茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(假设检验)【圣才出品】

合集下载

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(参数估计)【圣才出品】

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(参数估计)【圣才出品】

第6章 参数估计6.1 复习笔记一、点估计的概念与无偏性 1.点估计及无偏性(1)定义:设x 1,…,x n 是来自总体的一个样本,用于估计未知参数θ的统计量θ∧=θ∧(x 1,…,x n )称为θ的估计量,或称为θ的点估计,简称估计.(2)定义:设θ∧=θ∧(x 1,…,x n )是θ的一个估计,θ的参数空间为Θ,若对任意的θ∈Θ,有E θ(θ∧)=θ,则称θ∧是θ的无偏估计,否则称为有偏估计.注意:①当样本量趋于无穷时,有E (s n 2)→σ2,称s n 2为σ2的渐近无偏估计,这表明当样本量较大时,s n 2可近似看作σ2的无偏估计.②若对s n 2作如下修正:则s 2是总体方差的无偏估计.这个量常被采用.③无偏性不具有不变性.即若θ∧是θ的无偏估计,一般而言,其函数g (θ∧)不是g (θ)的无偏估计,除非g (θ)是θ的线性函数.④并不是所有的参数都存在无偏估计,当参数存在无偏估计时,我们称该参数是可估的,否则称它是不可估的.22211()11nn i i ns s x x n n ===---∑2.有效性定义:设θ∧1,θ∧2是θ的两个无偏估计,如果对任意的θ∈Θ有Var (θ∧1)≤Var (θ∧2),且至少有一个θ∈Θ使得上述不等号严格成立,则称θ∧1比θ∧2有效.二、矩估计及相合性 1.替换原理和矩法估计 替换原理指:(1)用样本矩去替换总体矩,这里的矩可以是原点矩也可以是中心矩. (2)用样本矩的函数去替换相应的总体矩的函数.2.概率函数已知时未知参数的矩估计设总体具有已知的概率函数p (x ;θ1,…,θk ),(θ1,…,θk )∈Θ是未知参数或参数向量,x 1,…,x n 是样本.假定总体的k 阶原点矩u k 存在,则对所有的j (0<j <k )u j 都存在,若假设θ1,…,θk 能够表示成u 1,…,u k 的函数θj =θj (u 1,…,u k ),则可给出θj 的矩估计:θ∧j =θj (a 1,…,a k ),j =1,…,k ,其中a 1,…,a k 是前k 阶样本原点矩进一步,如果我们要估计θ1,…,θk 的函数η=g (θ1,…,θ∧k ),则可直接得到η的矩估计η∧=g (θ∧1,…,θ∧k ).注:当k =1时,我们通常可以由样本均值出发对未知参数进行估计;如果k =2,我们可以由一阶、二阶原点矩(或二阶中心矩)出发估计未知参数.11n jj ii a x n ==∑3.相合性定义:设θ∈Θ为未知参数,θ∧n =θ∧n (x 1,…,x n )是θ的一个估计量,n 是样本容量,若对任何一个ε>0,有则称θ∧n 为参数θ的相合估计. 判断相合性的两个有用定理:(1)设θ∧n =θ∧n (x 1,…,x n )是θ的一个估计量,若则θ∧n 是θ的相合估计.(2)若θ∧n1,…,θ∧nk 分别是θ1,…,θk 的相合估计η=g (θ1,…,θk ),是θ1,…,θk 的连续函数,则η∧=g (θ∧n1,…,θ∧nk )是η的相合估计.三、最大似然估计与EM 算法 1.最大似然估计定义:设总体的概率函数为P (x ;θ),θ∈Θ,其中θ是一个未知参数或几个未知参数组成的参数向量,Θ是参数空间,x 1,…,x n 是来自该总体的样本,将样本的联合概率函数看成θ的函数,用L (θ;x 1,…,x n )表示,简记为L (θ),L (θ)=L (θ;x 1,…,x n )=p (x 1;θ)p (x 2;θ)…p (x n ;θ)ˆlim ()0n n P θθε→∞-≥=ˆlim ()nn E θθ→∞=ˆlim ()0nn Var θ→∞=L (θ)称为样本的似然函数.