大学物理(下)期末复习题.doc

合集下载

大学物理期末试题及答案(很详细)

大学物理期末试题及答案(很详细)

大学物理期末试题及答案(很详细)一、大学物理期末选择题复习1.一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变答案B2.静电场中高斯面上各点的电场强度是由:( )(A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的(C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的答案C3.静电场中高斯面上各点的电场强度是由:( )(A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的(C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的答案C4.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: ( )(A) 00,4QE U rπε== (B) 00,4Q E U Rπε== (C) 200,44QQ E U r r πεπε==(D)200,44QQ E U r R πεπε==答案B5.一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2答案D6. 一个质点在做圆周运动时,则有( )(A )切向加速度一定改变,法向加速度也改变(B )切向加速度可能不变,法向加速度一定改变(C )切向加速度可能不变,法向加速度不变(D )切向加速度一定改变,法向加速度不变 答案 B7. 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( )(A gR μ (B gR μ (C gR μ (D )还应由汽车的质量m 决定答案 C8. 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L 以及圆盘的角速度ω则有( )(A )L 不变,ω增大 (B )两者均不变(C )L 不变,ω减小 (D )两者均不确定答案 C9. 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的() (A )角动量守恒,动能守恒 (B )角动量守恒,机械能守恒(C )角动量不守恒,机械能守恒 (D )角动量不守恒,动量也不守恒(E )角动量守恒,动量也守恒答案 B10. 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。

《大学物理》期末考试复习题(振动与波)

《大学物理》期末考试复习题(振动与波)


(A) 2 ;
答案:(D)
(B)
m1 m2
2

(C)
m2 m1
2

(D) 2
m2 . m1
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为 ( )
(A)
2 2
A 2

(B)
2 2
A 2 ;
(C)
3 2
A 2

(D)
3 2
A 2

一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判
一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振 动总能量的
(A) 7/16 ; (B) 9/16 ; (C) 11/16 ; (D) 15/16 。 []
答案:(D)
第十章 波动
10-1 机械波的几个概念
10-2 平面简谐波的波函数
如图所示,有一平面简谐波沿 x 轴负方向传播,
断下列情况正确的是
(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;
(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;
(C)两种情况都作简谐振动;
(D)两种情况都不作简谐振动。
[]
竖直放置 放在光滑斜面上
答案:(C)
同一弹簧振子悬挂相同的质量,分别按如图(a)、(b)、(c)所示的三种方式放置,摩擦力都
(A) 曲线 3,1,2 分别表示 x,v,a 曲线; (B) 曲线 2,1,3 分别表示 x,v,a 曲线; (C) 曲线 1,2,3 分别表示 x,v,a 曲线; (D) 曲线 2,3,1 分别表示 x,v,a 曲线.

大学物理(下)期末复习

大学物理(下)期末复习

大学物理下归纳总结电学基本要求:1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。

2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。

3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。

主要公式: 一、 电场强度1计算场强的方法(3种)1、点电荷场的场强及叠加原理点电荷系场强:∑=i i i r rQ E 304πε 连续带电体场强:⎰=Q r dQr E 34πε(五步走积分法)(建立坐标系、取电荷元、写E d、分解、积分)2、静电场高斯定理:物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。

对称性带电体场强:3、利用电场和电势关系:x E xU=∂∂-二、电势电势及定义:1.电场力做功:⎰⋅=∆=210l l l d E q U q A2.物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。

3.电势:)0(00=⋅=⎰p p aa U l d E U ;电势差:⎰⋅=∆B AAB l d E U电势的计算:1.点电荷场的电势及叠加原理点电荷系电势:∑=iiir Q U 04πε(四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法⎰⎰⋅=⋅=lv pdr E l d E V 0三、静电场中的导体及电介质1. 弄清静电平衡条件及静电平衡下导体的性质2. 了解电介质极化机理,及描述极化的物理量—电极化强度P , 会用介质中的高斯定理,求对称或分区均匀问题中的,,D E P 及界面处的束缚电荷面密度σ。

3. 会按电容的定义式计算电容。

磁学 恒定磁场(非保守力场)基本要求:1.熟悉毕奥-萨伐尔定律的应用,会用右手螺旋法则求磁感应强度方向;3.掌握描述磁场的两个重要定理:高斯定理和安培环路定理(公式内容及物理意义);并会用环路定理计算规则电流的磁感应强度; 3.会求解载流导线在磁场中所受安培力;4.理解介质的磁化机理,会用介质中的环路定律计算H 及B.主要公式:1.毕奥-萨伐尔定律表达式1)有限长载流直导线,垂直距离r (其中。

大学物理期末复习题及答案

大学物理期末复习题及答案

j i r )()(t y t x +=大学物理期末复习题力学局部一、填空题:,则质点的速度为,加速度为。

2.一质点作直线运动,其运动方程为221)s m 1()s m 2(m 2t t x --⋅-⋅+=,则从0=t 到s 4=t 时间间隔内质点的位移大小质点的路程。

3.设质点沿x 轴作直线运动,加速度t a )s m 2(3-⋅=,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度,和位置。

4.一物体在外力作用下由静止沿直线开场运动。

第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为。

5.一质点作斜上抛运动〔忽略空气阻力〕。

质点在运动过程中,切向加速度是,法向加速度是 ,合加速度是。

〔填变化的或不变的〕6.质量m =40 kg 的箱子放在卡车的车厢底板上,箱子与底板之间的静摩擦系数为s =,滑动摩擦系数为k =,试分别写出在以下情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.7.有一单摆,在小球摆动过程中,小球的动量;小球与地球组成的系统机械能;小球对细绳悬点的角动量〔不计空气阻力〕.〔填守恒或不守恒〕二、单项选择题:1.以下说法中哪一个是正确的〔〕〔A 〕加速度恒定不变时,质点运动方向也不变 〔B 〕平均速率等于平均速度的大小 〔C 〕当物体的速度为零时,其加速度必为零 〔D 〕质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。

2.质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+⋅-⋅=--t t x ,则前s 3内它的〔〕 〔A 〕位移和路程都是m 3 〔B 〕位移和路程都是-m 3 〔C 〕位移为-m 3,路程为m 3〔D 〕位移为-m 3,路程为m 53. 以下哪一种说法是正确的〔〕〔A 〕运动物体加速度越大,速度越快〔B 〕作直线运动的物体,加速度越来越小,速度也越来越小〔C 〕切向加速度为正值时,质点运动加快〔D 〕法向加速度越大,质点运动的法向速度变化越快4.一质点在平面上运动,质点的位置矢量的表示式为j i r 22bt at +=〔其中a 、b 为常量〕,则该质点作〔〕〔A 〕匀速直线运动 〔B 〕变速直线运动〔C 〕抛物线运动〔D 〕一般曲线运动5. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它〔 〕 〔A 〕将受到重力,绳的拉力和向心力的作用〔B 〕将受到重力,绳的拉力和离心力的作用〔C 〕绳子的拉力可能为零〔D 〕小球可能处于受力平衡状态6.功的概念有以下几种说法〔1〕保守力作功时,系统内相应的势能增加〔2〕质点运动经一闭合路径,保守力对质点作的功为零〔3〕作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零以上论述中,哪些是正确的〔〕〔A 〕〔1〕〔2〕〔B 〕〔2〕〔3〕〔C 〕只有〔2〕〔D 〕只有〔3〕7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为〔〕〔A 〕2E R mm G ⋅〔B 〕2121E R R R R m Gm -〔C 〕2121E R R R m Gm -〔D 〕222121E R R R R m Gm --8.以下说法中哪个或哪些是正确的〔〕〔1〕作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。

大学物理期末复习题(内含答案)

大学物理期末复习题(内含答案)

