练习题5篇》相关资料,希望帮助到您。
1.⼩学⽣奥数逻辑推理练习题 1.有五个⼈各说了⼀句话。
第⼀个⼈说:“我们中间每个⼈都说谎”。
第⼆个⼈说:“我们中间只有⼀个⼈说谎”。
第三个⼈说:“我们中间有两个⼈说谎”。
第四个⼈说:“我们中间有三个⼈说谎”。
第五个⼈说:“我们中间有四个⼈说谎”。
请问,他们谁说谎话,谁说真话? 2.某地质学院的三名学⽣对⼀种矿⽯进⾏分析。
甲判断:不是铁,不是铜。
⼄判断:不是铁,不是锡。
丙判断:不是锡,⽽是铁。
经化验证明,有⼀个⼈判断完全正确,有⼀个⼈只说对了⼀半,⽽另⼀个则完全说错了。
你知道三⼈中谁是对的,谁是错的,谁是只对了⼀半的吗? 2.⼩学⽣奥数逻辑推理练习题 1.五个旅游者在海滨交谈。
甲:“我从A城来,⼄A城来,丙从B城来”。
⼄:“我从C城来,戊从C城来,丙从B城来”。
丙:“我不从B城来,甲不从D城来,丁从E城来”。
丁:“我⽗亲从A城来,我母亲从D城来,我从F城来”。
戊:“甲从A城来,⼄从A城来,我从F城来”。
如果他们每⼈都说了两句真话,⼀句假话,你能判断每⼀个⼈各来⾃哪个城市吗? 2.在⼀次有3⼈参加的讲话中,⼩张指责⼩王和⼩李:“你们都在说谎。
”⼩李却说:“⼩张正在说谎。
”⼩王则说:“⼩李正在说谎。
”试判断他们谁讲的是真话,谁讲的是假话? 前⼋名,⽼师让他们猜⼀下谁是第⼀名。
A:“或者F是第⼀名,或者H是第⼀名。
” B:“我是第⼀名。
” C:“G是第⼀名。
” D:“B不是第⼀名。
” E:“A说的不对。
” F:“我不是第⼀名,H也不是第⼀名”。
G:“C不是第⼀名。
” H:“我同意A的意见。
” ⽼师指出,⼋⼈中有三⼈猜对了,那么谁是第⼀名?3.⼩学⽣奥数逻辑推理练习题 1.A、B、C、D、E、F六年⾜球队进⾏⽐赛,每队都已赛过三场。
一年级数学奥数之简单推理题
一年级数学奥数之简单推理题图形算式姓名()一、每种水果都表示一个数,你能知道这个数是几吗?— 6 = 15 =12 — = 8 =+ 12 = 35 =25 — = 11 =二、每个图形代表一个数,你能算出这个数是多少吗??( 1 ) △一7=5o+△=17 ( 2 )☆+☆=12 ☆一△=6 △=( ) o=( ) ☆=( ) △=( )(3 )△一4=11 o+△=16 ( 4 )☆+☆=24 ☆一△=6 △=( ) o=( ) ☆=( ) △=( )(5)5+o=12 △+o=10 ( 6 ) o 一☆=5 12一☆=8 o=( ) △=( ) o =( ) ☆=( )( 7 )5+o=12 △+o=10 ( 8 ) o 一☆=5 12一☆=8 o=( ) △=( ) o =( ) ☆=( )(9 )△+△=18 △=( ) (10)口+口+△+△=14 ☆+ o =13 o =( ) △+△+口=10△+ o =15 ☆=( ) △=( ) 口=( )三、每个图形代表一个数,你能算出这个数是多少吗?(1 )△+□=9 ○-△=1 △+△+△=9△=()□=()○=()(2 )△+ ○= 12 ○+ ☆= 8 △+ ○+ ☆= 21 △=( ) ○= ( ) ☆=( )(3 )你+ 我= 7 你+ 他= 18 你+ 我+ 他= 24 你= ()我= ()他= ()(4 )○+□=10,□+△=12,○+□+△=15。
○=(),□=(),△=()。