如果某统计量θ∧=θ∧(x 1,…,x n )满足则称θ∧是θ的最大似然估计,简记为MLE .注意:在做题时,习惯于由lnL (θ)出发寻找θ的最大似然估计,再求导,计算极值.但在有些场合用求导就没用,此时就需要从取值范围中的最大值和最小值来入手.2.EM 算法当分布中有多余参数或数据为截尾或缺失时,其MLE 的求取是比较困难的,这时候就可以采用EM 算法,其出发点是把求MLE 的算法分为两步:(1)求期望,以便把多余的部分去掉; (2)求极大值.3.渐近正态性最大似然估计有一个良好的性质:它通常具有渐近正态性.(1)定义:参数目的相合估计θ∧n 称为渐近正态,若存在趋于0的非负常数序列σn (θ),使得依分布收敛于标准正态分布.这时也称θ∧n 服从渐近正态分布N (θ,σn 2(θ)),记为θ∧n ~AN (θ,σn 2(θ)),σn 2(θ)称为θ∧n 的渐近方差.(2)定理:设总体x 有密度函数p (x ;θ),θ∈Θ,Θ为非退化区间,假定 ①对任意的x ,偏导数∂lnp/∂θ,对所有θ∈Θ都存在; ②∀θ∈Θ有|∂p/∂θ|<F 1(x ),|∂2p/∂θ2|<F 2(x ),|∂3lnp/∂θ3|<F 3(x )()()ˆmax L L θθθ∈Θ=()ˆn n θθσθ-其中函数F 1(x ),F 2(x ),F 3(x )满足③∀θ∈Θ,若x 1,x 2,…,x n 是来自该总体的样本,则存在未知参数θ的最大似然估计θ∧n =θ∧n (x 1,x 2,…,x n ),且θ∧n 具有相合性和渐近正态性,该定理表明最大似然估计通常是渐近正态的,且其渐近方差σn 2(θ)=(nI (θ))-1有一个统一的形式,其中,I (θ)称为费希尔信息量.四、最小方差无偏估计 1.均方误差(1)使用条件:小样本,有偏估计.(2)均方误差为:MSE (θ∧)=E (θ∧-θ)2,常用来评价点估计. 将均方误差进行如下分解:MSE (θ∧)=E[(θ∧-E θ∧)+(E θ∧-θ)]2=E (θ∧-E θ∧)2+(E θ∧-θ)2+2E[(θ∧-E θ∧)1()d F x x ∞-∞<∞⎰2()d F x x ∞-∞<∞⎰3sup ()(;)d F x p x x ∞-∞∈Θ<∞⎰θθ()()2ln 0;d p p x x ∞-∞∂⎛⎫<I =<∞ ⎪∂⎝⎭⎰θθθ1ˆ~(,)()nAN nI θθθ(E θ∧-θ)]=Var (θ∧)+(E θ∧-θ)2由分解式可以看出均方误差是由点估计的方差与偏差|E θ∧-θ|的平方两部分组成.如果θ∧是θ的无偏估计,则MSE (θ∧)=Var (θ∧).(3)一致最小均方误差设有样本x 1,…,x n ,对待估参数θ有一个估计类,如果对该估计类中另外任意一个θ的估计θ~,在参数空间Θ上都有MSE (θ∧)≤MSE (θ~),称θ∧(x 1,…,x n )是该估计类中θ的一致最小均方误差估计.2.一致最小方差无偏估计定义:设θ∧是θ的一个无偏估计,如果对另外任意一个θ的无偏估计θ~.在参数率间Θ上都有Var (θ∧)≤Var (θ~),则称θ∧是θ的一致最小方差无偏估计,简记为UMVUE .关于UMVUE ,有如下一个判断准则:设X =(x 1,…,x n )是来自某总体的一个样本,θ∧=θ∧(X )是θ的一个无偏估计,Var (θ∧)<∞,则θ∧是θ的UMVUE 的充要条件是:对任意一个满足E (φ(X ))=0和Var (φ(X ))<∞的φ(X )都有Cov θ(θ∧,φ)=0,∀θ∈Θ.这个定理表明UMVUE 的重要特征是:θ的最小方差无偏估计必与任一零的无偏估计不相关,反之亦然.3.充分性原则定理:总体概率函数是p (x ;θ),x 1,…,x n 是其样本,T =T (x 1,…,x n )是θ的充分统计量,则对θ的任一无偏估计θ∧=θ∧(x 1,…,x n );令ˆ()E T θθ=。

