大学物理3第11章习题分析与解答
大学物理《普通物理学简明教程》振动、波动和光学习题精解概要
A1 φ0A2
π/4x
O
图10-17
解(1)如图10-17,两矢量间夹角为 ,所以合振动振幅
合振动初相
(2)合振动A再与第三个振动合成.根据振动叠加条件, 时合振动有极大值,即
(k=0,1,2…)
当 时合振动有极小值,即
(k=0,1,2…)
10-19当两个同方向的简谐振动合成为一个振动时,其振动表式为:
3应用同一直线上两个简谐振动的合成规律时,要特别注意它们的相位差和合成的振幅的关系;同向时,合振幅最大,反向时,合振幅最小。
10.4思考题选答
1弹簧振子的无阻尼自由振动是简谐振动,同一弹簧振子在简谐驱动力持续作用下的稳态受迫振动也是简谐振动,这两种简谐运动有什么区别?
答:弹簧振子的无阻尼自由振动是在“无阻尼”,包括没有空气等外界施加的阻力和弹簧内部的塑性因素引起的阻力的情况下发生的,是一种理想情况。由于外界不能输入能量,所以弹簧振子的机械能守恒。这时振动的频率由弹簧振子自身的因素( )决定。
解:(1)根据振动方程可知:振幅 ,角率 ,初相 ,周期 =1秒;(2)分析质点运动情况:从t=0时刻起, ;向 轴负方向运动,直到 ,即 为止;质点改变运动方向,向 轴正方向运动到位置P点。最短时间间隔为:
(3) 处的时刻。
第11章机械波基础
答:从质量的意义上来说,质量表示物体的惯性,弹簧本身的质量计入时,系统的质量增大,更不易改变运动状态。对不断地周期性改变运动状态的弹簧振
子的简谐运动来说,其进程一定要变慢。这就是说,考虑弹簧的质量时,弹簧振子的振动周期将变大。
10.5习题解答
10-1质量为10g的小球与轻弹簧组成的系统,按 的规律而振动,式中t以s为单位,试求:
式中t以s为单位。求各分振动的角频率和合振动的拍的周期。
大学物理习题分析与解答
大学物理1 习题分析与解答 第1章 质点运动学习题分析与解答1.1 云室为记录带电粒子轨迹的仪器。
当快速带电粒子射入云室时,在其经过的路径上产生离子,使过饱和蒸气以离子为核心凝结成液滴,从而可采用照相方法记录该带电粒子的轨迹。
若设作直线运动带电粒子的运动方程为: (SI 单位),12C C α、、均为常量,并在粒子进入云室时计时,试描述其运动情况.解:分析 本题为一维直线运动问题,为已知运动学方程求带电粒子其他物理量的问题,属于运动学第一类问题,该类问题可直接应用求导方法处理。
即由带电粒子运动学方程对时间t 求导得到带电粒子的速度、加速度,进一步得到其初、终状态的位置、速度、加速度等运动学信息。
作如图1.1所示一维坐标系,选择计时处为坐标原点,则有Ox图1.1 1.1题用图12222e d e d d e d t tt x C C xv C t v a C vtαααααα---=-∴====-=- (1.1.1) 故带电粒子的初始状态为 2012020200t x C C v C a C v ααα=⇒=-==-=-、、 (1.1.2) 带电粒子的最终状态为 100t x C v a ∞∞∞=∞⇒===、、 (1.1.3) 讨论:(1)由(1.1.1)式知,粒子进入云室后作减速运动,其加速度为速度的一次函数;(2)由(1.1.2)式得到粒子的初始位置、初始速度和初始加速度; (3)由(1.1.3)式得到粒子的终态位置、终态速度和终态加速度;(4)由(1.1.1)式的加速度、速度及初始条件,对时间t 积分可得速度和运动学方程,此类问题属于运动学第二类问题,一般可直接应用积分方法处理。
1.2 将牛顿管抽为真空且垂直于水平地面放置,如图1.2所示自管中O 点向上抛射小球又落至原处用时2t ,球向上运动经h 处又下落至 h 处用时1t 。
现测得1t 、2t 和 h ,试由此确定当地重力加速度的数值.解:分析 本题为匀加速直线运动问题,由该类问题的运动学方程出发即可求解。
【单元练】成都市人民北路中学高中物理必修3第十一章【电路及应用】习题(答案解析)
一、选择题1.一个灵敏电流计的满偏电流g 100μA I =,内阻为50Ω,要把它改装成一个量程为10V 的电压表,则应在电流表上( ) A .串联一个阻值较小的电阻 B .串联一个阻值较大的电阻 C .并联一个阻值较小的电阻 D .并联一个阻值较大的电阻B解析:B由于灵敏电流计的满偏电压很小,根据串联分压的原理,要把它改装成一个量程为10V 的电压表,则应在电流表上串联一个阻值较大的电阻。
故ACD 错误,B 正确。
故选B 。
2.某小灯泡的伏安特性曲线如图中的AB 段(曲线)所示,由图可知,灯丝的电阻因温度的影响改变了( )A .1ΩB .10ΩC .30ΩD .40ΩB解析:B根据电阻的定义式,A 点的电阻为3Ω30Ω0.1A A A U R I === B 点的电阻为6Ω40Ω0.15B B B U R I === 从A 到B 电阻改变了10ΩB A R R R ∆=-=故选B 。
3.如图,线1表示的导体电阻为1R ,线2表示的导体的电阻为2R ,则正确的是( )A .12:1:3R R =B .12:3:1R R =C .将1R 与2R 串联后接于电源上,则电流比121:3I I =:D .将1R 与2R 并联后接于电源上,则电流比121:3I I =: A 解析:AAB .由图像可知,斜率表示电阻的倒数,所以可得11Ω1Ω1R ==23Ω3Ω1R ==所以两电阻之比为12:1:3R R =所以A 正确,B 错误;C .将1R 与2R 串联后接于电源上,电流相等,所以电流比为12:1:1I I =所以C 错误;D .将1R 与2R 并联后接于电源上,由欧姆定律可得,电流比为1212::3:1U U I I R R == 所以D 错误。
故选A 。
4.如图所示,电路中的电阻110ΩR =,2120ΩR =,340ΩR =,则( )A .当ab 端开路时,cd 之间的等效电阻是30ΩB .当cd 端开路时,ab 之间的等效电阻是50ΩC .当ab 端短路时,cd 之间的等效电阻是160ΩD .当cd 端短路时,ab 之间的等效电阻是8ΩB 解析:BA .当ab 端开路时,cd 之间由R 2、R 3串联而成,故cd 之间的等效电阻是23160ΩR R +=故A 错误;B .当cd 端开路时,ab 之间由R 1、R 3串联而成,故ab 之间的等效电阻是R 1+R 3=50Ω故B 正确;C .当ab 端短路时,cd 之间由R 1、R 3并联,然后与R 2串联而成,故cd 之间的等效电阻是13213128R R R R R +=Ω+故C 错误;D .当cd 端短路时,ab 之间由R 2、R 3并联,然后与R 1串联而成,故ab 之间的等效电阻是2312340ΩR R R R R +=+故D 错误。
大学物理 力学部分习题解答
第1章 质点运动与牛顿定律1-9 一人自坐标原点出发,经20(s)向东走了25(m),又用15(s)向北走了20(m),再经过10(s)向西南方向走了15(m),求:(1)全过程的位移和路程;(2)整个过程的平均速度和平均速率。
分析:从位移的概念出发,先用分量之差表示出每段位移,再通过矢量求和而求出全过程的位移,进而由路程、平均速度和平均速率的概念求出路程、平均速度和平均速率。
解: (1)以人为研究对象,建立如图所示的直角坐标系, 全过程的位移为:r r r r OC OA AB BC Δ=Δ+Δ+Δ()()()()A O B A C B C B =x x +y y +x x +y y ----i j i j =25+2015451545i j i j 00cos sin --j i 4.94.14+=其大小为:2222Δ=(Δ)+(Δ)=(14.4)+(9.4)=17.2()OC r x y m全过程位移的方向为:01.334.144.9==∆∆=arctg x y arctg θ 即方向向东偏北01.33 (2)平均速度 OCr tυ∆=∆ 其大小为:()117.20.3845OC r m s t υ-∆===⋅∆ 平均速度的方向沿东偏北01.33 平均速率 25201545s t υ∆++==∆()133.1-⋅=s m 1-10 一质点P 沿半径 3.00m R =的圆周作匀速率运动,运动一周所需时间为20.0s ,设0t =时,质点位于O 点。
按如图所示的坐标系oxy ,求:(1)质点P 在任意时刻的位矢;(2)5s 时的速度和加速度。
分析:只要找出在任意时刻质点P 点的坐标x 、y ,(通过辅助坐标系'''o x y 而找出)就能表示出质点P 在任意时刻的位矢x y =+r i j ,进而由r 对时间求导求出速度υ和加速度a 。