第1章 质点运动学1 下面各种判断中, 错误的是A. 质点作直线运动时, 加速度的方向和运动方向总是一致的B.质点作匀速率圆周运动时, 加速度的方向总是指向圆心C . 质点作斜抛运动时, 加速度的方向恒定D . 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边[ ]答案:A难易程度:中答案解析:无题型:单选题2. 质点作圆周运动时,下列说表述中正确的是( )A. 速度方向一定指向切向,加速度方向一定指向圆心B. 速度方向一定指向切向,加速度方向也一般指向切向C. 由于法向分速度为零,所以法向加速度也一定为零D. 切向加速度仅由速率的变化引起答案:D难易程度:中答案解析:无题型:单选题3 有两个各自作匀变速运动的物体, 在相同的时间间隔内所发生的位移大小应有A. 加速度大的位移大B. 路程长的位移大C.平均速率大的位移大D. 平均速度大的位移大[ ]答案:D难易程度:中答案解析:无题型:单选题4 质点作曲线运动, r 表示位置矢量的大小, s 表示路程, a 表示加速度大小, 则下列各式中正确的是 A. a t =d d v B. v =t r d d C. v =t s d d D. a t=d d v [ ] 答案:C难易程度:中答案解析:无题型:单选题5. 关于加速度的物理意义, 下列说法正确的是A. 加速度是描述物体运动快慢的物理量B. 加速度是描述物体位移变化率的物理量C. 加速度是描述物体速度变化的物理量D. 加速度是描述物体速度变化率的物理量 [ ]答案:D难易程度:中答案解析:无题型:单选题5 作匀变速圆周运动的物体A.法向加速度大小不变B. 切向加速度大小不变C. 总加速度大小不变D. 以上说法都不对[ ]答案:B难易程度:中答案解析:无题型:单选题7 作圆周运动的物体A. 加速度的方向必指向圆心B.切向加速度必定等于零C. 法向加速度必定等于零D.总加速度必定不总等于零[ ]答案:D难易程度:中答案解析:无题型:单选题8 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r22+=(其中a 、b 为常量) , 则该质点作A. 匀速直线运动B. 变速直线运动C. 抛物曲线运动D.一般曲线运动[ ]答案:B难易程度:中答案解析:无题型:单选题9 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin , R t R y +=ωcos ,式中R 、ω均为常数.当y 达到最大值时该质点的速度为A .0,0==y x v v B. 0,2==y x R v v ωC . ωR y x −==v v ,0 D. ωωR R y x −==v v ,2[ ]答案:B难易程度:难答案解析:无题型:单选题10某物体的运动规律为t k t2d d v v −=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是 A. 0221v v +=t k B. 0221v v +−=t k C. 02121v v +=t k D. 02121v v +−=t k [ ] 答案:C难易程度:难答案解析:无题型:单选题11 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )答案:D难易程度:中答案解析:无题型:单选题12 物体不能出现下述哪种情况?A.运动中, 瞬时速率和平均速率恒相等B. 运动中, 加速度不变, 速度时刻变化C. 曲线运动中, 加速度越来越大, 曲率半径总不变D. 曲线运动中, 加速度不变, 速率也不变[ ]答案:D难易程度:中答案解析:无题型:单选题13.下列说法中,哪一个是正确的?A. 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程.B. 斜向上抛的物体,在最高点处的速度最小,加速度最大.C. 物体作曲线运动时,有可能在某时刻的法向加速度为零.D.物体加速度越大,则速度越大. [ ]答案:C难易程度:中答案解析:无题型:单选题第2章牛顿运动定律一、选择题1.牛顿第一定律告诉我们A 物体受力后才能运动B 物体不受力也能保持本身的运动状态C 物体的运动状态不变, 则一定不受力D 物体的运动方向必定和受力方向一致[ ]答案:B难易程度:中答案解析:无题型:单选题2. 下列说法中正确的是A. 运动的物体有惯性, 静止的物体没有惯性B. 物体不受外力作用时, 必定静止C. 物体作圆周运动时, 合外力不可能是恒量D. 牛顿运动定律只适用于低速、微观物体[ ] 答案:C难易程度:中答案解析:无题型:单选题3. 下列诸说法中, 正确的是A.物体的运动速度等于零时, 合外力一定等于零B. 物体的速度愈大, 则所受合外力也愈大C.物体所受合外力的方向必定与物体运动速度方向一致D.以上三种说法都不对[ ]答案:D难易程度:中答案解析:无题型:单选题4. 一个物体受到几个力的作用, 则A. 运动状态一定改变B. 运动速率一定改变C.必定产生加速度D. 必定对另一些物体产生力的作用[ ]答案:D难易程度:中答案解析:无题型:单选题5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?A.质点沿着力的方向运动B.质点仍表现出惯性C.质点的速率变得越来越大D. 质点的速度将不会发生变化[ ]答案:B难易程度:中答案解析:无题型:单选题6. 一物体作匀速率曲线运动, 则A. 其所受合外力一定总为零B.其加速度一定总为零C.其法向加速度一定总为零D.其切向加速度一定总为零[ ]答案:D难易程度:中答案解析:无题型:单选题7. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点A. 比原来更远B. 比原来更近C. 仍和原来一样D.条件不足不能判定[ ]答案:A难易程度:中答案解析:无题型:单选题8用水平力F N把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N逐渐增大时,物体所受的静摩擦力F f的大小( )A.不为零,但保持不变B.随F N成正比地增大C . 开始随F N 增大,达到某一最大值后,就保持不变D . 无法确定答案:A难易程度:中答案解析:无题型:单选题 9. 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )A. 它的加速度方向永远指向圆心,其速率保持不变B.它受到的轨道的作用力的大小不断增加C. 它受到的合外力大小变化,方向永远指向圆心D.它受到的合外力大小不变,其速率不断增加答案:B难易程度:中答案解析:无题型:单选题第4章 振动与波动一、选择题1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是[ ]A. abx F =B. abx F −=C. b ax F +−=D. a bx F /−=答案:A难易程度:中答案解析:无题型:单选题2. 在下列所述的各种物体运动中, 可视为简谐振动的是[ ]A. 将木块投入水中, 完全浸没并潜入一定深度, 然后释放B. 将弹簧振子置于光滑斜面上, 让其振动C. 从光滑的半圆弧槽的边缘释放一个小滑块D. 拍皮球时球的运动答案:B难易程度:中答案解析:无题型:单选题3. 在简谐振动的运动方程中,振动相位)(ϕω+t 的物理意义是[ ]A.表征了简谐振子t 时刻所在的位置B. 表征了简谐振子t 时刻的振动状态C. 给出了简谐振子t 时刻加速度的方向D. 给出了简谐振子t 时刻所受回复力的方向答案:B难易程度:中答案解析:无题型:单选题4. 一质点作简谐振动, 振动方程为)cos(ϕω+=t A x . 则在2T t =(T 为振动周期) 时, 质点的速度为[ ]A.ϕωsin A −B.ϕωsin AC. ϕωcos A −D.ϕωcos A答案:B难易程度:中答案解析:无题型:单选题5. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为[ ] A.6T B. 8T C. 12T D. T 127 答案:C难易程度:中答案解析:无题型:单选题6. 某物体按余弦函数规律作简谐振动, 它的初相位为2π3, 则该物体振动的初始状态为[ ]A. x 0 = 0 , v 0 > 0B. x 0 = 0 , v 0<0C. x 0 = 0 , v 0 = 0D. x 0 = −A , v 0 = 0答案:A难易程度:中答案解析:无题型:单选题7. 一作简谐运动质点的振动方程为π)21π2cos(5+=t x , 它从计时开始, 在运动一个周期后[ ]A. 相位为零B. 速度为零C. 加速度为零D. 振动能量为零答案:C难易程度:中答案解析:无题型:单选题8. 当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为[ ]A.ν4B.ν2C. νD.2ν 答案:B难易程度:中答案解析:无题型:单选题9. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为[ ] A.2π B.3π2 C. 4π D. π 答案:B难易程度:中答案解析:无题型:单选题10. 谐振子作简谐振动时, 速度和加速度的方向[ ]A. 始终相同B. 始终相反C. 在某两个41周期内相同, 另外两个41周期内相反 D.在某两个21周期内相同, 另外两个21周期内相反 答案:C难易程度:中答案解析:无题型:单选题11. 关于振动和波, 下面几句叙述中正确的是[ ]A.有机械振动就一定有机械波B.机械波的频率与波源的振动频率相同C.机械波的波速与波源的振动速度相同D.机械波的波速与波源的振动速度总是不相等的答案:B难易程度:中答案解析:无题型:单选题12. 按照定义,振动状态在一个周期内传播的距离就是波长.下列计算波长的方法中错误的是[ ]A. 用波速除以波的频率B. 用振动状态传播过的距离除以这段距离内的波数C.测量相邻两个波峰的距离D.测量波线上相邻两个静止质点的距离答案:D难易程度:中答案解析:无题型:单选题13. 当x 为某一定值时, 波动方程)π(2cos λx T t A x −=所反映的物理意义是[ ] A. 表示出某时刻的波形B. 说明能量的传播C. 表示出x 处质点的振动规律D. 表示出各质点振动状态的分布答案:C难易程度:中答案解析:无题型:单选题14. 下列方程和文字所描述的运动中,哪一种运动是简谐振动? [ ]A.x A t =1cos ωB.x A t A t =+123cos cos ωωC.d d 2222x tx =−ω D.两个同方向、频率相近的谐振动的合成答案:A难易程度:中答案解析:无题型:单选题15. 下列函数f ( x , t )可以用来表示弹性介质的一维波动, 其中a 和b 是正常数.则下列函数中, 表示沿x 轴负方向传播的行波是[ ]A. )sin(),(bt ax A t x f +=B. )sin(),(bt ax A t x f −=C. )cos()cos(),(bt ax A t x f =D.)sin()sin(),(bt ax A t x f =答案:A难易程度:中答案解析:无题型:单选题16. 已知一波源位于x = 5 m 处, 其振动方程为: )cos(ϕω+=t A y (m).当这波源产生的平面简谐波以波速u 沿x 轴正向传播时, 其波动方程为[ ] A.)(cos ux t A y −=ω B. ])(cos[ϕω+−=ux t A y C.])5(cos[ϕω++−=ux t A y D.])5(cos[ϕω+−−=u x t A y 答案:D难易程度:中答案解析:无题型:单选题17. 