材料力学2-第八章-组合变形PPT课件
合集下载
材料力学组合变形
第八章 组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
《材料力学组合变形》课件
这种变形通常发生在承受轴向力 和弯矩的杆件中,其变形特点是 杆件既有伸长或缩短,又有弯曲 。
拉伸与压缩组合变形的分析方法
01
02
03
弹性分析方法
基于弹性力学的基本原理 ,通过求解弹性方程来分 析杆件内部的应力和应变 分布。
塑性分析方法
在材料进入塑性阶段后, 采用塑性力学的基本理论 来分析杆件的承载能力和 变形行为。
材料力学在组合变形中的应用实例
01
02
03
04
桥梁工程
桥梁的受力分析、桥墩的稳定 性分析等。
建筑结构
高层建筑、大跨度结构的受力 分析、抗震设计等。
机械工程
机械零件的强度、刚度和稳定 性分析,如轴、轴承、齿轮等
。
航空航天
飞机和航天器的结构分析、材 料选择和制造工艺等。
材料力学在组合变形中的发展趋势
特点
剪切与扭转组合变形具有复杂性和多样性,其变形行为受到多种因素的影响,如 材料的性质、杆件的长度和截面尺寸、剪切和扭转的相对大小等。
剪切与扭转组合变形的分析方法
1 2 3
工程近似法
在分析剪切与扭转组合变形时,通常采用工程近 似法,通过简化模型和假设来计算杆件的应力和 变形。
有限元法
有限元法是一种数值分析方法,可以模拟杆件在 剪切与扭转组合变形中的真实行为,提供更精确 的结果。
弯曲组合变形的分析方法
叠加法
刚度矩阵法
叠加法是分析弯曲组合变形的基本方 法之一。该方法基于线性弹性力学理 论,认为各种基本变形的应力、应变 分量可以分别计算,然后按照线性叠 加原理得到最终的应力、应变分布。
刚度矩阵法是通过建立物体内任意一 点的应力、应变与外力之间的关系, 来求解复杂变形问题的一种方法。对 于弯曲组合变形,可以通过构建系统 的刚度矩阵来求解。
拉伸与压缩组合变形的分析方法
01
02
03
弹性分析方法
基于弹性力学的基本原理 ,通过求解弹性方程来分 析杆件内部的应力和应变 分布。
塑性分析方法
在材料进入塑性阶段后, 采用塑性力学的基本理论 来分析杆件的承载能力和 变形行为。
材料力学在组合变形中的应用实例
01
02
03
04
桥梁工程
桥梁的受力分析、桥墩的稳定 性分析等。
建筑结构
高层建筑、大跨度结构的受力 分析、抗震设计等。
机械工程
机械零件的强度、刚度和稳定 性分析,如轴、轴承、齿轮等
。
航空航天
飞机和航天器的结构分析、材 料选择和制造工艺等。
材料力学在组合变形中的发展趋势
特点
剪切与扭转组合变形具有复杂性和多样性,其变形行为受到多种因素的影响,如 材料的性质、杆件的长度和截面尺寸、剪切和扭转的相对大小等。
剪切与扭转组合变形的分析方法
1 2 3
工程近似法
在分析剪切与扭转组合变形时,通常采用工程近 似法,通过简化模型和假设来计算杆件的应力和 变形。
有限元法
有限元法是一种数值分析方法,可以模拟杆件在 剪切与扭转组合变形中的真实行为,提供更精确 的结果。
弯曲组合变形的分析方法
叠加法
刚度矩阵法
叠加法是分析弯曲组合变形的基本方 法之一。该方法基于线性弹性力学理 论,认为各种基本变形的应力、应变 分量可以分别计算,然后按照线性叠 加原理得到最终的应力、应变分布。
刚度矩阵法是通过建立物体内任意一 点的应力、应变与外力之间的关系, 来求解复杂变形问题的一种方法。对 于弯曲组合变形,可以通过构建系统 的刚度矩阵来求解。
《材料力学》课程讲解课件第八章组合变形
强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4
材料力学第八章组合变形
例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
材料力学课件第8章组合变形zym
§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4
材料力学- 8组合变形
l/2 l/2
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
材料力学——8组合变形
A
F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12
T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核