解:如图所示,在'''o x y 坐标系中,因t Tπθ2=,则质点P 的参数方程为: 22`,`x Rsin t y Rcos t T Tππ==- 图1-30 习题1-10图解习题1-9图解坐标变换后,在oxy 坐标系中有: 2`x x Rsint T π==,02`y y y Rcos t R Tπ=+=-+ 则质点P 的位矢方程为: 22ππ=Rsint +Rcos t +R T T ⎛⎫ ⎪⎝⎭-r i j ()()=30.1310.1i j sin t cos t ππ+⎡⎤⎣⎦- 5s 时的速度和加速度分别为 :22220.3r i j j υd R cos t R sin t dt T T T Tπππππ==+=2222222=()+()(0.03)22d =R sin t R cos t =dt T T T Tπππππ--r a i j j1-11 已知一质点的运动方程为2362x t t =-(单位为SI 制),求:(1)第2秒内的平均速度;(2)第3秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
【单元练】北京市怀柔区九渡河中学高中物理必修3第十一章【电路及应用】习题(含解析)
所以最终读数为
7mm+0.5mm=7.5mm
12.一电子沿一圆周顺时针高速转动,周期为10-10s,则等效电流为______A,方向为______方向(填“顺时针”或者“逆时针”)。6×10-9逆时针
解析:6×10-9逆时针
[1]等效电流为
[2]规定正电荷的定向移动方向为电流的方向,而电子带负电且沿一圆周顺时针转动,所以等效电流方向为逆时针方向。
(2)把小量程的电流表改装成较大量程的电压表需________(填写“串联”或“并联”)一个电阻;把小量程的电流表改装成较大量程的电流表需_________(填写“串联”或“并联”)一个电阻。Ug=IgRg串联并联
解析:Ug=IgRg串联并联
(1)[1]由欧姆定律可知,满偏电流(Ig)、满偏电压(Ug)、内阻(Rg),它们间的关系是
【解析】
图甲螺旋测微器的读数为
图乙螺旋测微器的读数为
19.如图是有两个量程的电压表,当使用a、b两个端点时,量程为0~10V,当使用a、c两个端点时,量程为0~100 V。已知电流表的内阻Rg为500Ω,满偏电流Ig为1 mA,则R1=________Ω,R2=________Ω。
9500Ω9000Ω
D.流过M、N的电流为20mAD
解析:D
AB.MN两端电压
故AB错误;
CD.流过M、N的电流
故C错误,D正确。
故选D。
2.有A、B两个电阻,它们的伏安特性曲线如图所示,从图线可以判断( )
A.电阻A的阻值大于电阻B
B.电阻A的阻值小于电阻B
C.两电阻并联时,流过电阻A的电流强度较小
D.两电阻串联时,流过电阻A的电流强度较大B
B.应并联一个0.1Ω的电阻
大学物理习题解答3第三章热力学
第三章热力学本章提要1.准静态过程系统连续经过的每个中间态都无限接近平衡态的一种理想过程。
准静态过程可以用状态图上的曲线表示。
2.内能系统内所有分子热运动动能和分子之间相互作用势能的和,其数学关系式为(,)E E V T=内能是态函数。
3.功功是过程量。
微分形式:VpA dd=积分形式:⎰=21dV VV pA4.热量两个物体之间或物体内各局部之间由于温度不同而交换的热运动能量。
热量也是过程量。
5.热力学第一定律热力学第一定律的数学表达式:Q E A=∆+热力学第一定律的微分表达式:d d dQ E A=+由热力学第一定律可知,第一类永动机是不可能造成的。
6.理想气体的热功转换〔1〕等体过程:d 0A = 热量增量为m m (d )d d V V MQ E C T μ,,==或m 21m 21V ,V ,MQ E E C (T T )μ=-=-〔2〕等压过程: 热量增量为(d )d d d d p Q E A E p V =+=+因m 21()V ME C T T μ∆,-=212121()()V V MA p V p V V R T T μd ==-=-⎰那么)()(21212T T R MT T R i M Q P -+-=μμ 〔3〕等温过程:d 0E =热量增量为(d )d d V Q A p V ==因2121d ln V T V V MV MA RT RT V V μμ==⎰那么2112lnln T T V pMM Q A RT RT V p μμ=== 〔4〕绝热过程:d 0Q = 根据热力学第一定路可得d d 0E A +=那么m d d d d V ,MA p V E C Tμ==-=-或221121m ()d d V V V ,V V MA E E p V C T μ=--==-⎰⎰)(112211V p V p A --=γ 在绝热过程中理想气体的p 、V 、T 三个状态参量之间满足如下关系:常量=γpV常量=-1γTV 常量=--γγT p 17.热容量等体摩尔热容量:m (d )d d d V V Q EC T T,== 等压摩尔热容量:m (d )d d d d d p p Q E VC p TT T,==+ 对于理想气体,假设分子自由度为i ,那么m 2V ,i C R = m 22P,i C R +=迈耶公式:m m p,V ,C C R =+比热容比:m m22p,V ,C i C γ+==8.焓在等压过程中,由热力学第一定律可得2121()()P Q E p V E E V V =∆+∆=-+-由于12P P P ==,上式可写为222111()()P Q E p V E pV =+-+ 如果令H E pV =+21P Q H H H =-=∆焓是一个态函数。
大学物理教材习题答案
⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。
答: E 。
位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。
2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。
答: C 。
三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。
3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。
答:C 。
由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。
三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。
问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。
解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。
2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。
大学物理(第五版)课后习题答案
面向21 世纪课程教材学习辅导书习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答。
与上一版相比本书增加了选择题更换了约25的习题。
所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际。
此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学、电磁学、波动过程和光学热物理、相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力。
物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路。
只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力。
有鉴于此重分析、简解答的模式成为编写本书的指导思想。
全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生―即物穷理‖的精神通过解题过程体验物理科学的魅力和价值尝试―做学问‖的乐趣。
因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助。
本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100 3102 -93 中规定的法定计量单位。
本书由马文蔚教授主编由殷实、沈才康、包刚、韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢。
由于编者的水平有限敬请读者批评指正。