已知一平面余弦波的波动方程为)01.05.2π(cos 2x t y −=, 式中 x 、y 均以cm 计.则在同一波线上, 离x = 5 cm 最近、且与 x = 5 cm 处质元振动相位相反的点的坐标为[ ]A.7.5 cmB. 55 cmC.105 cmD. 205 cm答案:C难易程度:中 答案解析:无 题型:单选题18. 若一平面简谐波的波动方程为)cos(cx bt A y −=, 式中A 、b 、c 为正值恒量.则[ ] A. 波速为cB.周期为b 1 C. 波长为c π2D.角频率为bπ2答案:C难易程度:中 答案解析:无 题型:单选题19. 一平面简谐横波沿着Ox 轴传播.若在Ox 轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ] A. 方向总是相同 B. 方向有时相同有时相反C.方向总是相反D. 大小总是不相等答案:B难易程度:中 答案解析:无 题型:单选题20. 一简谐波沿Ox 轴正方向传播,t =0时刻波形曲线如图所示,其周期为2 s .则P 点处质点的振动速度v 与时间t 的关系曲线为 [ ]AωsD ωsω−ω−s图 波形图难易程度:中 答案解析:无 题型:单选题静电场2. 将某电荷Q 分成q 和(Q −q )两部分, 并使两部分离开一定距离, 则它们之间的库仑力为最大的条件是 [ ] (A) 2Q q = (B) 4Qq = (C) 8Qq =(D) 16Qq =答案:A难易程度:易 答案解析:无 题型:单选题5. 关于静电场, 下列说法中正确的是[ ] (A) 电场和检验电荷同时存在, 同时消失(B) 由qF E =知, 电场强度与检验电荷电荷量成反比(C) 电场的存在与否与检验电荷无关(D) 电场是检验电荷与源电荷共同产生的 答案:C难易程度:易 答案解析:无 题型:单选题8. 关于电场强度, 以下说法中正确的是[ ] (A) 电场中某点场强的方向, 就是将点电荷放在该点所受电场力的方向 (B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同(C) 场强方向可由qFE =定出, 其中q 可正, 可负(D) 以上说法全不正确难易程度:易 答案解析:无 题型:单选题11. 在静电场中, 电场线为平行直线的区域内 [ ] (A) 电场相同, 电势不同(B) 电场不同, 电势相同(C) 电场不同, 电势不同(D) 电场相同, 电势相同 答案:A难易程度:易 答案解析:无 题型:单选题15、如图所示,一均匀带电球面, 面内电场强度处处为零, 则球面上的带电量为S d σ的电荷元在球面内产生的场强[ ] (A) 处处为零(B) 不一定为零(C) 一定不为零 (D) 是一常数答案:C难易程度:易 答案解析:无 题型:单选题18. 半径为R 的均匀带电球面, 若其面电荷密度为σ, 则在球面外距离球面R 处的电场强度大小为 [ ] (A)εσ(B)2εσ(C)04εσ(D)8εσ 答案:C难易程度:中 答案解析:无 题型:单选题24. 高斯定理0d ε∑⎰⎰=⋅isqS E, 说明静电场的性质是[ ] (A) 电场线是闭合曲线(B) 库仑力是保守力 (C) 静电场是有源场 (D) 静电场是保守场答案:C难易程度:易 答案解析:无 题型:单选题26. 电场中一高斯面S , 内有电荷q 1、q 2,S 面外有电荷q 3、q 4.关于高斯定理d ε∑⎰⎰=⋅isqS E , 正确的说法是[ ] (A) 积分号内E只是q 1、q 2共同激发的(B) 积分号内E是q 1、q 2、q 3、q 4共同激发的(C) 积分号内E只是q 3、q 4共同激发的(D) 以上说法都不对答案:B难易程度:中 答案解析:无 题型:单选题33. 将点电荷Q 从无限远处移到相距为2l 的点电荷+和-q 的中点处, 则电势能的增加量为[ ] (A) 0(B)l q0π4ε(C) l Qq 0π4ε(D) lQq0π2ε答案:A难易程度:中 答案解析:无题型:单选题35. 下面关于某点电势正负的陈述中, 正确的是 [ ] (A) 电势的正负决定于试探电荷的正负(B) 电势的正负决定于移动试探电荷时外力对试探电荷做功的正负(C) 空间某点电势的正负是不确定的, 可正可负, 决定于电势零点的选取 (D) 电势的正负决定于带电体的正负答案:C难易程度:易 答案解析:无 题型:单选题37. 由定义式⎰∞⋅=RR l E Ud 可知[ ] (A) 对于有限带电体, 电势零点只能选在无穷远处(B) 若选无限远处为电势零点, 则电场中各点的电势均为正值 (C) 已知空间R 点的E , 就可用此式算出R 点的电势(D) 已知R →∞积分路径上的场强分布, 便可由此计算出R 点的电势答案:D难易程度:中 答案解析:无 题型:单选题 D41. 两个点电荷相距一定距离, 若这两个点电荷连线的中垂线上电势为零, 则这两个点电荷的带电情况为[ ] (A) 电荷量相等, 符号相同 (B) 电荷量相等, 符号不同(C) 电荷量不同, 符号相同 (D) 电荷量不等, 符号不同答案:B难易程度:易 答案解析:无 题型:单选题44. 如图5-1-45所示,等边三角形的三个顶点上分别放置着均为正的点电荷q 、2 q 、和3 q , 三角形的边长为a , 若将正电荷Q 从无穷远处移至三角形的中心点处, 所需做的功为[ ] (A) aQq0π44.3ε(B) aQq0π7.1ε (C) aQq0π6.2ε (D) aQq0π4.3ε 答案:C难易程度:难 答案解析:无 题型:单选题48. 关于电场强度和电势的关系, 下列说法中正确的是 [ ] (A) 电势不变的空间, 电场强度一定为零 (B) 电势不变的空间, 电场强度不为零 (C) 电势为零处, 电场强度一定为零 (D) 电场强度为零处, 电势一定为零 答案:A难易程度:易 答案解析:无 题型:单选题52. 带电-q 的粒子在带电+q 的点电荷的静电力作用下在水平面内绕点电荷作半径为R 的匀速圆周运动. 如果带电粒子质量及点电荷的电量均增大一倍, 并使粒子的运动速率也增大一倍, 则粒子的运动半径将变为 [ ] (A) 4R(B)2R(C) 2R (D) 4R答案:A难易程度:中 答案解析:无 题型:单选题56. 边长为a 的正方体中心放置一电荷Q , 则通过任一个侧面S 的电通量⎰⎰⋅sS E d 为[ ] (A) 04εQ(B)6εQ(C)08 Q(D) 6Q答案:B难易程度:易 答案解析:无 题型:单选题第7章 恒定磁场一、选择题1. 磁场可以用下述哪一种说法来定义? (A) 只给电荷以作用力的物理量 (B) 只给运动电荷以作用力的物理量(C) 贮存有能量的空间(D) 能对运动电荷做功的物理量 答案:B难易程度:易 答案解析:无 题型:单选题2. 下列叙述中不能正确反映磁感应线性质的是 (A) 磁感应线是闭合曲线(B) 磁感应线上任一点的切线方向为运动电荷的受力方向 (C) 磁感应线与载流回路象环一样互相套连 (D) 磁感应线与电流的流向互相服从右手定则答案:B难易程度:中 答案解析:无 题型:单选题3. 一电荷放置在行驶的列车上, 相对于地面来说, 电荷产生电场和磁场的情况将是A) 只产生电场 (B) 只产生磁场 (C) 既产生电场, 又产生磁场(D) 既不产生电场, 又不产生磁场答案:C难易程度:中 答案解析:无 题型:单选题4. 通以稳恒电流的长直导线, 在其周围产生电场和磁场的情况将是 (A) 只产生电场 (B) 只产生磁场(C) 既产生电场, 又产生磁场(D) 既不产生电场, 又不产生磁场答案:C难易程度:中 答案解析:无 题型:单选题5. 磁场的高斯定理⎰⎰=⋅sS B 0d, 说明(A) 穿入闭合曲面的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数 (C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内答案:A难易程度:中 答案解析:无 题型:单选题 6. 下述情况中能用安培环路定律求磁感应强度的是 (A) 一段载流直导线 (B) 无限长直线电流(C) 一个环形电流(D) 任意形状的电流 答案:B难易程度:中 答案解析:无 题型:单选题7. 取一闭合积分回路L , 使三根载流导线穿过L 所围成的面,如图所示. 现改变三根导线之间的相互间隔, 但不越出积分回路, 则(A) 回路L 内的∑I 不变, L 上各点的B 不变(B) 回路L 内的∑I 不变, L 上各点的B 改变(C) 回路L 内的∑I 改变, L 上各点的B 不变(D) 回路L 内的∑I 改变, L 上各点的B 改变答案:B难易程度:中 答案解析:无 题型:单选题 8. 一无限长直圆柱体, 半径为R , 沿轴向均匀流有电流,如图所示.设圆柱体内(r <R )的磁感应强度大小为B 1, 圆柱体外( r >R )感应强度大小为B 2, 则有(A) B 1、B 2均与 r 成正比 (B) B 1、B 2均与 r 成反比(C) B 1与 r 成反比, B 2与 r 成正比2B •(D) B 1与r成正比, B 2与r成反比答案:D难易程度:中答案解析:无题型:单选题9. 运动电荷受洛伦兹力后, 其动能、动量的变化情况是(A) 动能守恒(B) 动量守恒(C) 动能、动量都守恒(D) 动能、动量都不守恒答案:A难易程度:中答案解析:无题型:单选题10. 如图所示,一个长直螺线管通有交流电, 把一个带负电的粒子沿螺线管的轴线射入管中, 粒子将在管中作(A) 圆周运动(B) 沿管轴来回运动(C) 螺旋线运动(D) 匀速直线运动答案:D难易程度:中答案解析:无题型:单选题11. 在均匀磁场中放置三个面积相等且通过相同电流的线圈: 一个是矩形, 一个是正方形, 另一个是三角形, 如图所示.下列叙述中正确的是(A) 正方形线圈受到的合磁力为零, 矩形线圈受到的合磁力最大(B) 三角形线圈受到的最大磁力矩为最小(C) 三线圈所受的合磁力和最大磁力矩均为零(D) 三线圈所受的最大磁力矩均相等答案:D难易程度:中答案解析:无B题型:单选题12. 两个电子同时由两电子枪射出, 它们的初速度与均匀磁场垂直, 速率分别为2v 和v , 经磁场偏转后(A) 第一个电子先回到出发点 (B) 第二个电子先回到出发点(C) 两个电子同时回到出发点 (D) 两个电子都不能回到出发点答案:C难易程度:中 答案解析:无 题型:单选题13. 电荷为(+q )的粒子以速度为v =0.01c 沿x 轴方向运动, 磁感应强度B的方向沿y轴.要使粒子不偏转需加一个什么样的电场? (A) E =B , 沿-y 方向 (B) E =B , 沿z 方向 (C) E =v B , 沿-z 方向 (D) E =v B , 沿z 方向答案:C难易程度:中 答案解析:无 题型:单选题14. 如图所示,在磁感应强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) a F >b F >c F (B) a F <b F <c F (C) b F >c F >a F(D) a F >c F >b F 答案:C难易程度:中 答案解析:无 题型:单选题15. 若用条形磁铁竖直插入木质圆环, 则在环中是否产生感应电流和感应电动势的判断是(A) 产生感应电动势, 也产生感应电流 (B) 产生感应电动势, 不产生感应电流 (C) 不产生感应电动势, 也不产生感应电流(D) 不产生感应电动势, 产生感应电流 答案:B难易程度:中 答案解析:无 题型:单选题第八章 光学测验题1. 如右图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r 。