(5 )△+○=9 △+△+○+○+○=25△=()○=()四、每个图形代表一个数,你能算出这个数是多少吗?(1)△+△+△+△=28 △=()△+△+□=20 □=()(2)○+○+○=6 ○=()△+△+△=12 △=()(3)△-○=1 △=()△+△-○=9 ○=()△+○-□=10 □=()二、下图中每种水果各代表一个数,算一算,它们各代表几?+= 7+= 10+= 9=()=()=()已知:☆+☆+☆=6,△+△+△+△=20,则△-☆=( )已知:△+○=14 △-○=2 则△=( ) ○=( )已知:▲=●+●+●,▲+●=12,则●=(),▲=()已知:△+ ○= 5 ○+ ☆= 9 △+ ○+ ☆= 13△=( ) ○= ( ) ☆=( )七、张老师把红、白、蓝各一个气球分别送给三位小朋友。
小学奥数-逻辑推理(经典)
逻辑推理★挑战锦囊★解答逻辑问题常用的方法有:直推法:先从一个条件出发,逐步往下推理,直到推出结论为止;假设法:先从一个假设,然后利用条件进行推理。
若得出矛盾结论,说明作为假设的前提不成立,而与假设相反的判断便是正确的。
★基础挑战一甲、乙、丙、丁坐在同一排的1至4号座位上,小红看着他们说:“甲的两边的人不是乙,丙两边的人不是丁,甲的座位号比丙大。
”那么,坐在1号位置上的是谁?分析:根据“甲的两边的人不是乙,丙两边的人不是丁” ,可以推断出甲与丙是坐在位于中间的2号、3 号座位上,再根据:“甲的座位号比丙大”,即可解答。
挑战自己,我能行练习1 甲、乙、丙、丁、戊五个人坐在同一排5个相邻的座位上看电影,已知甲坐在离乙、丙距离相等的座位上,丁坐在离甲、丙距离相等的座位上,戊的左右两侧的邻座上分别坐着她的两个姐姐,则____________________________________________ 和____________ 是戊的姐姐。
(第八届1试)★基础挑战二有A B C、D E五位选手参加比赛,四位同学作如下预测:①:E将得第三,A将得第四;②:A将得第三,B将得第一;③:B将得第四,E将得第二;④:D将得第一,C将得第三。
结果这几位同学所作的两句预测都只有一句是正确的。
分析:可用假设法解题,先假设第一位同学的第一句是对的,贝U第二句为错,接着往后推,发现矛盾,假设不成立;假设第一位同学的第一句是错的,第二句为对,往下推,得出结论。
练习2:甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名甲:“第一名是D,第五名是E。
”乙:“第二名是A第四名是G丙:“第三名是D,第四名是A丁:“第一名是C,第三名是B。
”戊:“第二名是C,第四名是B。
”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是_________________________ 。
(第九届1试)★目标挑战三某年的10月里有5个星期六,4个星期日。
奥数部分—简单的逻辑推理及习题答案全解
奥数部分—简单的逻辑推理及习题答案全解奥数部分——简单的逻辑推理1、A、B、C、D四人,已知B不是最高的,但他比A、D高,而A不比D高,请把他们按高矮排列。
2、甲、乙、丙、XXX四人同时参加了读书竞赛,赛后他们各自预测名次,甲说:“丙第一名,我第三名。
”乙说:“我第一名,XXX第四名。
”丙说:“丁第二名,我第三名。
”丁没说话。
最后成绩公布时,发现他们的预测都只对了一半。
那么,这次竞赛他们的名次分别是什么?3、有一次上课坐在一个小组的三个人中有人讲话,XXX 指责XXX和XXX:“你们都在说谎。
”XXX却说:“XXX正在说谎。
”XXX则说:“XXX正在说谎。
”他们中只有1个人讲的是真话,试问:谁讲的是真话,谁讲的是假话?4、甲、乙、丙、XXX同学的校服上印有不同的号码。
XXX说:甲是2号,乙是3号。
XXX说:丙是2号,乙是4号。
XXX说:丁是2号,丙是3号。
XXX说:丁是1号,乙是3号。
已知XXX、钱、XXX、XXX每人都说对了一半,那么丙是几号?5、甲、乙、丙三人对XXX的藏书数目作了一个估计,甲说:他至少有1000本书。