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(参数估计)【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(参数估计)【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解第6章参数估计6.1复习笔记一、矩估计及相合性判断相合性的两个定理:(1)设ꞈθn =ꞈθn (x 1,…,x n )是θ的一个估计量,若ˆlim ()nn E θθ→∞=,ˆlim Var()0n n θ→∞=,则ꞈθn 是θ的相合估计。

(2)若ꞈθn1,…,ꞈθnk 分别是θ1,…,θk 的相合估计,η=g(θ1,…,θk ),是θ1,…,θk 的连续函数,则ꞈη=g(ꞈθn1,…,ꞈθnk )是η的相合估计。

二、最大似然估计(1)求样本似然函数;(2)求对数似然函数;(3)求导;(4)找到ꞈθ=ꞈθ(x 1,…,x n )满足()()ˆmax L L θθθ∈Θ=。

三、最小方差无偏估计1.均方误差(1)MSE(ꞈθ)=E(ꞈθ-θ)2,如果ꞈθ是θ的无偏估计,则MSE(ꞈθ)=Var(ꞈθ)。

(2)一致最小均方误差如果对该估计类中另外任意一个θ的估计~θ,在参数空间Θ上都有MSE (ꞈθ)≤MSE (~θ),称ꞈθ(x 1,…,x n )是该估计类中θ的一致最小均方误差估计。

2.一致最小方差无偏估计UMVUE 判断准则:设X=(x 1,…,x n )是来自某总体的一个样本,ꞈθ=ꞈθ(X)是θ的一个无偏估计,Var (ꞈθ)<∞,则ꞈθ是θ的UMVUE 的充要条件是:对任意一个满足E(φ(X))=0和Var(φ(X))<∞的φ(X)都有Cov θ(ꞈθ,φ)=0,∀θ∈Θ。

3.充分性原则定理:总体概率函数是p(x;θ),x 1,…,x n 是其样本,T=T(x 1,…,x n )是θ的充分统计量,则对θ的任一无偏估计ꞈθ=ꞈθ(x 1,…,x n );令~θ=E(ꞈθ|T),则ꞈθ也是θ的无偏估计,且Var(ꞈθ)≤Var(ꞈθ)。

4.Cramer-Rao 不等式(1)费希尔信息量I(θ)2()=ln (;)I E p x θθθ∂⎡⎤⎢⎥∂⎣⎦(2)定理(Cramer-Rao 不等式)设总体分布P(X;θ)满足费希尔信息里I(θ),x 1,x 2…,x n 是来自该总体的样本,T =T(x 1,x 2…,x n )是g(θ)的任一个无偏估计,g′(θ)∂g(θ)/∂θ存在,且对Θ中一切θ,对1i 11()...(,,)(;)d d nn ni g T x x p x x x θθ∞∞-∞-∞==∏⎰⎰ 的微商可在积分号下进行,即1111111()...(,...,)((;))d d ...(,,)ln(;)(;)d d nn i ni nnn i i ni i g T x x p x x x T x x p x p x x x θθθθθθ∞∞-∞-∞=∞∞-∞-∞==∂'=∂∂⎡⎤=⎢⎥∂⎣⎦∏⎰⎰∏∏⎰⎰ 对离散总体,则将上述积分改为求和符号后,等式仍然成立。

魏宗舒版《概率论与数理统计教程》第三版_课后习题

魏宗舒版《概率论与数理统计教程》第三版_课后习题

假定ε1,ε2,…,εn相互独立,且服从同一正态分布N(0,σ2)。
二、回归系数的最小二乘估计
假设由某种方法得到β0, β1, …, βp的估计值b0, b1, …, bp则y的 观测值可表示为
yi b0 b1xil L bp xip ei (i 1, 2,L , n)
这里ei是i的估计值,仍称为残差或剩余。令 yˆ i 为yi的估计值,
1960.5500
S21

S12

20 i1
xi1 xi 2

1 20
20 i1
xi1
20 i1
x12
104.6250
S22 9.7975 , S13 S31 206 .8800
S33 37.8880 , S23 S32 14.9700
这就是§10.3中要介绍的多元线性回归问题。
3 多元线性回归
一、多元线性回归的数学模型
设因变量y与p个自变量x1,…,xp之间有线性关系:
y 0 1x1 p x p
其中ε为随机变量,称为随机误差。 将n次观测数据(xi1,x12,…,xip,yi),i=1,2,…,n代
y =β0+β1x+
(1)
4. 为估计未知参数β0 、β1,将观测值(xi,yi)代入得
yi=β0+β1xi+ i (i =1,2,…,n)
假定i 相互独立,且 i ~ N(0, 2) 。称(1)式为线性回归的
数学模型。
一、β0,β1的最小二乘估计
设 b0 ,b1分别为β0,β1的估计值,
20.00
2.20
16
22.00