编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础但仅仅记住一些公式是远远不够的求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等根据模型、条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用1正确选择物理模型和认识运动过程力学中常有质点、质点系、刚体等模型每种模型都有特定的含义适用范围和物理规律采用何种模型既要考虑问题本身的限制又要注意解决问题的需要例如用动能定理来处理物体的运动时可把物体抽象为质点模型而用功能原理来处理时就必须把物体与地球组成一个系统来处理再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具2.叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化―复杂‖为―简单‖此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等叠加原理在诸如电磁学振动、波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟3.类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如txddv 与tθωdd taddv 与tωαdd 其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式这种类比不仅运动学有动力学也有如maF 与JαM0dvvmmtF 与0dLωJωtM 2022121dvvmmxF 与2022121dωJωJθM 可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩此外还有许多可以类比的实例如万有引力与库仑力、静电场与稳恒磁场电介质的极化与磁介质的磁化等等只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通4微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的一般来说它们是时空坐标的函数运用微积分可求得质点的运动方程和运动状态这是大学物理和中学物理最显著的区别例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数另外对物理量数学表达式进行合理变形就可得出新的物理含义如由tddav借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由tddvr也可求得质点的运动方程以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件在力学学习中我们会发现ta0vv和2021ttarv等描述质点运动规律的公式只是式tt0ddavvv0和式tttrdd000arv在加速度a为恒矢量条件下积分后的结果此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具2 如何对矢量函数进行微积分运算我们知道很多物理量都是矢量如力学中的r、v、a、p 等物理量矢量既有大小又有方向从数学角度看它们都是―二元函数‖在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对x、y 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量a 、v、s 等进行微积分运算3 积分运算中的分离变量和变量代换问题以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F m a 求得a的表达式再由式dv adt 通过积分运算求得v其中如果力为时间t 的显函数则a at此时可两边直接积分即ttta0ddvvv0但如果力是速率v 的显函数则a av此时应先作分离变量后再两边积分即tta0dd1vvvv0又如力是位置x 的显函数则aax此时可利用txddv得vxtdd并取代原式中的dt再分离变量后两边积分即xxtxa0ddvvvv0 用变量代换的方法可求得vx表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量5.求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选运用牛顿定律、转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大因而只要问题不涉及加速度则应首先考虑以下路径2 角动量方法如问题不涉及加速度但涉及时间此法可首选3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题当然对复杂问题几种方法应同时考虑此外三个守恒定律动量守恒、能量守恒、角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题总之应学会从不同角度分析与探讨问题以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠―悟性‖但这种―悟性‖产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至t Δt时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ r 平均速度为v平均速率为v 1 根据上述情况则必有 A Δr Δs Δr B Δr ≠ Δs ≠ Δr当Δt→0 时有 dr ds ≠ dr C Δr ≠ Δr ≠ Δs当Δt→0 时有 dr dr ≠ ds D Δr ≠ Δs ≠ Δr当Δt→0 时有 dr dr ds 2 根据上述情况则必有 A v v v v B v ≠v v ≠ v C v v v ≠ v D v ≠v v v分析与解1 质点在t 至t Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs PP′ 位移大小Δr PP′而Δr r - r 表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能但当Δt→0 时点P′无限趋近P 点则有 dr ds但却不等于dr故选B 2 由于 Δr ≠Δs故tstΔΔΔΔr即 v ≠v 但由于 dr ds故tstddddr即 v v由此可见应选C 1 -2 一运动质点在某瞬时位于位矢rxy的端点处对其速度的大小有四种意见即1trdd 2tddr 3tsdd 422ddddtytx 下述判断正确的是 A 只有12正确B 只有2正确 C 只有23正确 D 只有34正确分析与解trdd表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率通常用符号vr表示这是速度矢量在位矢方向上的一个分量tddr表示速度矢量在自然坐标系中速度大小可用公式tsddv计算在直角坐标系中则可由公式22ddddtytxv求解故选D 1 -3 质点作曲线运动r 表示位置矢量v表示速度a表示加速度s 表示路程a 表示切向加速度对下列表达式即1d v /dt a2dr/dt v3ds/dt v4d v /dt a 下述判断正确的是A 只有1、4是对的B 只有2、4是对的C 只有2是对的D 只有3是对的分析与解tddv表示邢蚣铀俣萢 它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用trdd在极坐标系中表示径向速率vr如题1 -2 所述tsdd在自然坐标系中表示质点的速率v而tddv表示加速度的大小而不是切向加速度a 因此只有3 式表达是正确的故选D 1 -4 一个质点在做圆周运动时则有 A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量a 起改变速度大小的作用而法向分量an起改变速度方向的作用质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的至于a 是否改变则要视质点的速率情况而定质点作匀速率圆周运动时a 恒为零质点作匀变速率圆周运动时a 为一不为零的恒量当a 改变时质点则作一般的变速率圆周运动由此可见应选B 1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作 A 匀加速运动θcos0vv B 匀减速运动θcos0vv C 变加速运动θcos0vv D 变减速运动θcos0vv E 匀速直线运动0vv 分析与解本题关键是先求得小船速度表达式进而判断运动性质为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为22hlx其中绳长l 随时间t 而变化小船速度22ddddhltlltxv式中tldd表示绳长l随时间的变化率其大小即为v0代入整理后为θlhlcos/0220vvv方向沿x 轴合蛴伤俣缺泶锸娇膳卸闲〈 鞅浼铀僭硕 恃 讨论有人会将绳子速率v0按x、y 两个方向分解则小船速度θcos0vv这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为32262ttx式中x 的单位为mt 的单位为s求1 质点在运动开始后4.0 s内的位移的大小 2 质点在该时间内所通过的路程3 t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等质点在t 时间内的位移Δx 