大学物理期末复习题

大学物理期末复习题

一、选择题:1. 关于静电场中某点电势的正负,下列说法正确的是( )(A)电势值的正负取决于置于该点的试验电荷的正负;(B)电势值的正负取决于电场力对试验电荷做功的正负;(C)电势值的正负取决于电势零点的选择;(D)电势值的正负取决于产生电场的电荷的正负.2. A、B为某静电场中的两点,V,当把一电量为C的电荷由A点移到B点时,电场力做的功是J,则的大小为 ( )(A) 40V; (B) 60V; (C) -40V; (D) -60V.3.极板间为真空的平行板电容器,充电后与电源断开,将两极板用绝缘工具拉开一些距离,则下列说法正确的是( )(A)电容器极板上电荷面密度增加;(B)电容器极板间的电场强度增加;(C)电容器的电容不变;(D)电容器极板间的电势差增大.4.磁场的高斯定理说明了下面的哪些叙述是正确的?( )⑴穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;⑵穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;⑶一根磁感应线可以终止在闭合曲面内;⑷一根磁感应线可以完全处于闭合曲面内.(A)⑴⑷;(B)⑴⑶;(C)⑶⑷;(D)⑴⑵.5.如图2所示,两根长导线沿半径方向引到铁环上的A、B两点上,两导线的夹角为,环的半径R,将两根导线在很远处与电源相连,从而在导线中形成电流I,则环中心点的磁感应强度为( )图2ABIIO(A) 0;(B);(C);(D) .6.等边直角三角形导线ABC,绕AB轴以角速度ω匀速转动,外磁场均匀,磁感应强度大小为、方向平行AB,如图3所示,则转动过程中( )图3(A)ABC中无感应电流;(B)ABC中有感应电流;(C)AC导线段和BC导线段均无动生电动势;(D)无法判断.7.如图4所示,、是两个相干光源,它们到P点的距离分别为和,路径垂直穿过一块厚度为,折射率为的介质板,路径垂直穿过厚度为,折射率为的另一介质板,其余部分可看作真空,这两条路径的光程差等于( )s1s2t1t2n1n2r1r2P图4(A);(B);(C);(D).8.在杨氏双缝干涉实验中,若使用白光光源,则 ( )(A)由于白光为复色光,将不出现干涉条纹图样;(B)中央明纹为白色,两侧由内向外对称地分布着由紫到红的彩色条纹;(C)中央明纹为白色,两侧由内向外对称地分布着由红到紫的彩色条纹;(D)中央明纹为白色,两侧由内向外对称地分布着黑白相间的干涉条纹.9.从一狭缝透出的单色光经过两个平行狭缝而照射到120cm远的幕上,若此两狭缝相距为0.20mm,幕上所产生干涉条纹中两相邻亮线间距离为3.60mm,则此单色光的波长以mm为单位,其数值为( )(A);(B);(C);(D).10.在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射到宽度为b=6的单缝上,屏上第三级暗纹对应于衍射角为( )(A) 60o;(B) 45o;(C) 30o;(D)75o.11.对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该( )(A)换一个光栅常数较小的光栅;(B)换一个光栅常数较大的光栅;(C)将光栅向靠近屏幕的方向移动;(D)将光栅向远离屏幕的方向移动.12.光强为I0的自然光依次通过两个偏振片P1 和P2。

大学物理期末复习习题-电磁学.docx

大学物理期末复习习题-电磁学.docx

电磁学:(20学时,44题)弟一早1.两个点电荷分別带电q和2g,相距/,试问将第三个点电荷方在何处它所受的合力为零?2.两个带电都是q的点电荷,相距/,连线中点为O;现将另一点电荷Q放置在连线中垂面上距O点x处。

(1)试求点电荷Q所受的力;(2)若点电荷Q开始是静止的,然后让它自由运动,试问它将如何运动?分别就0和g同号以及异号两种情况加以讨论。

3.如图,把电偶极矩为p二/的电偶极子放在点电荷Q的电场中,电偶极子的中心O 到Q的距离为r,设「》1。

试求:p//QO(图(a))和卩丄QO (图(b))时电偶极子所受的力和力矩。

% ----- 丄。

2_ ----- ,H --- -- 1 H ----- r-- H<•>(b)第3题4.如图为一种电四极子,它由两个相同的电偶极子卩二"组成,这两个电偶极子在同一直线上,但方向相反,他们的负电荷重合在一起。

试证明在它们的延长线上离中心(即负电荷所在处)厂出卩点的场强为E = ^—(当厂>>/时),式中的Q = 2ql24码厂叫做电四极矩。

卄一为p•••具T -----------第4题5.半径为/?的半球面上均匀带电,电荷面密度为(7。

试求面心处的电场强度。

6.一无限大均匀带电平面,电荷的面密度为(T,其上挖去一半径为R的圆洞。

试求洞的轴线上离洞心为厂处的电场强度。

7.如图,电荷分布在内半径为d外半径为b的球壳体内,电荷体密度为p = A/r f式中4是常数,厂是壳体内某一点到球心的距离。

今在球心放一个点电荷Q,为使球壳体内各处电场强度的大小都相等试求4的值。

第7题8.如图为一无限长带电体系,其横截面由两个半径分别为&和R2的圆相交而成,两圆中心相距为a, a<(R1+R2),半径为&的区域内充满电荷体密度为p的均匀正电荷,半径为R2的区域内充满电荷体密度为-P的均匀负电荷,试求重叠区域内的电场强度。