F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12
T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核
《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
《组合变形》PPT课件
0.266q (12 ) 237 106
(21.5103) q
( max )D
M yD Wy
M zD Wz
0.444q (12 ) 31.5 106
0.456q (12 ) 237 106
(16.02 103) q
危险点在A截面上的外棱角D1和D2处
z
MyA
y
z
MzA
y
D1 z D2
y
32
l 几何参数
A 15103 m2 , zo 7.5 cm, I y 5310 cm4
l 求内力(作用于截面形心)
取研究对象如图
FN P kN,
M y 42.5 102 P kN.m
l 危险截面
各截面相同
l 应力分布
350
FN
33
l 危险截面
各截面相同
l 应力分布
l FN引起的应力
FN P MPa
u 拉伸、压缩
l 组合变形 有两种或两种以上的 基本变形同时发生。
u 剪切
l 求解组合变形的方法
将载荷分为几组分别产生 基本变形的载荷,然后应 用叠加原理。
u 扭转
u 弯曲
3
2 叠加原理 如果内力、应力、变形等与外力成线性关系, 则复杂受力情况下组合变形构件的内力、应 力、变形等可以由几组产生基本变形的载荷 单独作用下的内力、应力、变形等的叠加而 得到,且与各组载荷的加载次序无关。
'' My z Mz y
Iy
Iz
中性轴的方程:
My F1l
F2 (l a)
Mz
My Iy
z0
Mz Iz
y0
0
5
中性轴的方程:
材料力学第八章-组合变形
12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算
材料力学2
§8-4 扭转与弯曲(续2)
1 2 2 4 1 M 2 2 W 2 0 T 1 2 2 4 Wp 3 2 2 第三强度理论:
材料力学
已知:矩形截面梁截面宽度b、高度h、长度l,外载荷 F,与主惯轴y成夹角。 求:根部截面上的最大正应力
y y
Fz z
x z F
材料力学
F
Fy
Fz F sin , Fy F cos
§8-2 两相互垂直平面内的弯曲 (续3)
y
y
z
z
Mz
My
x (M y ) x (M y )
NA 2)拉伸正应力: A
)max 若( t
则正应力分布为
b
( t ) max ( c ) max
材料力学
危险点:A截面上下两边上各点.
§8-3 拉伸(压缩)与弯曲 (续6)
4)强度分析:由题意可知为塑性材料,且危险点为单向应
力状态,其强度条件为:
max
材料力学
§8-2
两相互垂直平面内的弯曲 曲变形后,梁的轴线不在外力作用面内。
斜弯曲:当外力作用面不通过主惯性平面时,则弯
z
F
材料力学
y
§8-2 两相互垂直平面内的弯曲 (续1)
Fz
z xz平面内的平面弯曲
Fz
z y
F y
Fy
z xy平面内的平面弯曲
材料力学
y
Fy
§8-2 两相互垂直平面内的弯曲 (续2)
拉 z y
F
材料力学
压
中性轴
§8-3
拉伸(压缩)与弯曲
材料力学课件ppt-8组合变形
z1 12m 5 m Iy 5.31107mm 4 (2)立柱横截面的内力
50 FN F
150
MF35075103
50
150
42F5103N.m
15
目录
§8-2拉(压)弯组合变形
A150m 00m 2
(2)立柱横截面的内力
z0 75mm
FN F
z1 12m 5 m
1 242 0
M W
T
22
m inx 2y1 2 xy24x 2y
Wp
1 242 0
22
33
目录
§8-4 弯扭组合变形
M W
T Wp
1212 242
2 0
3212 242
第三强度理论:
第八章 组合变形
1
目录
第八章 组合变形
§8-1 组合变形和叠加原理 §8-2 拉(压)与弯曲的组合 §8-4 扭转与弯曲组合
目
2
目录
§8-1 组合变形和叠加原理
组合变形工程实例
3
目录
§8-1 组合变形和叠加原理
组合变形工程实例
10
4
压弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
M 42 153 0FN.m
Iy 5.31107mm 4 (3)立柱横截面的最大应力
t.max
Mz0 Iy