XXX说:他的书不到1000本。
丙说:他最少有1本书。
这三个人的估计中只有一句是对的。
XXX究竟有多少本书?6、XXX、XXX、XXX、XXX四个同学,有一个同学在英语竞赛中获奖,其余同学问他们谁是获奖者,XXX说:我不是,XXX说:是XXX,XXX说:是XXX,XXX说:不是我。
他们当中只有一个人没有说真话,那么获奖者是谁?7、有三逻辑学生在看1、2、3号活动员举行“羽毛球冠军争夺赛。
”赛前,关于谁会得“冠军”称号,三逻辑学生都说了两句话:甲说:不是2号,是3号。
乙说:不是2号,是1号。
丙说:不是3号,是2号。
竞赛结果表明,他们的话有一人全对,有一人对一半错一半,另一人全错。
请你想一想,冠军是谁?8、有三位老师比年龄,他们每人说的3句话中有2句是对的,请你分析一下他们各有多少岁?XXX:我22岁,比XXX小2岁,比小XXX1岁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数简单逻辑推理练习
一、填空题
1、甲、乙、丙三名教师分别来自北京、上海、广州,分别教数学、语文和英语。
已知(1)甲不是北京人,乙不是上海人;(2)北京的教师不教英语;(3)上海的教师教数学;(4)乙不教语文。
那么丙教。
2、三人的运动衫上印有不同的号码,孙说:“甲是1号,乙是3号”;李说:“乙是2号,丙是1号”;王说:“丙是3号,乙是1号”。
已知每人只说对一半,那么甲是号,乙是号,丙是号。
3、丁丁把两张纸片团起来握在手中,请甲、乙、丙三个小朋友猜哪只手里有纸片。
甲说:“左手没有,右手有。
”乙说:“右手没有,左手有。
”丙说:“不会两手都没有,我猜左手没有。
”丁说,三人中有一个全说错了,一人全说对了,一人对一半错一半,那么纸片在丁
丁的手里。
4、如右图有四个立方体,每个立方体的六个面上A、
B、C、D、E、F六个字母的排列顺序完全相同。
那么字母
A的对面是。
字母B的对面是。
字母C的对
面是。
5、四张扑克牌排成一排,四种花色都有,A、K、Q、J各一张。
(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,且与方块不相邻。
这四张牌分别是黑桃,红桃,方块,梅花。
6、甲、乙、丙三个班比赛足球和篮球,每个班得到的两项特别奖都不相同,甲班足球第一,乙班篮球第一,丙班的足球赢了乙班。
获得篮球第三的是班。
7、A、B、C、D四人进行围棋比赛,每人都在与其它三人各赛一盘。
比赛是在两张棋盘上同时进行的,每人每天只赛一盘。
第一天A 与C比赛,第二天C与D比赛,第三天B与比赛。
8、小刚在纸条上写了一个四位数,让小明猜,小明问:“是9876吗”小刚答:“猜对了一个数字,且位置正确。
”小明问:“是5432吗”小刚答:“猜对了3个数字,但位置都不正确。
”小明问:“是9374吗”小刚答:“1个数字对,且位置正确,另有2个数字对,但位置都不正确。
“小明问:“是3475吗”小刚答:“还是一个数字对且位置正确;另有2个数字对但位置都不正确。
”根据以上信息,小刚所写的四位数是。
二、解答题
1、甲、乙、丙、丁象棋比赛,决出了一、二、三、四名。
已知(1)甲比乙名次靠前;(2)丙丁经常在一起踢球;(3)第一、第三名以前不认识;(4)第二名不会骑车,也不爱踢球;(5)乙、丁每天一起骑车上班。
判断他们各自的名次。
2、A、B、C、D分别是中国、日本、美国和法国人,已知(1)A 和中国人是医生;(2)B和法国人是教师;(3)C和日本人职业不同;(4)D不会看病。
那么他们各是哪国人
3、一次测验共10道题,每题10分。
正确的画“√”,错误的画“×”。
甲、乙、丙、丁四人的解答及甲乙丙三人的得分如下,问丁的得分。