大学物理期末考试复习

大学物理期末考试复习

O
7.如图,导体棒AB在均匀磁场B中绕通过C点的垂 直于棒长且沿磁场方向的轴 OO’转动(角速度 与 B同 方向),BC的长度为棒长的1/3,则 (A) A点比B点电势高. (B) A点与B点电势相等. (C) A点比B点电势低. (D) 有稳恒电流从A点流向B点.
边缘电势高于转轴所在 B F
e = Bl2/2
2、一运动电荷q,质量为m,进入均匀磁场中
(A) 其动能改变,动量不变. (C) 其动能不变,动量改变. (B) 其动能和动量都改变. (D) 其动能、动量都不变.
2
在均匀磁场中,有两个平面线圈,其面积 A1 =
2A2,通有电流 I1 = 2I2,它们所受到的最大磁力矩之比
M1 / M2等于
(A)1 (B)2 (C)4 (D)2 x y z (ct )
18、边长为a的的正方形薄板静止于惯性系K的XOY平 面内,且两边分别与X、Y轴平行,今有惯性系K’ 以0.8C(C为真空中光速)的速度相对于K系沿X轴 作匀速直线运动,则K’测得薄板面积: (A)a2;(B)0.6a2 ;(C)0.8a2 ;(D)a2/0.6 . 答案: 解释: a ' l
答案: 解释:
2
C 2 1 k (B) k C 2 k ( k 2) (D) k 1
2
即:
mc km0c m0 km0 2 2 1 v / c
m km0
解之得:
C 2 v k 1 k
二、填空题 1 .一质点带有电荷q,以速度u在半径为R的圆周 上作匀速圆周运动,该带电质点在轨道中心产生 2 u q / 4 R 的磁感应强度B = ;该带电质点轨道 运动的磁矩Pm= IS u qR / 2 。

大学物理 期末复习重点考题

大学物理 期末复习重点考题

8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强介质外)(2R r <场强0π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势r QE U 0rπ4r d ε=⋅=⎰∞ 外介质内)(21R r R <<电势2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε (3)金属球的电势rd r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=220π44πdrR R R r r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题8-28图所示,充满电介质部分场强为2E,真空部分场强为1E 自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D 101E D ε=,202E D r εε=d21U E E == r D D εσσ==1212(必考)3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解: 2220153,1513βββ-=-=-=='则l l cc v 542591=-=10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s-1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=A D I vb vBb l B v d 2d )(01πμεBC产生电动势)(π2d )(02d a I vbl B v C B+-=⋅⨯=⎰με∴回路中总感应电动势821106.1)11(π2-⨯=+-=+=ad d Ibv μεεεv方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B 中,B的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解:⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ即沿abcd 方向顺时针方向. 题10-8图题2-28图如图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求:(1)初始时刻的角加速度;(2)杆转过θ角时的角速度. 解: (1)由转动定律,有 β)31(212ml mg =l g 23=β(2)由机械能守恒定律,有22)31(21sin 2ωθml l mg=lg θωsin 3=12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d=0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少?(3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即dL =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m (3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆l LN 条2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有 0)(=-=bt a F ,得b a t =(2)子弹所受的冲量 ⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==题2-19图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度. 解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2-27 计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50 kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ①a m T 11=②对滑轮运用转动定律,有β)21(212Mr r T r T =-③又,βr a = ④联立以上4个方程,得2212s m 6.7220058.92002-⋅=++⨯=++=m m g m a3-18 μ子静止质量是电子静止质量的207倍,静止时的平均寿命0τ=2×10-6s ,若它在实验室参考系中的平均寿命τ= 7×10-6s ,试问其质量是电子静止质量的多少倍?解: 设μ子静止质量为0m ,相对实验室参考系的速度为c v β=,相应质量为m ,电子静止质量为e m 0,因2711,10220==--=ττββττ即由质速关系,在实验室参考系中质量为:202012071ββ-=-=e m m m 故72527207120720=⨯=-=βe m mrd r d⋅+⋅=⎰⎰∞∞r rE E U 外内303π4,π4r rQ E r r Q D r εε ==内klvttm -=-=d d Φε()M m MgRv +=2。

大学物理(下)期末复习题

大学物理(下)期末复习题

大学物理(下)期末复习题一、填空题1、 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, 位置势能与动能相等。

2.有一平面简谐波沿x 轴正方向传播,波速为6s m /,已知在0=x 处的质点的振动方程为))(23cos(1.0m t y ππ-=,则波动方程为 ;质点在x 轴上m x 3-=处的振动方程为 ,m x 3-=处的振动加速度为 。

3.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =______,波速u =________,波长λ = 。

4. 一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为________________。

5. 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________。

6. 如图所示,两个直径微小差别的彼此平行的滚珠之间的距离,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。

如果两滚珠之间的距离L 变大,则在L 范围内干涉条纹的数目 ,条纹间距 (填变化情况)。

7. 如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,若薄膜厚度为e ,而且321n n n >>,则两束透射光的位相差为 。

8. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长 。

9.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为 个半波带,沿第三级暗纹的衍射方向狭缝可分为 个半波带,若用波长为λ的单色光照射时沿衍射角为θ方向,宽度为b 的单缝可分为 个半波带。

大学物理期末考试复习题

大学物理期末考试复习题

1.一质点作直线运动,某时刻的瞬时速度2/v m s =,瞬时加速度22/a m s =-,则1秒后质点的速度( D )(A)等于零 (B)等于2/m s - (C)等于2/m s (D)不能确定2.一质点沿半径为R 的圆周做匀速率运动,每t 时间转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为( B )(A)2R t π,2R t π (B)O, 2R t π (C)0,0 (D)2R tπ,0 3.如下图,湖中有一小船,有人用绳绕过岸上肯定高度处的定滑轮拉湖中的船向岸边运动。

设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( c )(A)匀加速运动,0cos v v θ=(B)匀减速运动,0cos v v θ= (C)变加速运动,0cos v v θ= (D)变减速运动,0cos v v θ= (E)匀速直线运动,0v v =4. 以下五种运动形式中,a保持不变的运动是( D )(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.5. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( C )(A) (B) (C) (D1.一物体作如下图的斜抛运动,测得在轨道P点处速度大小为v ,其方向与水平方向成30°角。

则物体在P点的切向加速度a τ= -0.5g ,轨道的曲率半径ρ=2v²/√3g 。

2. 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走,如人相对于岸静止,则1V 、2V 和3V 的关系是:v1+v2+v3=0____。

3.加速度矢量可分解为法向加速度和切向加速度两个重量,对匀速圆周运动,_切_向加速度为零,总的加速度等于_法向加速度。

1.如下图,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物aC A BaC A B a C A B a C A B体刚好不会被雨水淋. 解:雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ,因此v 1 = v 2sin θ + v 2cos θsin α/cos α,即 12(sin cos )l v v h θθ=+.2.质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点加速度的大小;(2)t 为何值时,加速度在数值上等于b .解:(1)bt v ts v -==0d d 则 240222)(Rbt v b a a a n -+=+=τ (2)由题意应有 2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b ∴当bv t 0=时,b a = 二章 1.一个质量为m 的物体以初速度0v 从地面斜向上抛出,抛射角为θ,假设不计空气阻力,当物体落地时,其动量增量的大小和方向为( c )(A)增量为0, (B)θsin 20mv ,竖直向上;(C)θsin 20mv ,竖直向下; (D)θcos 20mv ,水平;2. 质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如下图.当它由静止开始下滑到球面上B 点时,它的加速度的大小为( d )(A))cos 1(2θ-=g a (B)θsin g a = (C)g a =(D)θθ2222sin )cos 1(4g g a +-=.3.有两个倾角不同,高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则(d )(A)物块到达斜面底端时的动量相 (B)物块到达斜面底端时的动能相等 (C)物块和斜面(以及地球)组成的系统,机械能不守恒(D)物块和斜面组成的系统水平方向上动量守恒.4. 一炮弹由于特别原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计) ( a )(A) 比原来更远 (B) 比原来更近(C) 仍和原来一样远 (D) 条件缺乏,不能判定.5. 水平公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车在转弯处不致于发生侧向打滑,汽车在该处行驶速率( b )(A)不得小于Rg μ (B)不得大于Rg μ (C)必须等于Rg μ (D)应由汽车质量决定1. 如下图,竖直放置的轻弹簧的倔强系数为k ,一质量为m 的物体从离弹簧h 高处自由下落,则物体的最大动能为kg m mgh 222+。

