第一章 张量分析(书籍附,详尽易懂)49页PPT
张量分析——初学者必看PPT
§A-2 矢量的基本运算
A 张量分析
四、矢量的并乘(并矢)
a ai ei , b b j e j
并乘
ab ai ei b j e j ai b j ei e j
a2b1e2 e1 a2b2 e2 e2 a2b3e2 e3 a3b1e3e1 a3b2 e3e2 a3b3e3e3
ab a1b1e1e1 a1b2 e1e2 a1b3e1e3
§A-3 坐标变换与张量的定义
A 张量分析
x x cos y sin y x sin y cos
x x cos y sin y x sin y cos
约定
S ai xi a j x j
用拉丁字母表示3维,希腊字母表2维
一、求和约定和哑指标
§ A-1 指标符号
双重求和
Aij xi y j
i 1 j 1
3
3
Aij xi y j A11x1 y1 A12 x1 y2 A13 x1 y3 A21x2 y1 A22 x2 y2 A23 x2 y3 A31x3 y1 A32 x3 y2 A33 x3 y3
两个二阶张量点积的结果为一个新的二阶张量,这 相当于矩阵相乘
§A-4 张量的代数运算
A 张量分析
五、张量的双点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 4
A : B ( Aijk ei e j ek )( Brster es et ) Aijk Brst jr ks ei et Aijk B jkt ei et S
A B ( Aijk ei e j ek ) ( Brst er es et ) Aijk Brst ei e j kr es et Aijk Bkst ei e j es et S
第一章 张量分析初步
eijk eijk 6
证明见例题
eijk与ij间的关系
由排列符号的性质 : ei e j eijk ek
ei e j • ek eijk
由于ei e j • ek表示的是混合积,其物理意义是单位立方体的体积.
另外,由矢量分析知, 平行六面体的体积可以表示成其三个棱的行
i e1, j e2, k e3
X1
X3 P(x1, x2, x3)
O
X2
➢ 再对上述代换结果进行简写P点改写为: P(x1,x2,x3)P(xi, i=1,2,3)P(xi)
➢ 基向量:ei, i=1,2,3 ei ➢ 则称上述字母i为指标,i的取值i=1,2,3为指标i的取值
列式形式.
eeij
(i1, ( j1
i2,i3 , j2,
)
j3
)
ek (k1,k 2 ,k3)
ei,ej,ek为3个单位基向量, i,j,k互不相等。
i1 i2 i3 ei e j • ek j1 j2 j3 eijk
k1 k2 k3
a13 x3 a23 x3
b1 b2
a31x1 a32 x2 a33 x3 b3
如何用一个最简单 的式子来表示?
用矩阵? 还有更简单的表示方法吗? 可总结为:aij x j bi
aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号
两种方式:
将左式展开,再给定每一个i值,求左右是否相等;
只有当i=j时ij才不等于“0”,
∴
a j ij ai ii ( ii不求和) ai
张量分解学习PPT课件
.
26
CP分解
张量的低秩近似
◦ 然而在低秩近似方面,高阶张量的性质比矩阵SVD差
Kolda给出了一个例子,一个立方张量的最佳秩-1近似并不 包括在其最佳秩-2近似中,这说明张量的秩-k近似无法渐进 地得到
下面的例子说明,张量的“最佳”秩-k近似甚至不一定存在
X a1ob 1oc2a1ob2oc1a2ob 1oc1
纤维:x i j :
.
6
基本概念及记号
切片(slice)
水平切片:X i : :
侧面切片:X : j :
正面切片:X ::k ( X k )
.
7
基本概念及记号
内积和范数
◦ 设 X,Y¡I1× I2× L× IN
内积:
I1 I2
IN
X,Y
L x y i1i2LiN i1i2LiN
i11i21 iN1
R
X§A,B,C¨arobrocr r1
X
c1 b 1
c2 b2
L
cR b R
a1
a2
aR
三阶张量的CP分解
.