的大小可直接由运动方程得到0Δxxxt而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了为此需根据0ddtx来确定其运动方向改变的时刻tp 求出0 tp 和tp t 内的位移大小Δx1 、Δx2 则t 时间内的路程21xxs如图所示至于t 4.0 s 时质点速度和加速度可用txdd和22ddtx两式计算解 1 质点在4.0 s内位移的大小m32Δ04xxx 2 由0ddtx 得知质点的换向时刻为s2pt t0不合题意则m0.8Δ021xxx m40Δ242xxx 所以质点在4.0 s时间间隔内的路程为m48ΔΔ21xxs 3 t4.0 s时1s0.4sm48ddttxv2s0.422m.s36ddttxa 1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图a所示设t0 时x0试根据已知的v-t 图画出a-t 图以及x -t 图分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中AB、CD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线又由速度的定义可知x-t 曲线的斜率为速度的大小因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线根据各段时间内的运动方程xxt求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图解将曲线分为AB、BC、CD 三个过程它们对应的加速度值分别为2sm20ABABABttavv 匀加速直线运动0BCa 匀速直线运动2sm10CDCDCDttavv 匀减速直线运动根据上述结果即可作出质点的a-t 图图B 在匀变速直线运动中有2021ttxxv 由此可计算在0 2 和4 6 时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0 2 和4 6 时间内的x -t 图在2 4 时间内质点是作1sm20v的匀速直线运动其x -t 图是斜率k20的一段直线图c 1 -8 已知质点的运动方程为jir222tt式中r 的单位为mt 的单位为 求 1 质点的运动轨迹2 t 0 及t 2 时质点的位矢3 由t 0 到t 2 内质点的位移Δr 和径向增量Δr 4 2 内质点所走过的路程s 分析质点的轨迹方程为y fx可由运动方程的两个分量式xt和yt中消去t 即可得到对于r、Δr、Δr、Δs 来说物理含义不同可根据其定义计算其中对s的求解用到积分方法先在轨迹上任取一段微元ds则22dddyxs最后用ssd积分求 解1 由xt和yt中消去t 后得质点轨迹方程为2412xy 这是一个抛物线方程轨迹如图a所示2 将t 0 和t 2 分别代入运动方程可得相应位矢分别为jr20 jir242 图a中的P、Q 两点即为t 0 和t 2 时质点所在位置3 由位移表达式得jijirrr24Δ020212yyxx 其中位移大小m66.5ΔΔΔ22yxr 而径向增量m47.2ΔΔ2020222202yxyxrrrr 4 如图B所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds则22dddyxs由轨道方程可得xxyd21d代入ds则2 内路程为m91.5d4d402xxssQP 1 -9 质点的运动方程为23010ttx 22015tty 式中xy 的单位为mt 的单位为 试求1 初速度的大小和方向2 加速度的大小和方向分析由运动方程的分量式可分别求出速度、加速度的分量再由运动合成算出速度和加速度的大小和方向解 1 速度的分量式为ttxx6010ddv ttyy4015ddv 当t 0 时vox -10 m· -1voy 15 m· -1 则初速度大小为120200sm0.18yxvvv 设vo与x 轴的夹角为α则23tan00xyαvv α123°41′ 2 加速度的分量式为2sm60ddtaxxv 2sm40ddtayyv 则加速度的大小为222sm1.72yxaaa 设a 与x 轴的夹角为β则32tanxyaaβ β-33°41′或326°19′ 1 -10 一升降机以加速度1.22 m· -2上升当上升速度为2.44 m· -1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距2.74 m计算1螺丝从天花板落到底面所需要的时间2螺丝相对升降机外固定柱子的下降距离分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 y1t和y2 y2t并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度升降机厢的高度就是螺丝或升降机运动的路程解1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为20121attyv 20221gtthyv 当螺丝落至底面时有y1 y2 即20202121gtthattvv s705.02aght 2 螺丝相对升降机外固定柱子下降的距离为m716.021202gttyhdv 解2 1以升降机为参考系此时螺丝相对它的加速度大小a′g a螺丝落至底面时有2210tagh s705.02aght 2 由于升降机在t 时间内上升的高度为2021atthv 则m716.0.。
《大学物理简明教程》课后习题答案(全)
《大学物理简明教程》习题解答习题一1-1 |r ∆|与r ∆有无不同?td d r 和td d r 有无不同? td d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)td d r 是速度的模,即t d d r ==v ts d d .tr d d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中trd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)td d v 表示加速度的模,即t v a d d=,t vd d 是加速度a 在切向上的分量.∵有ττ (v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =trd d ,及a =22d d t r而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a tr v ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
《新编大学物理》(上、下册)教材习题答案
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
大学物理3第09章习题分析与解答
大学物理3第09章习题分析与解答(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第九章 电磁感应9-1 在感应电场中电磁感应定律可写成tΦd d d L K -=⎰⋅l E ,式中K E 为感生电场的电场强度.此式表明[ ]。
(A) 闭合曲线L 上K E 处处相等 (B)感生电场的电场强度线不是闭合曲线(C) 感生电场是保守力场 (D) 在感生电场中不能像对静电场那样引入电势的概念分析与解 感生电场与位移电流是麦克斯韦两个重要假设,感生电动势总是等于感生电场沿该闭合回路的环流,故感生电场不是保守场,称为有旋电场,不能象静电场那样引入电势的概念。
正确答案为(D )。
9-2 E 和E k 分别表示静电场和有旋电场的电场强度,下列关系式中,正确的是[ ]。
(A )0d L =⎰⋅l E (B )0Ld ≠⎰⋅l E(C )0d k L =⎰⋅l E(D )0d k L≠⎰⋅l E 分析与解 静电场的环流恒为零,而感生电场的环流不一定为零。
正确答案为(A )。
9-3 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感,则[ ]。
(A) 铜环中有感应电流,木环中无感应电流(B) 铜环中有感应电流,木环中有感应电流(C) 铜环中感生电场大,木环中感生电场小(D )铜环中感生电场小,木环中感生电场大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但木环中不会形成电流。
正确答案为(A )。
9-4 关于位移电流,有下面四种说法,正确的是[ ]。
(A )位移电流的实质是变化的电场(B )位移电流和传导电流一样是定向运动的电荷(C )位移电流的热效应服从焦耳—楞兹定律(D )位移电流的磁效应不服从安培环路定律分析与解 位移电流的实质是变化的电场。
变化的电场激发磁场,这一点位移电流等效于传导电流;但位移电流不是定向运动的电荷,也不服从焦耳热效应、安培力等定律。
大学物理第十一章习题解答..