大学物理(64学时)期末复习及答案.docx

大学物理(64学时)期末复习及答案.docx

2016大学物理(64学时)期末复习复习一、刚体部分一、选择题1. ()两个匀质圆盘A 、B 的密度分别为和且Q A >Q B ,质量和厚度相同•两圆 盘的旋转轴均通过盘心并垂直于盘面,则它们的转动惯量的关系是: A 、J A <J B B 、J A =J B C 、J A >J B D 、不能判断2. () 一力矩肱作用于飞轮上,飞轮的角加速度为河,如撤去这一力矩,飞轮的角加速3. () A 与8是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,8球用橡皮筋拴着,把它们拉到水平位置,放手后两小球到达竖直位置时,绳子与橡皮筋长度相等,则6. 银河系有一可视为球体的天体,由于引力凝聚,体积不断收缩。

设它经过一万年体积收缩 了 1%,而质量保持不变.则它的自转周期将: A 、增大 B 、不变 C 、减小 D 、不能判断7. () 一子弹水平射入一木棒后一同上摆.在上摆的过程中,以子弹和木棒为系统,则总 角动量、总动量及总机械能是否守恒?结论是: A 、三量均不守恒 B 、三量均守恒C 、只有总机械能守恒D 、只有总动量不守恒度为— 02,则该飞轮的转动惯量为: M A 、 A nMB 、—AC 、M A - Pi此时两球的线速度 A 、匕〉% B 、匕 <%c 、V A =V B D 、无法判断4. ()用一条皮带将两个轮子A 和8连接起来,轮与皮带 间无相对滑动,8轮的半径是A 轮半径的3倍.如果两轮具有 相同的角动量,则A 与B 两轮转动惯量的比值为: A 、 1:3 B 、 1:9 C 、 3:1 D 、 9:15. ()某滑冰者转动的角速度原为口°,转动惯量为人,当他收拢双臂后,转动惯量减少 了 1/4.这时他转动的角速度为:8.()长为乙的均匀细杆。

肱绕水平。

轴在竖直面内自由转动,今使细杆从水平位置开始自由下摆,在细杆摆动到铅直位置的过程中,其角速度②,角加速度〃如何变化?A、勿增大,月减小B、©减小,0减小C、勿增大,0增大D、刃减小,0增大9 ()人造地球卫星绕地球作椭圆运动,地球在椭圆的一个焦点上,卫星的动量P,角动量乙及卫星与地球所组成的系统的机械能E是否守恒?A、P不守恒,乙不守恒,£不守恒B、P守恒,乙不守恒,E不守恒C、P不守恒,乙守恒,&守恒D、P守恒,乙守恒,&守恒E、P不守恒,Z守恒,&不守恒10.()如图2所示,A和8为两个相同绕着轻绳的定滑轮,A滑轮挂一质量为肱的物体,8滑轮受拉力尸,A Q H而且F = Mg,设A、B两滑轮的角加速度分别为尸A和尸B,不计滑轮轴的摩擦,则有A、P A =P BB、P A > P BC、/3A<D、开始E A=伉,以后M < 0B二、解答题1.一个可视为质点的小球和两根长均为/的细棒刚性连接成如图3所示的形状,假定小球和细棒的质量均为计算该装置绕“过。

下大学物理a卷--湘潭大学-大学物理-期末复习

下大学物理a卷--湘潭大学-大学物理-期末复习
(C)既非明纹也非暗纹;(D)无法确定是明纹,还是暗纹.
8.在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a=4的单缝上,对应于
衍射角为30°的方向,单缝处波阵面可分成的半波带数目为
(A) 2个.(B) 4个.
(C) 6个.(D) 8个.
9.一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i0,则在界面2的反射光
(D)磁场强度大小为H=NI / l.
5.圆铜盘水平放置在均匀磁场中, 的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴
沿图示方向转动时,
(A)铜盘上有感应电流产生,沿着铜盘转动的相反方向流动.
(B)铜盘上有感应电流产生,沿着铜盘转动的方向流动.
(C)铜盘上产生涡流.
(D)铜盘上有感应电动势产生,铜盘边缘处电势最高.
大小M=____________________.(设电子质量为me,电子电荷的绝对值为e)
13. (3分)一个磁导率为1的无限长均匀磁介质圆柱体,半径为R1.其中均匀地通过电流I.在
它外面还有一半径为R2的无限长同轴圆柱面,其上通有与前者方向相反的电流I,两者之间
充满磁导率为2的均匀磁介质.在0<r<R1的空间磁场强度的大小H=_______________.
(E)铜盘上有感应电动势产生,铜盘中心处电势最高.
6.电位移矢量的时间变化率 的单位是
(A)库仑/米2(B)库仑/秒
(C)安培/米2(D)安培•米2
7.在双缝干涉实验中,入射光的波长为,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相
同厚度的空气的光程大2.5,则屏上原来的明纹处
(A)仍为明条纹;(B)变为暗条纹;
湘潭大学2012年下学期2011级

大学物理(下)期末复习题

大学物理(下)期末复习题

练习 一一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S面内的P 点移到T 点,且OP =OT ,那么(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。

3. 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ( )12121221(A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。

4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

二、填空题:1. 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为 方向 。

2. 内、外半径分别为R 1、R 2的均匀带电厚球壳,电荷体密度为ρ。

则,在r <R 1的区域内场强大小为 ,在R 1<r <R 2的区域内场强大小为 ,在r >R 2的区域内场强大小为 。

大学物理期末课本复习题答案

大学物理期末课本复习题答案

6-4半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强. [解答]在带正电的圆弧上取一弧元 d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R Rλλθπεπεπε===,场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/60000sin d (cos )22R R ==-⎰ππλλθθθπεπε 03(1)22R=-λπε. 6-8(1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?[解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零6-10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl , 穿过高斯面的电通量为E x xE θ R d sE yO yd sE x xE θ RE y Oyd d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).6-11一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R 的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为均强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的叠加.对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为3E r ρε=. 当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=, 方向由O 指向O `.O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=, 方向也由O 指向O `.OR a R` O`图13.10O a r` O`r E rE r` θ E P[证明]在小球内任一点P ,大球和小球产生的场强大小分别为3r E r ρε=, `0`3r E r ρε=, 方向如图所示.设两场强之间的夹角为θ,合场强的平方为 222``2cos r r r r E E E E E θ=++2220()(`2`cos )3r r rr ρθε=++, 根据余弦定理得222`2`c o s ()a r r r r πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.6-16电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势; (2)带电直线中垂线上离中点为r 处的电势; (3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L .(1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为10d 4L L l U r lλπε-=-⎰ 0ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. o xd l yLr-LP 1 l(2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l , 在线的垂直平分线上的P 2点产生的电势为2221/20d d 4()lU r l λπε=+, 积分得2221/201d 4()LLU l r l λπε-=+⎰ 220ln()4Ll Lr l l λπε=-=++22220ln8q r L L L r L Lπε++=+-220ln4q r L LLrπε++=.(3)P 1点的场强大小为11U E r∂=-∂ 011()8qL r L r Lπε=--+22014qr L πε=-, ① 方向沿着x 轴正向.P 2点的场强为22U E r∂=-∂ 222201[]4()qr L r r L r L L πε=-+++22014q rr Lπε=+, ②方向沿着y 轴正向.6-17 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得o l xd l-LL y r θ P 2Bo APr Ar Cr B 图14.1E 4πr 2 = q /ε0,可得P 点的电场强度为204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.v14.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++6-20三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少?[解答](1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q 1 = σ1S 和q 2 = σ2S ,在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0, A 、C 间的场强为 E 2 = σ2/ε0.设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ②即 σ1d 1 = σ2d 2. ③解联立方程①和③得σ1 = qd 2/S (d 1 + d 2),所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);q 2 = q - q 1 = 1×10-8(C).B 、C 板上的电荷分别为q B = -q 1 = -2×10-8(C);qo b a r图14.3qA BC图14.4q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).7-2直径d = 0.02m 的圆形线圈,共 10匝,通以0.1A的电流时,问:(1)它的磁矩是多少?(2)若将该线圈置于1.5T 的磁场中,它受到的最大磁力矩是多少?解(1)载流圆形线圈的磁矩大小为7-9一条无限长直导线在一处弯折成半径为R 的圆弧,如图7.6 所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4 圆周时,圆心O 处的磁感应强度。

大学物理复习题及答案

大学物理复习题及答案

期末复习一、力学(一)填空题:1、质点沿x 轴运动,运动方程23262x t t =+-,则其最初4s 内位移是 -32m i ,最初4s 内路程是 48m 。

2、质点的加速度(0),0a mx m t =->=时,00,x v v ==,则质点停下来的位置是x3、半径为30cm 的飞轮,从静止开始以0.5rad/s 2匀角加速度转动。

当飞轮边缘上一点转过o240时,切向加速度大小 0.15 m/s 2,法向加速度大小 1.26 m/s 2。

4、一小车沿Ox 轴运动,其运动函数为233x t t =-,则2s t =时的速度为 -9m/s ,加速度为 -6m/s 2 ,2s t =内的位移为 -6m 。