20
CP分解
CP分解的矩阵形式
◦ 因子矩阵:秩一张量中对应的向量组成的矩阵,如
A a 1 a2 LaR
◦ 利用因子矩阵,一个三阶张量的CP分解可以写成展开形式
X (1) A C e B T X (2) B C e A T X (3) C B e A T
◦ 对于高阶张量,有
X ┈ λ ;A (1 ),A (2 ),L ,A (N ) Rra ( r 1 )o a ( r 2 )o L o a ( r N ) r 1
其展开形式为
X ( n ) A ( n ) d i a g ( λ ) A ( N ) e L e A ( n 1 ) e A ( n 1 ) e L e A ( 1 )T
最新第1章-张量分析(清华大学张量分析-你值得拥有)PPT课件
1 、g
2
P
其中 g 1 、g 2 不一定是单位矢量。
矢量 P 可表示为:
P P1 g1 P 2 g2
2
P g P g 1
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系的协变基矢量和逆变基矢量
P P g :哑指标
x2
( x 1 , x 2 ) Einstein求和约定
r
g2
如何计算 u(vw)?
vw
观察右图,可知 vw正交于
u
v 、w 构成的平面,而 u(vw)
w
正交于 vw,因此,u(vw)
一定在 v 、w 构成的平面
v
u (v w) v w
u(vw)
(u w)v (u v)w (uv) w
数形结合
矢量及其代数运算
➢矢量的乘法 矢量的混合积
uv wuvw群u论的v轮w换次序不变性w
张
gij gi gj gij gi gj
量
可证明:
分 析
g ij g ji
gij g ji
的
称 g i j 为度量张量的协变分量
起
称 g i j 为度量张量的逆变分量
点
gi gij g j gi = g ij g j
协变基矢量在逆变基矢量下分解 逆变基矢量在协变基矢量下分解
斜角直线坐标系的基矢量与矢量分量
※ 根据几何图形直接确定
由对偶条件可知, g 1 与 g 2 、g 3 均正交,因此正交于 g 2 与 g 3 所
确定的平面;其模的大小等于
g1 1
g1 cos
g1 g1
2 g2
2
g3
斜角直线坐标系的基矢量与矢量分量
数学张量分析PPT课件
第6页/共92页
右散度表示为: diva a
diva a
ei i a je j
ij
a j xi
ai xi
iai
a1 a2 a3 x1 x2 x3
显然 diva diva
今后对于矢量场的左散度和右散度不加区别
第7页/共92页
张量的散度
关于二阶张量场 T T的P左散度定义为:
间点的位置。两者由下列坐标变换联系起来:
xi xi xi' i, i ' 1,2,3
第23页/共92页
若 xi'是的线性函数,则 x i' 也是一个斜角坐标,而且坐标变换为:
xi
Ai i'
x i'
x i
x i'
xi'
这里
Ai i'
为变换系数,它是常数。
若 x i不是 xi' 的线性函数,则 xi' 称为曲线坐标。
标量的梯度:
标量函数:
f f (r)
则梯度为:
f gradf eii f
展开后有:
原式 1 f e1 2 f e2 3 f e3
f i f j f k x y z
第1页/共92页
矢量的梯度: 左梯度
grad a a (i ei )(a j ej ) (eii )(a j e j )
a ai gi ai gi
由 eijk 的定义可知,下列混合积等式成立:
gig jgk gi g j gk gig jgk eijk gig jgk gi g j gk gig jgk eijk
这两个量定义为爱丁顿(Eddington)张量并分别记为 和ijk 。ijk 由此定义可知
张量分析
张量分析张量分析,又称张量微积分,是一门研究多维空间中的向量和张量的数学工具。
它在物理学、工程学、计算机科学等领域有着广泛的应用。
张量分析的核心思想是通过张量的计算和运算,来描述和解释多维空间中的现象和问题。
在数学中,张量是一种广义的向量概念。
它不仅可以表示标量和向量,还可以表示具有更高维度的物理量。
例如,二阶张量可以表示物体的形变和应力分布,三阶张量可以表示电磁场的分布,四阶张量可以表示弹性材料的性质等。
张量分析的基本概念包括张量的定义和表示、张量的变换规律以及张量的运算。
对于二阶张量,可以用一个矩阵来表示。
张量的变换规律与坐标系的选择有关,不同的坐标系下,同一个张量可以表示为不同的矩阵形式。
张量的运算包括加法、数乘、内积和外积等。
这些运算在物理和工程问题中具有重要的意义,可以帮助研究人员推导和解决实际问题。
在物理学中,张量分析被广泛应用于描述和分析物体的运动、形变、应力等问题。
例如,通过分析物体的应力张量,可以判断物体是否会发生破坏或变形。
在工程学中,张量分析可以用于解决弹性力学、流体力学、电磁学等问题。
在计算机科学中,张量分析可以用于图像处理、模式识别等领域。
张量分析的发展离不开数学家们的努力。
早在19世纪,克里斯托弗·亚当斯(Christopher Adams)就提出了张量的概念。
20世纪初,爱因斯坦在相对论的研究中也广泛应用了张量分析。
随着计算机的发展和计算能力的提高,张量分析在科学研究中的应用也越来越广泛。
虽然张量分析在各个领域中都有广泛的应用,但它的理论和方法并不容易掌握。
要学好张量分析,需要对线性代数、微积分和向量分析等数学知识有扎实的掌握。
此外,也需要具备一定的物理学和工程学的基础知识。
对于初学者来说,可以通过学习相关的教材和参考资料,同时结合实际问题进行练习和应用。
总之,张量分析是一门重要的数学工具,对于描述和解决多维空间中的问题具有重要的意义。
它在物理学、工程学、计算机科学等领域有着广泛的应用。
张量分析书籍附详尽易懂
n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。
最新张量分析第一章ppt课件
0,当 i , j , k 中有取值相同者.