第十一章:恒定电流的磁场习题解答1.题号:40941001分值:10分如下图所示,是一段通有电流I 的圆弧形导线,它的半径为R ,对圆心的张角为θ。
求该圆弧形电流所激发的在圆心O 处的磁感强度。
解答及评分标准:在圆弧形电流中取一电流元l Id (1分),则该电流元l Id 在圆心处的磁感强度为: θπμπμd R I RIdl dB 490sin 40020==(2分) 其中θRd dl =则整段电流在圆心处的磁感强度为:θπμθπμθR I d R I dB B 44000===⎰⎰(2分)2.题号:40941002分值:10分一无限长的载流导线中部被弯成圆弧形,如图所示,圆弧形半径为cm R 3=,导线中的电流为A I 2=。
求圆弧形中心O 点的磁感应强度。
解答及评分标准:两根半无限长直电流在O 点的磁感应强度方向同为垂直图面向外,大小相等,以垂直图面向里为正向,叠加后得RI R I B πμπμ242001-=•-= (3分) 圆弧形导线在O 点产生的磁感应强度方向垂直图面向里,大小为R I R I B 83432002μμ==(3分) 二者叠加后得 T RI R I B B B 500121081.1283-⨯=-=+=πμμ (3分) 方向垂直图面向里。
(1分)3.题号:40941003分值:10分难度系数等级:1一段导线先弯成图(a )所示形状,然后将同样长的导线再弯成图(b )所示形状。
在导线通以电流I 后,求两个图形中P 点的磁感应强度之比。
(a ) (b )解答及评分标准:图中(a )可分解为5段电流。
处于同一直线的两段电流对P 点的磁感应强度为零,其他三段在P 点的磁感应强度方向相同。
长为l 的两段在P 点的磁感应强度为 lI B πμ4201= (2分) 长为2l 的一段在P 点的磁感应强度为 l I B πμ4202=(2分) 所以lI B B B πμ22012=+= (2分) 图(b )中可分解为3段电流。
《大学物理学》光的干涉练习题马解答
《大学物理学》光的干涉学习材料(解答)一、选择题:11-1.在双缝干涉实验中,若单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明纹中心位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则( D ) (A )中央明条纹向下移动,且条纹间距不变; (B )中央明条纹向上移动,且条纹间距增大; (C )中央明条纹向下移动,且条纹间距增大; (D )中央明条纹向上移动,且条纹间距不变。
【提示:画出光路,找出'S 到光屏的光路相等位置】11-2.如图所示,折射率为2n ,厚度为e 的透明介质薄膜的上方和下方的透明介质折射率分别为1n 和3n ,且12n n <,23n n >,若波长为λ的平行单色光垂直入射在薄膜上,则上下两个表面反射的两束光的光程差为( B )(A )22n e ; (B )22/2n e λ-; (C )22n e λ-; (D )222/2n e λn -。
【提示:上表面反射有半波损失,下表面反射没有半波损失】11-3.两个直径相差甚微的圆柱体夹在两块平板玻璃之间构成空气劈尖, 如图所示,单色光垂直照射,可看到等厚干涉条纹,如果将两个圆柱 之间的距离L 拉大,则L 范围内的干涉条纹( C ) (A )数目增加,间距不变; (B )数目增加,间距变小; (C )数目不变,间距变大; (D )数目减小,间距变大。
【提示:两个圆柱之间的距离拉大,空气劈尖夹角减小,条纹变疏,但同时距离L 也变大,考虑到两圆柱的高度差不变,所以条纹数目不变】4.用白光光源进行双缝试验,如果用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则:( D )(A )干涉条纹的宽度将发生改变; (B )产生红光和蓝光两套彩色干涉条纹; (C )干涉条纹的亮度将发生改变; (D )不产生干涉条纹。
【提示:不满足干涉条件,红光和蓝光不相干】5.如图所示,用波长600λ=nm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为( B )(A )5.0×10-4cm ; (B )6.0×10-4cm ; (C )7.0×10-4cm ; (D )8.0×10-4cm 。
大学物理3第11章习题分析与解答.