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第7~8章【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第7~8章【圣才出品】

,xn;
)
0
2.分类数据的χ2 拟合优度检验
定理:在实际观测数与期望观测数相差不大的假定下,在 H0 成立时,对统计量
2
r i 1
(ni
npi0 )2 npi0
有 2
L 2 (r 1) 。
根据定理,采取显著性水平为α 的显著性检验:检验统计量为:
2
r i 1
(ni
npi0 )2 npi0
,拒绝域为W
{ 2
2 1
(r
1)} 。
五、正态性检验 1.W 检验 W 统计量
3 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

W
n
(ai
i 1
a
)( x ( i )
x
)
2
n
n
(ai a )2 (x(i) x )2
i 1
i 1
拒绝域{W≤Wa}。
2.比率 p 的检验(见表 7-1-2)
表 7-1-2 比率 p 的检验
2 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

四、似然比检验与分布拟合检验
1.似然比检验的思想
假设的似然比
sup p(x1,K ,xn; )
( x1,K
,xn
)
sup
p( x1,K
+(n)}。
7.2 课后习题详解
习题 7.1
1.设 x1,…,xn 是来自 N(μ,1)的样本,考虑如下假设检验问题
4 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

H0:μ=2 vs H1:μ=3
若检验由拒绝域为 W {x 2.6}确定。

《概率论与数理统计》第三版王松桂科学出版社课后习题答案

《概率论与数理统计》第三版王松桂科学出版社课后习题答案

第一章 事件与概率1.写出下列随机试验的样本空间。

(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。

(2)同时掷三颗骰子,记录三颗骰子点数之和。

(3)生产产品直到有10件正品为止,记录生产产品的总件数。

(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

(5)在单位正方形内任意取一点,记录它的坐标。

(6)实测某种型号灯泡的寿命。

解 (1)},100,,1,0{n i n i==Ω其中n 为班级人数。

(2)}18,,4,3{ =Ω。

(3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。

(5)=Ω{(x,y)| 0<x<1,0<y<1}。

(6)=Ω{ t | t ≥ 0}。

2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。

(1)A 发生,B 与C 不发生。

(2)A 与B 都发生,而C 不发生。

(3)A ,B ,C 中至少有一个发生。

(4)A ,B ,C 都发生。

(5)A ,B ,C 都不发生。

(6)A ,B ,C 中不多于一个发生。

(7)A ,B ,C 至少有一个不发生。

(8)A ,B ,C 中至少有两个发生。

解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃ 3.指出下列命题中哪些成立,哪些不成立,并作图说明。

(1)B B A B A = (2)AB B A =(3)AB B A B =⊂则若, (4)若 A B B A ⊂⊂则,(5)C B A C B A = (6) 若Φ=AB 且A C ⊂, 则Φ=BC 解 : (1) 成立,因为B A B B B A B B A ==))((。

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(方差分析与回归分析)【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(方差分析与回归分析)【圣才出品】

(4)各平方和的计算
Ti
=
mi j =1
yij,yi =
Ti mi
r
, T=
i =1
mi j =1
yij
=
r i =1
Ti,y
=
T n
r mi
则 ST
i1 j1
yij-y
2
r i 1
mi j 1
yij2-
T2 n
,fT=n-1;
r
SA mi
i 1
yi-y
2
r
Ti
2

T
2
8 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

n=mr=12。每个水平下的数据和以及总数据和为:
圣才电子书 十万种考研考证电子书、题库视频学习平台

茆诗松《概率论与数理统计教程》第 3 版笔记和课后习题含考研真题详解 第 8 章 方差分析与回归分析
8.1 复习笔记
一、方差分析
1.单因子方差分析的统计模型
yij
=
+ai
+
ij
,i
=1,2,,r
r
ai =0,
i =1
之,无明显差别,这一方法称为 T 法。
3.重复数不等场合的 S 法
cij
r-1 F1- (r-1,
fe
)
1 mi
1 mj
ˆ 2
三、方差齐性检验(见表 8-1-2)
表 8-1-2 方差齐性检验
5 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

四、一元线性回归
0 t1/2 n 2ˆ
1 x0 x 2

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(随机变量及其分布)【圣才出品】

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(随机变量及其分布)【圣才出品】
为随机变量 X 癿数学期望,或称作该分布癿数学期望,简称期望或均值.若级数

xk p xk 丌收敛,则称 X 癿数学期望丌存在.
k =1
(2)连续型随机变量
定义:设连续随机变量 x 癿密度凼数为 p(x).如果
x p xdx
则称
E

X




xp

x

dx
为 X 癿数学期望,或称作该分布 p(x)癿数学期望,简称期望或均值.若

x p x dx 丌收敛,则称 X 癿数学期望丌存在.