FN A
F 350
M FN
425103 F 0.075 5.31105
F 15103
667FPa
c.max
Mz1 Iy
FN A
材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
材力第8章组合变形PPT课件
已知: 皮带张力 F1=3.9kN, F2=1.5kN,两带轮直径均为
600mm,轴的[]=80MPa,
试:按第三第四强度理论选 择轴的直径。
解:1. 画计算简图
FDF CF 1F 25.4kN
2m . D 计算m C 支座F 1 反力F 2D 2 轮 0.7k2N m
FAy3.6kN FB,y1.8kN
叠加法: “先分后合”——将外力进行分解简化,得到
几种基本变形,分别计算应力变形,再进行叠加。
叠加法应用条件: 1)线弹性范围;2)小变形。
§8.2 拉伸(或压缩)与弯曲的组合
返回目录
一、外力分析
Fx Fcos ——拉
Fy Fsin ——弯
二、内力分析
固定端为危险面
轴力: FN Fx
弯矩: MmaxFyl
Fx 0
FAx40kN
Fy 0
FAy 4.8kN
FAx40kN,FAy 4.8kN
Fx 40kN, Fy 12.8kN
解: 2. 作内力图
C为危险截面 3. 分析C截面应力
max压maxFANM W max
查型钢表得16号工字钢
W141cm3, A26.13cm2
max10.40MPa
[]10M 0 Pa
r4W 1 MD 2合0.7T 5D 2 3d23 1.63kNm
d59.2mm
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
拉 ma x拉 max
600mm,轴的[]=80MPa,
试:按第三第四强度理论选 择轴的直径。
解:1. 画计算简图
FDF CF 1F 25.4kN
2m . D 计算m C 支座F 1 反力F 2D 2 轮 0.7k2N m
FAy3.6kN FB,y1.8kN
叠加法: “先分后合”——将外力进行分解简化,得到
几种基本变形,分别计算应力变形,再进行叠加。
叠加法应用条件: 1)线弹性范围;2)小变形。
§8.2 拉伸(或压缩)与弯曲的组合
返回目录
一、外力分析
Fx Fcos ——拉
Fy Fsin ——弯
二、内力分析
固定端为危险面
轴力: FN Fx
弯矩: MmaxFyl
Fx 0
FAx40kN
Fy 0
FAy 4.8kN
FAx40kN,FAy 4.8kN
Fx 40kN, Fy 12.8kN
解: 2. 作内力图
C为危险截面 3. 分析C截面应力
max压maxFANM W max
查型钢表得16号工字钢
W141cm3, A26.13cm2
max10.40MPa
[]10M 0 Pa
r4W 1 MD 2合0.7T 5D 2 3d23 1.63kNm
d59.2mm
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
拉 ma x拉 max
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
z
xቤተ መጻሕፍቲ ባይዱ
m Pz
Py
y
LP
Pz
zj
Py P
y
② 应力
My引起的应力:
MyzMzcojs
Iy
Iy
M z引起的应力:
MzyMysijn
Iz
Iz
合应力: M(zcoj sysijn)
Iy
Iz
m
x
z
x
m Pz
Py
y
LP
Pz
zj
Py P
y
③ 中性轴方程 M(z0cojsy0sijn)0 中性轴
Iy
Iz
D2
tg y0 Iz ctgj
均布力作用, []=12MPa,许可挠度为L/200 ,E=9GPa,试选
择截面尺寸并校核刚度。
解:① 外力分析—分解q
yq
z
26°34´
q
A
B
L
qyqsin 80 0.0 44 375 N8/m
q z q co 8 s 0 0 .8 0 9 74 N 15 /m
Mzmaxqy8L235838240N 3m Myma xqz8L271 83 5280N4m
az
中性轴
1 yP y0 zPz0 0
iz2
iy2
ay
截面核心
已知 ay, az 后 ,
z
1
yPa y
i
2 z
0
1
z
Pa
i
2 y
z
0
P(zP,yP)
可求 P力的一个作用点 (zP,yP)
y
利用以上关系可确定截面核心的边界
例3 分别确定圆截面与矩形截面的截面核心.