习 题 解 答11-1 在双缝干涉实验中,若单色光源S 到两缝21S S 、距离相等,则观察屏上中央明纹位于图中O 处。
现将光源S 向下移动到示意图中的S '位置,则( )(A )中央明条纹也向下移动,且条纹间距不变 (B )中央明条纹向上移动,且条纹间距不变 (C )中央明条纹向下移动,且条纹间距增大 (D )中央明条纹向上移动,且条纹间距增大解 由S 发出的光到达21S S 、的光成相等,它们传到屏上中央O 处,光程差0=∆,形成明纹,当光源由S 向下移动S '时,由S '到达21S S 、的两束光产生了光程差,为了保持原中央明纹处的光程差为0,它将上移到图中O '处,使得由S '沿21S S 、传到O '处的两束光的光程差仍为0.而屏上各级明纹位置只是向上平移,因此条纹间距不变。
故选B11-2 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如附图所示,若薄膜厚度为e , 且n 1<n 2,n 3<n 2, λ1为入射光在n 1中的波长,则两束反射光的光程为( )(A )e n 22 (B )11222n e n λ-(C )22112λn e n - (D )22122λn e n -习题11-2图解 由于n 1〈n 2,n 3〈n 2,因此光在表面上的反射光有半波损失,下表面的反射光没有半波损失,所以他们的光程差222λ-=∆e n ,这里λ是光在真空中的波3n S S ’OO ’长,与1λ的关系是11λλn =。
故选C11-3 如图所示,两平面玻璃板构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将发生( )变化 (A )干涉条纹间距增大,并向O 方向移动 (B )干涉条纹间距减小,并向B 方向移动 (C )干涉条纹间距减小,并向O 方向移动 (D )干涉条纹间距增大,并向B 方向移动解 空气劈尖干涉条纹间距θλsin 2n l =∆,劈尖干涉又称为等厚干涉,即k相同的同一级条纹,无论是明纹还是暗纹,都出现在厚度相同的地方. 当A 板与B 板的夹角θ增大时,△l变小. 和原厚度相同的地方向顶角方向移动,所以干涉条纹向O 方向移动。
医用物理学-几何光学习题解答
2)利用通过节点的光线平行射出,定出H2和N2
3)利用平行光线出射后通过焦点,定出F2
11-14 一近视眼患者的远点在眼前2m处,今欲使其能看物,问至少应配戴什么样的眼睛?
11-4 显微镜的放大倍数越大,是否其分辨本领越高?
答:不是,因为分辨本领的大小只决定于物镜,与目镜无关。
11-5 电子显微镜与普通光学显微镜的主要区别?
答:电子显微镜用波长很短的电子射线代替可见光制作成的普通显微镜。
11-6 一直径为20cm,折射率为1.53的球有两个气泡,看上去一个恰好在球心,另一个从最近的方向看去,好象在球面表面和中心的中间,求两气泡的实际位置?
4.激光扫描共聚焦显微镜是在荧光显微镜成像的基础上加装了激光扫描装置。使用紫外光或激光激发荧光探针,可以得到细胞或组织部微细结构的荧光图像,从而可以观察细胞的形态变化或生理功能的改变,能产生真正具有三维清晰度的图像,同时可在亚细胞水平上观察诸如Ca2+、pH值和膜电位等生理信号及细胞形态的实时动态变化。激光扫描共聚焦显微镜成为形态学、分子细胞生物学、神经科学、药理学和遗传学等领域中新的有力研究工具,在基因芯片,克隆技术中都有较好的应用.
根据透镜成像: 得 (2)
解得 cm,说明物体通过凸透镜成像在凹透镜后20cm处,由此可得
=5cm+20cm=25cm,代入(1)式,有
解得:p1=37.5cm
11-13 如图11-2所示,已知物、像和厚透镜的第一主焦点F1的位置,厚透镜的两侧为同一媒质。适用做图的方法找出厚透镜的第二主焦点F2,一对主点H1,H2和一对节点N1,N2。
大学物理学第二版 习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
大学物理习题分析与解答
大学物理习题分析与解答Daxue Wuli Xiti Fenxi yu Jieda习题解答1.1 一物体从静止开始, 在2s 内被匀加速到40m/s ,物体的加速度为多少?在2s 内物体运动了多大距离?解:物体的加速度为:2040020/2t v v a m s t --===物体在2s 内运动的距离为:22200400402220t v v x m a --===⨯1.2 质点在水平方向做直线运动, 坐标与时间的变化关系为324t t x -=(SI ). 试求:⑴ 开始的2s 内的平均速度和2s 末的瞬时速度. ⑵ 1s 末到3s 末的位移和平均速度. ⑶ 1s 末到3s 末的平均加速度. ⑷ 3s 末的瞬时加速度.解:⑴ 由题意知,物体在2s 内的位移为:334242228x t t m =-=⨯-⨯=-2s 内的平均速度为:84/2x v m s t -===- 2s 末的瞬时速度为:2224646220/dxv t m s dt==-=-⨯=- ⑵ 1s 末到3s 末的位移为:()()3313314323412144s x x m=-=⨯-⨯-⨯-⨯=-1s 末到3s 末平均速度为:13134422/31s v m s t -===-∆- ⑶ 由运动方程求导,可得各时刻的瞬时速度为:246dxv t dt ==- 1s 末的瞬时速度为: 221464612/dxv t m s dt ==-=-⨯=- 3s 末的瞬时速度为: 2234646350/dxv t m s dt==-=-⨯=- 1s 末到3s 末平均加速度为:()2311350224/31v v a m s t ----===-∆- 3s 末的瞬时加速度为:22321212336/dv d xa t m s dt dt===-=-⨯=-1.3 质点以初速度0v 做直线运动, 所受阻力与质点运动速度成正比. 求当质点速度减为nv 0时()1>n , 质点走过的距离与质点所能走的总距离之比.解:质点运动过程中所受阻力为:F kv =-根据牛顿第二定律:dvmkv dt=- dv dx m k dtdt=-k dv dx m=-当质点速度减为nv 0时()1>n , 质点走过的距离为:1v xnv k dv dx m =-⎰⎰001v k v x nm⎛⎫-=-⎪⎝⎭101()m x n v kn=-质点所能走的总距离为:2xv k dv dx m =-⎰⎰02k v x m-=-20m x v k=即: 121(1)x x n=-1.4 做直线运动的质点的加速度为43a t =+(SI ). 初始条件为0=t 时, 5x =m, 0=v . 求质点在10t =s 时的速度和位置.解: (43)dv t dt =+21342v t t C =++由初始条件:0t =时,0v =,可得: 10C = 即 2342v t t =+23(4)2dx t t dt =+232122x t t C =++由初始条件:0t =时,5x =,可得:25C =即 231252x t t =++当10t s =时223344101040150190/22v t t m s =+=⨯+⨯=+=23231125210105200500570522s t t m =++=⨯+⨯+=++=1.5 质点沿x 轴做直线运动, 加速度和位置的关系为262x a +=(SI ). 求质点在任意位置时的速度. 已知质点在0=x 时, 速度为10/m s 。
大学物理习题及解答(振动与波、波动光学)
1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯ 10-2 m 。
若使物体上下振动,且规定向下为正方向。
(1)t =0时,物体在平衡位置上方8.0 ⨯ 10-2 m处,由静止开始向下运动,求运动方程。
(2)t = 0时,物体在平衡位置并以0.60 m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
则弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω(1)设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
则运动方程为])s 10cos[()m 100.8(121π+⨯=--t x(2)t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;则运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如图所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需要的时间。
题2分析:由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
本题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
大学物理课后习题解答
所以
l—15 一粒子沿抛物线轨道 运动,且知 。试求粒子在 m处的速度和加速度。
[解] 由粒子的轨道方程
对时间t求导数 (1)
再对时间t求导数并考虑到 是恒量 (2)
把 m代入式(1)得
1—7 湖中一小船,岸边的人用跨过高处的定滑轮的绳子拉船靠岸(如图所示)。当收绳速度为v时,试问:(1)船的运动速度u比v大还是小?(2)若v=常量。船能否作匀速运动?如果不能,其加速度为何值?