2.数学期望癿性质 按照数学期望 E(X)癿定义,E(X)由其分布唯一确定.若要求随机变量 X 癿一个凼
5 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台

数 g(X)癿数学期望,当然要先求出 Y=g(X)癿分布,再用此分布来求 E(Y).
lim
xx0
F

x

F

x0

即 F(x0+0)=F(x0)
返三个基本性质为判别某个凼数是否能成为分布凼数癿充要条件.
当 F(x)在 a 不 b 处连续时,有 F(a-0)=F(a),F(b-0)=F(b).
3.离散随机变量癿概率分布列
(1)定义:设 X 是一个离散随机变量,如果 X 癿所有可能叏值是 x1,x2,…,xn,…,
则称 X 叏 xi 癿概率 pi=p(xi)=P(X=xi),i=1,2,…n,…为 X 癿概率分布列或简称为
分布列,记为 X~{pi}.
分布列也可用下表来表示:
X
x1
x2

P P(x1) P(x2) …

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第3章 多维随机变量及其分布【圣才

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第3章 多维随机变量及其分布【圣才
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 3 章 多维随机变量及其分布 3.1 复习笔记
一、多维随机变量联合分布的性质(见表 3-1-1) 表 3-1-1 联合分布的性质
二、边际分布与随机变量的独立性 1.边际分布(见表 3-1-2)
表 3-1-2 边际分布
j
5i
j
100
5
用表格形式表示如下表 3-2-1:
7 / 124
圣才电子书

十万种考研考证电子书、题库视频学习平台
表 3-2-1
行和就是 X 的分布 h(5,100,50)(超几何分布)。
列和就是 Y 的分布 h(5,100,30)(超几何分布)。
P(X≥2,Y≥1)=0.66158。
i 1
X2,…,Xn 相互独立。
n
连续随机变量:若 p(x1, x2 ,L , xn ) pi (xi ) ,则 X1,X2,…,Xn 相互独立。 i 1
三、多维随机变量函数的分布 1.最大值与最小值的分布 (1)最大值分布:
FY ( y) P( maxX1,X 2,L ,X n y)
n
=P(X1 y, X 2 y,L , X n y)= Fi (y)
1Ex4p(4 )*4E4x4p(2)4*L4 *4Ex4p(43) =Ga(m,)
m个
(4)χ2 分布的可加性:m 个χ2 变量相互独立,则
2 (n1)* 2 (n2 )*L * 2 (nm )= 2(n1+n2 +L +nm)
四、多维随机变量的特征数(见表 3-1-3)
3 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)全概率公式:密度函数形式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解
第7章
假设检验
7.1复习笔记
一、假设检验的基本思想与概念1.假设检验的基本步骤(1)建立假设;
(2)选择检验统计量,给出拒绝域形式;(3)选择显著性水平:
第一类错误:弃真,α=p θ{(X∈W)},θ∈Θ0;第二类错误:取伪,1{(p X W θβθ=∈∈Θ,。

(4)给出拒绝域;(5)做出判断。

2.检验的p 值
①如果α≥p,则在显著性水平α下拒绝H 0;②如果α<p,则在显著性水平α下接受H 0。

二、正态总体参数假设检验成对数据检验
(1)提出假设:H 0:μ=0vs H 1:μ≠0;
(2)双样本的检验问题转化为单样本t 检验问题,检验t 统计量
2()
d
t d s n =其中
1/2
21111()1n
n
i d i i i d d s d d n n ==⎛⎫=
=- ⎪-⎝⎭
∑∑,(3)拒绝域:W 1={|t 2|≥t 1-α/2(n-1)}。