Dy
4 1
3 A1 (a)圆截面
k
l (-h/6,0)
x
Pz
h
Pz
zj
z
Py
L Py
D2
Py
Py
fz
f
fy
最大正应力
变形计算
LmaxD1M WzzM WyyD2
当Iy = Iz时,即发生平面弯曲。
f
fy2fz2
(PyL3)2(PzL3)2 3EzI 3EyI
tg
f
y
I
y
tgj
fz Iz
例2 矩形截面木檩条如图,跨长L=3m,受集度为q=800N/m的
maxM Wzz
My Wy
§8–3 拉伸(压缩)与弯曲 一、横向力与轴向力共同作用:
杆件发生弯曲与拉伸(压缩)的组合变形。
F
Ft
Ft
l/2
l/2
轴力: FN Ft
轴力引起正应力:
t
FN A
Ft A
最大弯矩:
Mmax
1 4
Fl
弯矩引起正应力:
b
Mmax Fl W 4W
横截面最大正应力:
t,max
内的最大正应力。
解:两柱均为压应力
P
P
dP
1maxAP1 W Mz1
200
300
200
350000 0.20.3
3500000.05 0.20.32
6
11.7MPa
图(1)
图(2)
P M
2maxPA03.25000.200
8.75MPa
§8–4 扭转与弯曲
x
B
13
2
()2 2
2
2 0
塑性材料,通常使用第三或第四强度理论
③应力分析:画危险面应力分布图,叠加,建立危险点的 强度条件。
§8–2 两相互垂直平面内的弯曲 (斜弯曲)
一、斜弯曲:杆件产生弯曲变形,但弯曲后,挠曲线与外力 (横向力)不共面。
二、斜弯曲的研究方法 : 1.分解:将外载沿横截面的两个形心主轴分解,于是得到两个正交
的平面弯曲。
Pz
zj
Py P
y
z y
斜弯曲的强度条件
ma x M zm Izy am xa x M ym Iyz a m xa x M W zm z a x M W ym y a x
式中
Wz
Iz , ymax
Wy
Iy z max
例1结构如图,P过形心且与z轴成j角,求此梁的最大应力与挠度。
解:危险点分析如图
b
中性轴
D1
Ft Fl A 4W
二、偏心拉伸(压缩): 作用在直杆上的外力,作用线与杆的轴线平行但不重合。 将引起偏心拉伸或偏心压缩。
x
P
P y
z
My
x z Mz
Py My
二、应力分析:
x
z Mz P y
P
MZ
My
My
xP
P A
xM
z
M I
z z
y
xMy
Myz Iy
x
PMzyMyz
A Iz
Iy
三、中性轴方程
若用第三强度理论
r313242
若用第四强度理论
r4 232
弯曲正应力 M W
扭转切应力 T WP
r3
(M)24(T)2 W W P
四、危险点 (距中性轴最远的点)
对于周边无棱角的截面,作两条与中性轴平行的直线, 与截面的周边相切,两切点即为对应的危险点。
z
D1
y
D2
对于有棱角的截面, 危险点必定在棱角处。
中性轴
ymaxP AM Wzz
My Wy
LmaxP AM Wzz
My Wy
五、(偏心拉、压问题的)截面核心:
当压力作用在此区域内时,可以保证中性轴与横截面不相交。
§8–1 概 述
一、组合变形 :在复杂外载作用下,构件的变形会包含几种简 单变形,当几种变形所对应的应力属同一量级时,不能忽略 之,这类构件的变形称为组合变形。
P
P
z
R
x
M
y
P
hg
P q
hg
水坝
二、组合变形的研究方法 —— 叠加原理
①外力分析:外力向形心简化并沿主惯性轴分解
②内力分析:求每个外力分量对应的内力方程和内力图, 确定危险面。
Pz
z0 Iy
zj
可见:只有当Iy = Iz时,中性轴与外力才垂直。 D1
Py
④ 最大正应力
P y
在中性轴两侧,距中性轴最远的点为拉压最大正应力点。
Lmax D2
ymax D1
fz
⑤ 变形计算
f
f
y2
f
2 z
tg f y fz
f fy
当j = ,即Iy = Iz时,为平面弯曲(截面的挠度垂直于中性轴)。
x
PMzy0 A Iz
Myz0 Iy
0
对于偏心拉压问题
中性轴 y
z P(zP,yP)
P PyP y0 PzP z0
A Aiz2
Aiy2
P (1 A
yP y0 iz2
z
P z0 iy2
)
0
1
yPy0 iz2
zPz0 iy2
0
令z0 0
ay
iz2 yP
令y0 0
az
iy2 zP
故中性轴与外力作用点分别处于截面形心的相对两侧。
根据对称性,它
n(-b/6,0) m(b/6,0) 的截面核心必为一
h
z
C
z 圆。中性轴与C点相
截面核心
k(h/6,0)
切,则
C
中性轴 2
b
4
y
2 3
ay
D 2
ey
iz2 ay
D2 16
D
D, 8
2
az
ez
iy2 az
0
圆截面核心为一直径为D/4的圆;矩形截面核心如图。
例4 图示不等截面与等截面杆,受力P=350kN,试分别求出两柱
x
Pz
Py
P
平面弯曲
斜弯曲
2.叠加:对两个平面弯曲进行研究;然后将计算结果叠加起来。
z y
Pz
Py
P
x
Pz
zj
Py P
y
解:1.将外载沿横截面的形心主轴分解 PyPsinj PzPcojs
2.研究两个平面弯曲
① 内力
M z Py ( Lx)
P ( L x )s inj M sinj
m
MyMcojs