[解] (1) 由教材上图知
两边对t求导数,并注意到h为常数,得
[解] (1) 质点的加速度 a=dv/dt=4t
又 v=dx/dt 所以 dx=vdt
对上式两边积分,得
由题知 (m)
所以 c= - 457.3m
因而质点的运动方程为:
(2)
(3) 质点沿X轴作变加速直线运动,初速度为8m/s,初位置为-457.3m.
[解] 设登月舱的速率为v,周期为T,则
即 (1)
即 (2)
解式(1)(2)组成的方程组得
1—20 如图所示,一卷机扬自静止开始作匀加速运动,绞索上一点起初在A处经3s到达鼓轮的B处,然后作圆周运动。已知AB=0.45m,鼓轮半径R=0.5m,求该点经过点C时,其速度和加速度的大小和方向。
所以,t=1s时, ,
t=2s时, ,
(4)当质点的位置矢量和速度矢量垂直时,有
即
整理,得
解得 (舍去)
(5)任一时刻t质点离原点的距离
[解] 由
对上式两边积分
即
故速度v与y的函数关系为
1—14 一艘正以速率 匀速行驶的舰艇,在发动机关闭之后匀减速行驶。其加速度的大小与速度的平方成正比,即 , k为正常数。试求舰艇在关闭发动机后行驶了x距离时速度的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理3第11章习题分析与解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN习 题 解 答11-1 在双缝干涉实验中,若单色光源S 到两缝21S S 、距离相等,则观察屏上中央明纹位于图中O 处。
现将光源S 向下移动到示意图中的S '位置,则( )(A )中央明条纹也向下移动,且条纹间距不变 (B )中央明条纹向上移动,且条纹间距不变 (C )中央明条纹向下移动,且条纹间距增大 (D )中央明条纹向上移动,且条纹间距增大解 由S 发出的光到达21S S 、的光成相等,它们传到屏上中央O 处,光程差0=∆,形成明纹,当光源由S 向下移动S '时,由S '到达21S S 、的两束光产生了光程差,为了保持原中央明纹处的光程差为0,它将上移到图中O '处,使得由S '沿21S S 、传到O '处的两束光的光程差仍为0.而屏上各级明纹位置只是向上平移,因此条纹间距不变。
故选B11-2 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如附图所示,若薄膜厚度为e , 且n 1<n 2,n 3<n 2, λ1为入射光在n 1中的波长,则两束反射光的光程为( )(A )e n 22 (B )11222n e n λ-3n S S ’OO ’(C )22112λn e n - (D )22122λn e n - 习题11-2图解 由于n 1〈n 2,n 3〈n 2,因此光在表面上的反射光有半波损失,下表面的反射光没有半波损失,所以他们的光程差222λ-=∆e n ,这里λ是光在真空中的波长,与1λ的关系是11λλn =。
故选C11-3 如图所示,两平面玻璃板构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将发生( )变化(A )干涉条纹间距增大,并向O 方向移动 (B )干涉条纹间距减小,并向B 方向移动 (C )干涉条纹间距减小,并向O 方向移动 (D )干涉条纹间距增大,并向B 方向移动解 空气劈尖干涉条纹间距θλsin 2n l =∆,劈尖干涉又称为等厚干涉,即k相同的同一级条纹,无论是明纹还是暗纹,都出现在厚度相同的地方. 当A 板与B 板的夹角θ增大时,△l变小. 和原厚度相同的地方向顶角方向移动,所以干涉条纹向O 方向移动。
故选C11-4 如图所示的三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P(A )全明 (B )全暗(C )右半部明,左半部暗 (D )右半部暗,左半部明习题11-4图解 牛顿环的明暗纹条件(光线垂直入射0=i ).162.AθBO习题11-3图⎪⎪⎩⎪⎪⎨⎧⋅⋅⋅=⋅⋅⋅=+=∆)(,2,1,0,,2,1,0,2)12(明纹(暗纹)k k k k λλ在接触点P 处的厚度为零,光经劈尖空气层的上下表面反射后的光程差主要由此处是否有半波损失决定. 当光从光疏介质(折射率较小的介质)射向光密的介质(折射率较大的介质)时,反射光有半波损失. 结合本题的条件可知右半部有一次半波损失,所以光程差是2λ,右半部暗,左半部有二次半波损失,光程差是零,左半部明。
故选D11-5 在单缝夫琅禾费衍射实验中. 波长为λ的单色光垂直入射在宽度为α=4λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( )(A )2个 (B )4个 (C )6个 (D )8个解 根据单缝衍射公式⎪⎪⎩⎪⎪⎨⎧±=±+±⋅⋅⋅==)(,22)(,2)12(,3,2,1sin 暗纹中心明纹中心λλλθk k k k a k因此第k 级暗纹对应的单缝波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k+1个半波带. 由题意asin θ=2λ,即对应第2级暗纹,单缝分成4个半波带。
故选B11-6 一束光强为0I 的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为( )(A )240I (B)40I (C)20I (D)022I解 光强为0I 的自然光垂直穿过偏振片后的光强变为,两偏振片的偏振化方向成45°角,由马呂斯定律可知经过第二个偏振片后光强为 ,445cos 2020I I =︒ 故选B11-7 在双缝干涉实验中,若使两逢之间的距离增大,则屏幕上干涉条纹间距为 ;若使单色光波长减小,则干涉条纹间距 。
解 减小、减小. 相邻两明(暗)纹的间距是d D x λ=∆,其中d 是双缝之间的距离,D 是双缝到屏的距离,λ是入射光的波长。