三、其他分布参数的假设检验
1.指数分布参数的假设检验(见表7-1-1)
表7-1-1
指数分布参数的假设检验
2.比率p 的检验(见表7-1-2)
表7-1-2比率p 的检验
四、似然比检验与分布拟合检验1.似然比检验的思想假设的似然比
111sup ()
()sup ()
n n n p x x x x p x x θθθθ∈Θ
∈ΘΛ=
,,;,,,,;K K K 2.分类数据的χ2拟合优度检验
定理:在实际观测数与期望观测数相差不大的假定下,在H 0成立时,对统计量
2
2
01
0()r
i i i i n np np χ=-=∑
有2
2
(1)L
r χχ−−
→-。

根据定理,采取显著性水平为α的显著性检验:检验统计量为:
2
2
01
0()r
i i i i n np np χ=-=∑
,拒绝域为22
1{(1)}W r αχχ-=≥-。

五、正态性检验1.W 检验W 统计量
()()2
12
2
1
1
()(()i i i i n
i n
n i i a a x x W a a x x ===⎡⎤∑--⎢⎥⎣⎦=∑-∑-拒绝域{W≤W a }。

2.EP 检验
EP 检验统计量定义为
22122
211()2()1exp 2exp 243n i n j i i EP
i j i x x x x T n s s -===⎧⎫--⎧⎫--⎪⎪
=++∑∑-∑⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭
其拒绝域为{T EP ≥T 1-α,EP(n)}。

六、秩和检验
R=(R 1,…,R n )(R i 是x i 的秩)符号秩和统计量1
(0)n
i i i W
R I x +
==∑>拒绝域为{W +≤W a/2+(n)}∪{W +≥W 1-a/2

(n)}。

7.2课后习题详解
习题7.1
1.设x 1,…,x n 是来自N(μ,1)的样本,考虑如下假设检验问题
H 0:μ=2vs H 1:μ=3
若检验由拒绝域为{ 2.6}W x =≥确定。

(1)当n=20时求检验犯两类错误的概率;
(2)如果要使得检验犯第二类错误的概率β≤0.01,n 最小应取多少?(3)证明:当n→∞时,α→0,β→0。

解:(1)由第一类错误定义,且在H 0:μ=2成立下,1220x N ⎛
⎫ ⎪⎝

,,故犯第一类错误的概率为
0( 2.6|)
2
2.621/20
1/201(2.68)0.0037
P x H x P =≥==-Φ=α由第二类错误定义,且在H 1成立下。

1320x N ⎛⎫ ⎪⎝

,,故犯第二类错误的概率为
1( 2.6|)1/20
1/20(1.79)1(1.79)0.0367
x P x H P β=<=<=Φ-=-Φ=(2)由第二类错误定义,若使犯第二类错误的概率β≤0.01,即满足
1( 2.6|)0.01
1/1/x P x H P n
n β⎛=<=<≤ ⎝即0.410.011/n -Φ≤,
或(0.40.99n Φ≥,查表得: 2.33n ≥,故n≥33.93,因而n 最小应取34,才能使检验犯第二类错误的概率β≤0.01。

(3)在样本量为n 时,根据定义,检验犯第一类错误的概率为
0( 2.6|)
2 2.621/1/1(0.6)
P x H x P n n n α===-Φ≥当n→∞时。

1n Φ→,即α→0。

检验犯第二类错误的概率为
1( 2.6|)
1/1/=(0.41(0.4P x H x P n n n n β=<⎫
=<⎪
⎭Φ-=-Φ当n→∞时,1n Φ→,即β→0。

注:从这个例子可以看出,一般情况下人们不应要求α与β同时很小。

这是因为要使得α与β同时很小,必须样本量n 很大。

这一结论在一般场合仍成立,由于样本量n 很大在实际中常常是不可行的。

2.设x 1,…,x 10是来自0-1总体b (1,p)的样本,考虑如下检验问题H 0:p=2vs H 1:p=0.4,取拒绝域为{}W x =≥0.5,求该检验犯两类错误的概率。

解:因为总体服从二点分布b(1,p),则()1010x b p ,,由第一类错误定义,且在H 0:p=2成立下,故犯第一类错误的概率为
001010
5(0.5|)(105|)
10140.0328
55k
k
k P x H P x H k α-===⎛⎫⎛⎫⎛⎫
== ⎪⎪ ⎪⎝⎭⎝⎭
⎝⎭∑≥≥由第二类错误定义,且在H 1:p=0成立下,故犯第二类错误的概率为。

相关文档
最新文档