5、质点在1t 到2t 时间内,受到变力2At B F x +=的作用(A 、B 为常量),则其所受冲量为3321211()()3B t t A t t -+-。

6、用N 10=F 的拉力,将g k 1=m 的物体沿30=α的粗糙斜面向上拉1m ,已知1.0=μ,则合外力所做的功A 为 4.13J 。

7、 银河系中有一天体,由于引力凝聚,体积不断收缩。

设它经一万年后,体积收缩了1%,而质量保持不变,那时它绕自转轴的转动动能将 增大 ; (填:增大、减小、不变)。

;8、 A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结。

开始时B 轮静止,A 轮以角速度A ω转动,设啮合过程中两飞轮不再受其他力矩的作用,当两轮连结在一起后,其相同的角速度为ω。

若A 轮的转动惯量为A I ,则B 轮的转动惯量B I 为A AA I I ωω- 。

9、斜面固定于卡车上,在卡车沿水平方向向左匀速行驶的过程中,斜面上物体m 与斜面无相对滑动。

则斜面对物体m 的静摩擦力的方向为 。

沿斜面向上;10、牛顿第二定律在自然坐标系中的分量表达式为n n F ma =;F ma ττ=11、质点的运动方程为22r ti t j =-,则在1s t =时的速度为 22v i j =-,加速度为2a j =-; 12、 一质点沿半径为0.1m 的圆周运动,其角位移342t +=θ,则2s t =时的法向加速度为 230.4m/s 2,切向加速度为 4.8m/s 2。

大学物理期末复习练习题参考解答

大学物理期末复习练习题参考解答
大学物理期末复习练习题参考 解答
一、选择题
[ ] 1、下列说法错误的是: (A) 同一时刻距离波源越远的波面相位越落后。 (B) 机械波的传播是动量和能量在介质中的传递。 (C) 一列简谐波上各质点的振动频率等于波的频率。 (D) 一列简谐波上各质点的振动速度大小就等于波的速 度大小。
答案:D
[ ] 2、平面谐波沿x轴正向传播,t=0时刻的波形如
设汽车的速度为 vs
汽车在驶近车站时,车站收到的频率为
1
u
u vs
0
汽车驶离车站时,车站收到的频率为
2
u
u vs
0
联立以上两式,得
vs
u1 1
2 2
330 1200 1000 1200 1000
30m / s
答案:A
[ ]9、下列说法错误的是: (A)驻波是一种特殊的干涉现象,波腹相当于干涉极大, 波节相当于干涉极小。 (B)驻波相邻两波节节间的各质点初相位相同,而一般 干涉相邻两极小间各质点初相位不都相同。 (C)驻波一波节两侧的各质点将同时到达最大值,同时 通过平衡位置。 (D)驻波上各节点始终保持静止,各腹点始终在最大位 移处。
知s1的相位比s2的相位超前, 则s1 与s2连线中点的振幅
为 0m .
2
1
2
r2
r1
8. 一平面简谐波表达式为y=4sin(t-4x) (SI), 则该波的频
率ν(Hz)为 1/2 波速u(m/s)为 1/4 波线上各点振动的振 幅A(m)为 4 。
y 4cos[ (t 4x) ]
为 x=(k+1/2)(/2), k=0,1,2,3,…… .
y1 Acos[2 (t x ) 2] y 2Acos(2x ) cos(2t 2) 波节位置为:2x k 2 k=0,1,2,3,……

大学物理期末复习题---填空-计算题

大学物理期末复习题---填空-计算题

第4章 振动与波动填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为__ __s 。

[答案:23s ](2)一水平弹簧简谐振子的振动曲线如题4.2(2)图所示。

振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。

习题4.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。

(b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。

[答案:cos(2//2)x A t T ππ=−; cos(2//3)x A t T ππ=+](4)一横波的波动方程是))(4.0100(2sin 02.0SI x t y −=π,则振幅是____,波长是____,频率是____,波的传播速度是____。

[答案:0.02;2.5;100;250/m m Hz m s ](5)产生机械波的条件是 和 。

[答案:波源;有连续的介质](6)两列波叠加产生干涉现象必须满足的条件是 , 和 。

[答案:频率相同,振动方向相同,在相遇点的位相差恒定。

]计算题 振动4.3 质量为kg 10103−⨯的小球与轻弹簧组成的系统,按20.1cos(8)(SI)3x t ππ=+的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,相比较则有:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m −⋅ 51.2=1s m −⋅2.632==A a m ω2s m −⋅(2) 0.63N m m F ma ==J 1016.32122−⨯==m mv E J 1058.1212−⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=−=−=∆t t4.4 一质量为kg 10103−⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=−T A∴ 1s rad 5.02−⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π−⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=−t x πN102.417.0)2(10103232−−⨯−=⨯⨯⨯−=−=−=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222−−⨯=⨯⨯⨯===πωA m kA E4.6 题4.6图为两个谐振动的t x −曲线,试分别写出其谐振动方程.习题4.6图解:由题4.6图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2−⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4.6图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+=波动4.11 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4−),式中x ,y 以米计,t 以秒计.求:(1)绳子上各质点振动时的最大速度和最大加速度;(2)求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点? 解: (1)将题给方程与标准式2cos()y A t x πωλ=−相比,得振幅05.0=A m ,圆频率10ωπ=,波长5.0=λm ,波速2.52u ωλυλπ===1s m −⋅.绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m −⋅222max 505.0)10(ππω=⨯==A a 2s m −⋅(2)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=−=t s 时的位相,即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=−+=−+=t t u x x m4.12 一列平面余弦波沿x 轴正向传播,波速为5m ·s -1,波长为2m ,原点处质点的振动曲线如题4.12图所示.(1)写出波动方程;(2)作出t =0时的波形图及距离波源0.5m 处质点的振动曲线. 解: (1)由题4.14(a)图知,1.0=A m ,且0=t 时,0,000>=v y ,∴230πφ=, 又5.225===λυuHz ,则ππυω52==习题4.12图(a)取 ])(cos[0φω+−=ux t A y , 则波动方程为30.1cos[5()]52x y t ππ=−+m(2) 0=t 时的波形如题4.12(b)图习题4.12图(b) 习题4.12图(c)将5.0=x m 代入波动方程,得该点处的振动方程为50.530.1cos[5]0.1cos(5)52y t t πππππ⨯=−+=+m 如题4.12(c)图所示.第7章静电场7.2 填空题(1)在静电场中,电势不变的区域,场强必定为 。

大学物理期末复习题

大学物理期末复习题

1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。

(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。

画图略(2)质点的位置可表示为:22(48)r ti t j =+-由/v dr dt = 则速度:28v i tj =+由/a dv dt = 则加速度:8a j =则:当t=1s 时,有24,28,8r i j v i j a j =-=+=当t=2s 时,有48,216,8r i j v i j a j =+=+=1-4.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。

(1)求质点的轨迹方程;(2)在2t s =时质点的速度和加速度。

解:(1)由题意可知:x ≥0,y ≥0,由2x t =,,可得t =代入2(1)y t =-1=,即轨迹方程(2)质点的运动方程可表示为:22(1)r t i t j =+-则:/22(1)v dr dt ti t j ==+-/22a dv dt i j ==+因此, 当2t s =时,有242(/),22(/)v i j m s a i j m s =+=+1-9.汽车在半径为400m 的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为-110m s ⋅,切向加速度的大小为-20.2m s ⋅。

求汽车的法向加速度和总加速度的大小和方向。

解:法向加速度的大小222100.25(/),400===n v a m s ρ 方向指向圆心总加速度的大小20.32(/)===a m s如图1-9,tan 0.8,3840',na a ταα===︒ 则总加速度与速度夹角9012840'θα=︒+=︒2-26.如图所示,在水平地面上,有一横截面2S=0.20m 的直角弯管,管中有流速为1=3.0m s v -⋅的水通过,求弯管所受力的大小和方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一.选择题:1- 两个均匀带电的同心球面,半径分别为川、 小球带电Q,大球带电-Q,下列各图中哪一个正确表示了电场的分布£\丨、/O R } R 2(B)EO R } R 2(C) 2.如图所示,任一闭合Illi 面S 内有一点电荷q,。

为S 面上任一-点,若将q 由闭合Illi 面内的P 点移到T 点,且O P=OT,那么(A) 穿过sifii 的电通量改变,o 点的场强大小不变;(B) 穿过S 而的电通量改变,0点的场强大小改变; (C) 穿过S 而的电通量不变,0点的场强大小改变; (D) 穿过S 面的电通量不变,。

点的场强大小不变。

3.在边长为a 的正立方体中心冇一个电量为q 的点电荷,则通过该立方体任一1侨的电 场强度通量为(A) q/&); (B) q/2e ();(C) g/4&);(D) g/6&)。