11-8 有一单缝,缝宽α=0.10mm ,在缝后放一焦距为50cm 的会聚透镜,用波长λ=546nm 的平行光垂直照射单缝,则位于透镜焦平面处屏上中央明纹的宽度为 。
解 两个一级暗纹中心之间为中央明纹(或零级明纹)范围,其线位置为,a f x a f λλ〈〈-线宽度为af λ2,代入已知数据,可得位于透镜焦平面处屏上中央明纹的宽度是m 31046.5-⨯。
11-9 波长为λ=550nm 的单色光垂直入射于光栅常数cm d4102-⨯=的平面衍射光栅上,可能观察到光谱线的最高级次为第 级。
解 光栅方程λθk d ±=sin 是计算光栅主极大的公式. 可能观察到光谱线的最高级次对应的衍射角是最大的,当︒=90θ时,.6.3105501102sin 96=⨯⨯⨯==--λθd k 所以最高级次是第3级。
11-10 已知从一池静水表面反射出来的太阳光是线偏振光,此时,太阳在地平线上的仰角为=a。
(池水的折射率为n=1.33)解 当反射光为光矢量垂直于入射面的完全偏振光时,入射角为起偏振角,称为布儒斯特角,,tan 120n n i = 本题中n 2=1.33,n 1=1,故入射角,06.530︒=i所以太阳在地平线上的仰角为.94.3606.5390︒=︒-︒=α11-11 在杨氏双缝实验中,双缝间距d=0.20mm, 缝间距D=1.0m ,试求: (1)若第2级明条纹离屏中心的距离为6.0mm ,所用单色光的波长; (2)相邻两明条纹间的距离。
解 (1)根据双缝干涉明纹的条件,2,1,0,=±=k k dDx k λ ,得 nm m kD dx k 6000.12100.61020.033=⨯⨯⨯⨯==--λ (2)当nm 600=λ时,相邻两明条纹间的距离 mm m d D x 0.310600102.00.193=⨯⨯⨯==∆--λ11-12 薄钢片上有两条紧靠的平行细缝,用波长λ=546.1nm 的平面光波正入射到钢片上。
屏幕距双缝的距离为D=2.00m ,测得中央明条纹两侧的第5级明条纹间的距离为△x=12.0mm ,求: (1)两缝间的距离;(2)从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (3)如果使光波斜入射到钢片上,条纹间距将如何改变?解 根据双缝干涉明纹的条件,2,1,0,=±=k k dDx k λ 对中央明条纹两侧的条纹级次应分别取正、负,对同侧的条纹级次应同时为正(或负). (1)根据双缝干涉明纹的条件,2,1,0,=±=k k d D x k λ⋅⋅⋅把55-==k k 和代入上式,得λdD x x x 1055=-=∆- mm m xD d 910.0101.54610120.2101093=⨯⨯⨯⨯=∆=--λ (2)把200==k k 和代入公式,得mm dD x x x 2420020==-=∆λ(3)如果使光波斜入射到钢片上,中央明条纹的位置会发生变化,但条纹间距不变。
11-13 为了测量一精密螺栓的螺距,可用此螺栓来移动迈克耳孙干涉仪中的一面反射镜. 已知所用光波的波长为546.0nm ,螺栓旋转一周后,视场中移过了2023条干涉条纹,求螺栓的螺距。
解 迈克耳孙干涉仪中条纹移动数目N 与反射镜移动的距离△d 之间的关系为2λ⋅=∆N d代入数据得mm m N d 552.021054620232 ·9=⨯⨯==∆-λ11-14 如图所示,制造半导体元件时,常常要精确测定硅片上二氧化硅薄膜的厚度,这时可把二氧化硅薄膜的一部分腐蚀掉,使其形成劈尖,利用等厚条纹测出其厚度。
已知Si 的折射率为3.42,SiO 2的折射率为1.5,入射光波长为589.3nm ,观察到8.5条明纹. 问SiO 2薄膜的厚度e 是多少?解 两界面反射光均有半波损失,明纹条件是λk ne =2 ),2,1( =k由题意知最大k=8.5,所以 nm n k e 16705.123.5895.82=⨯⨯==λ图习题1411-11-15 题图为一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R=400cm.光形成的牛顿环,测得第5个明环的半径是0.30cm. (1)入射光的波长;(2)设图中OA=1.00cm ,求在半径为OA 的范围内可 观察到的明环数目。
解(1)本题中反射光形成牛顿环明环半径 ⋅⋅⋅=-=,3,2,1,)21(k R k r λ对于第5个明环,k=5,r=0.30cm ,R=400cm 代入上式 nm 500=λ(2)令r=1.00cm ,R=400cm ,λ=500nm 代入公式的k=50.5. 所以在半径为OA 的范围内可观察到的明环数目是50个。
11-16 某种单色光平行光垂直入射在单缝上,单缝宽a=0.15mm. 缝后放一个焦距f=400mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第3级暗条纹之间的距离为8.0mm ,求入射光的波长。
解 根据单缝衍射的暗纹条件⋅⋅⋅==,3,2,1,sin k k a λθ 又 ,,tan sin af k x f x λθθ==≈中央明条纹两侧的两个第3级暗条纹对应的k 应分别取3±. 所以 af x λ6=∆ 图习题1511-nm m x f a 5001081040061015.06333=⨯⨯⨯⨯⨯=∆=---λ11-17 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。
(1)如果需要识别的牌照上的笔画间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大? (2)(3)此照相机的孔径需要多大?光的波长按500nm 计。
解 (1)有圆孔衍射最小分辨角 ld D ≈=λθ22.10rad rad l d 732010310160105--⨯≈⨯⨯=≈θ (2)m m D 2.21031050022.122.1790=⨯⨯⨯==--θλ11-18 在夫琅禾费单缝衍射实验中,以钠黄光为光源. λ=589.0nm ,平行光垂直入射到单缝上。