4.如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 (A) E W >E/,>E (. ; (B) E“vEb<Ec : (C) U Q U Q U C ; (D) U“vUbVUc 。

5.关于高斯定理的理解有下曲几种说法,(A) 如果高斯面内无电荷,则高斯面上E 处处为零; (B) 如果高斯处处不为零,则该面内必无电荷;(C) 如果高斯而内有净电荷,则通过该而的电通量必不为零; (D) 如果高斯面上左处处为零,则该面内必无电荷。

6. 对静电场高斯定理的理解,下列四种说法中正确的是(A) 如果通过高斯面的电通量不为零,则高斯面内必有净电荷 (B) 如果通过高斯面的电通量为零,则高斯面内必无电荷 (C) 如果高斯而内无电荷,则高斯而上电场强度必处处为零 (D) 如果高斯曲上电场强度处处不为零,则高斯曲内必冇电荷 答:A7.由真空屮静电场的高斯定理^£ dS=—可知 s £()(A ) O R\ R 2(D )(A) 闭合向内的电荷代数和为零时,闭合向上各点场强一定为零 (B) 闭合而内的电荷代数和不为零时,闭合而上各点场强一定都不为零 (C) 闭合血内的电荷代数和为零时,闭合血上各点场强不一定都为零 (D) 闭合而内无电荷时,闭合而上各点场强一定为零 答:C8•图示为一具有球对称性分布的静电场的E 〜r 关系曲线.谙指出该静 电场是由下列哪种带电体产生的.(A) 半径为/?的均匀带电球面.(B) 半径为/?的均匀带电球体.(C) 半径为/?、电荷体密度p = Ar (A 为常数)的非均匀带电球体.(D) 半径为/?、电荷体密度p = A/r ( A 为常数)的非均匀带电球体. 答:D 9.如图,在点电荷q 的电场中,选取以q 为中心、R 为半径的球而上一点P 处作电势零 点、,则打点电荷q 品斤离为r 的戶点的电势为答:c 二、填空题: 1. 如图所示,边长分别为d 和b 的矩形,其A 、3、C 三 个顶点上分别放置三个电量均为q 的点电荷,则中心0点的 场强为 ____________ 方向 ___________q4兀£()厂 (B) (C )4兀幕—/?)(D)厂丿答:B10.设无穷远处电势为零, 则半径为的均匀带电球体产牛:的电场的电势分布规律为(图4g \r R) 屮的和b 皆为常量):2. 内、外半径分别为&、/?2的均匀带电厚球売,电荷体密度为°。

贝IJ ,在的区域内场强人小为 _____________________________ ,在R0YR2的区域内场强人小 为 _____________________ ,在r>R 2的区域内场强大小为 _______________________ o3. 在场强为E 的均匀电场中収一半球血,其半径为/?,电场强度的方向与半球血的对•练习二一、选择题1. 电荷分布在有限空间内,则任意两点“、只之间的电势差取决于(A) 从Pi 移到E 的试探电荷电量的大小; (B) A 和A 处电场强度的大小; (C) 试探电荷由〃移到兀的路径;(D) 由”移到B 电场力对单位正电荷所作的功。

称轴平行。

则通过这个半球面的屯通量为 ,若用半径为R 的圆面将半球面封闭,则通过这个封闭的半球而的电通量为 4. A. B 为真空屮两块平行无限人带电平而,场强度人小为E(),两平而外侧电场强度人小都是£0/3,则两平I 肛上的电荷面密度分別为 练习一答案:选择题:DDDCCACDBC 填空题: 1、2、① $7*2)3、7CR 2E , 0A4、 B2.下血说法正确的是(A)等势面上各点的场强大小都相等;(B)在电势高处电势能也一定大;(C)场强大处电势一定高;(D)场强的方向总是从高电势指向低电势。

3.如图所示,绝缘的带电导体上b、cb三点、, 电荷密度()电势()(A)Q点最人;(B)b点最大;(C)c点最人;(D)一样犬。

4.一个带正电的点电荷飞入如图所示的电场中,它在电场中的运动轨迹为()(A)沿"(B)沿b;(C)沿c;(D)沿d。

二、填空题1._______________________________ 边长为Q的正六边形每个顶点处有一个点电荷,取无限远处作为参考点,则。

点电势为_________________________________,。

点的场强大小为__________ 。

2.一个半径为R的均匀带电的薄圆盘,电荷面密度为(7。

在鬪盘上挖去一个半径为r 的同心圆盘,则圆心处的电势将__________ o (变人或变小)3.真空中一个半径为R的球而均匀带电,而电荷密度为C7>0,在球心处有一个带电量为q的点电荷。

取无限远处作为参考点,则球内距球心广的P点处的电势为°4.半径为广的均匀带电球血T,带电量为%,其外有一同心的半径为R的均匀带电球面2,带电最为§2,则两球面间的电势差为_______________________5.两个同心的薄金属球壳,半径分别为&、A?(尺>人2),带电量分別为⑦、乞,将二球用导线联起来,(取无限远处作为参考点)则它们的电势为______________________ 06.__________________________________________ 两段形状相同的圆弧如图所示对称放置,圆弧半径为爪圆心角为0,均匀带电,线密度分别为+ 2和-久,则圆心。

点的场强大小为o电势为_______________________ O练习二答案:选择题:DDADD 填空题:1、0, 02、变小3、 匹+丄纟4?血 ° r 4、丄)4吟r R5、 ]④+弘(原答案错[④+色)4亦()/?] + R 2 4码 &. 42 sin — 6、 -1--------- , 04码 R练习三一、选择题1. 一个中性空腔导体,腔内有一个带正电的带电体,当另一中性导体接近空腔导体时, (A) 导体内的场强与电势大小均为零。

(B) 导体内的场强为零,而电势为恒量。

(C) 导体内的电势比导体表面高。

(D) 导体内的电势与导体表面的电势高低无法确定。

3. 忽略重力作用,两个电了在库仑力作用下从静止开始运动,rti 相距门到相距厂2,在此期间,两个电了纟II 成的系统哪个物理量保持不变 (A)动能总和;(B)电势能总和;(C)动量总和;(D)电相互作用力。

4. -•个空气平行板电容器,充电后把电源断开,这时电容器屮储存的能量为W 。

,然后 在两极板间充满和对介电常数为£ r 的各向同性均匀电介质,则该电容器屮储存的能 量为()(Aj&Wo ; (B)W ()/e r ; (C)(l+£r )W 0 ; (D)W ()。

5.极板间为真空的平行板电容器,充电后与电源断开,将两极板用绝缘工具拉开一些 距离,则下列说法正确的是()(A) 电容器极板上电荷面密度增加; (B) 电容器极板间的电场强度增加; (C) 电容器的电容不变; (D) 电容器极板间的电势差增人。

(1) 腔内各点的场强(A) 变化; (B)不变;(2) 腔内各点的电位 (A) 升高; (B)降低; 2.对(C)不能确定。

(C)不变; (D)不能确定二、填空题1. __________________________________________ 如图所示的电容器组,则2、3间的电容为 ______________________________________ , 2、4间的电容为 __________2. 平行板电容器极板面积为S 、充满两种介电常数分别 为色和勺的均匀介质,则该电容器的电容为C= _________________ O3. 为了把4个点电荷q 置于边长为厶的止方形的四个顶 点上,外力须做功 ________ 。

4. __________________________________________________________________ 半径分别为R 和r 的两个弧立球形导体(/?>厂),它们的电容之比C R G 为 ___________ , 若用一根细导线将它们连接起来,并使两个导体带电,则两导体球表曲电荷面密度之比5. __________ 一平行板电容器,极板而积为S,极板间距为d,接在电源上,并保持电压恒定为0 若将极板间距拉大一倍,那么电容器小静电能改变为 ,电源对电场作的功 为 ___________ ,外力对极板作的功为。

练习三答案: 选择题:BCBCBD 填空题:1、10/zF , 3.75//F练习四2、 Sy?4x —(2 +4亦(上 4、1於 2 2dU 2一、选择题1.空间某点的磁感应强度直的方向,一般可以用下列几种办法来判断,其中哪个是错误的?(A) 小磁针北(N)极在该点的指向;(B) 运动正电荷在该点所受最大的力与其速度的矢积的方向;(C) 电流元在该点不受力的方向;(D) 载流线圈稳定平衡吋,磁矩在该点的指向。

2. 下列关于磁感应线的描述,哪个是正确的?( )(A) 条形磁铁的磁感应线是从N 极到S 极的;(B) 条形磁铁的磁感应线是从S 极到N 极的;(C) 磁感应线是从N 极出发终止于S 极的曲线;(D) 磁感应线是无头无尾的闭合曲线。

3. 磁场的高斯定理申方•〃£ = ()说明了下面的哪些叙述是正确的? ( ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲而的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲而内; d 一-根磁感应线可以完全处于闭合llll 面内。

相关文档
最新文档