1
1
3
2
3
2
偶排列
奇排列
21
矢量叉积 a b ( a 2 b 3 a 3 b 2 ) e 1 ( a 1 b 2 a 2 b 1 ) e 3 ( a 3 b 1 a 1 b 3 ) e 2 用置换符号可写成
a b c ( ijka jb k ) ( c i)
23
1.2 恒等式 ijk istjs kt jt ks
第一种证明:
11 12 13 1 0 0
1r 1s 1t
I 21 22 23 0 1 0 1 rst I 2r 2s 2t rst
31 32 33 0 0 1
3r 3s 3t
ir is it ijkrst jr js jt
a b abco s
点积满足
abba
a ( b c ) a b a c
11
(5)矢量的叉积
e1 e2 e3 aba1 a2 a3
b1 b2 b3
(a2b3a3b2)e1(a1b2a2b1)e3(a3b1a1b3)e2
注意:
a b b a
axb
O
b
a -axb
12
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
第一章 连续介质力学的数学基础
重点掌握: 1. 张量的概念 满足坐标变换规律 运算法则 2 .证明一些恒等式 3 .梯度,散度,旋度等概念
7
第一章 连续介质力学的数学基础
1.1 矢量
1.1.1矢量的概念
在三维欧几里得空间内, 具有大小和方向 的有向 线段.
第一章 张量分析基础知识
晶体物理性能南京大学物理系由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用.鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容.由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.第一章张量的基础知识§1.1标量、矢量和二阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5二阶张量的变换与张量的定义………………………………………………………§1.6张量的足符互换对称…………………………………………………………………§1.7张量的矩阵表示和矩阵的代数运算…………………………………………………§1.8二阶对称张量的几何表示和二阶张量的主轴………………………………………§1.9二阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第二章晶体的弹性与弹性波§2.1弹性性质与原子间力…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应力……………………………………………………………………………………§2.4推广的虎克定律、弹性系数…………………………………………………………§2.5立方晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因子的测量方法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3高频电场的介电极化(光的色散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离子晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的一般性质…………………………………………………………………§4.2常用铁电体的实验规律……………………………………………………………§4.3铁电体的相变热力学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电方程和机电耦合系数…………………………………………………………§4.7压电晶体的应用实例――石英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲面……………………………………………………………§5.4晶体表面上的折射…………………………………………………………………§5.5晶体偏光干涉及其应用……………………………………………………………第六章倍频与参量频率转换§6.1非线性极化…………………………………………………………………………§6.2非线性极化系数……………………………………………………………………§6.3非线性介质中电磁场耦合方程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7角度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放大…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐方法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13非线性材料的性能要求……………………………………………………………第七章电光效应及其应用§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的几个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第八章声光效应及其应用§8.1弹光效应……………………………………………………………………………§8.2声光交互作用产生的衍射现象……………………………………………………§8.3声光交互作用的理论………………………………………………………………§8.4声光效应在一些物理常数测量中的应用…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散角α的推导………………………………………………………E.双轴晶体中双折射面相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第一章 张量分析基础知识以前学的课程中,有关力学、热学、电学、光学等的性质都是以各向同性介质来表述的或以一维问题来说明问题,这对于突出某些物理现象的微观的物理原因方面是必要的,但晶体物理性能是讲晶体中的力学、电学、光学、声学、磁学、热学等物理性能,而晶体的各向异性却是一种很普遍的特性,特别是很多现象如热电、压电、电光、声光、非线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要方面。
张量分析课件
P = ∑αij Ej (i=1,2,3) i
j =1
3
Pi′ = ∑ α i′j′ E j′ (i'=1,2,3)
j ′ =1
3
代 入
将一阶张量Ej和Pi的变换规律
Pi′ = ∑ Ai′i Pi
3
代 入
E j′ = ∑ Aj ′j E j
j =1
i =1 3
∑A
i =1
3
i ′i i
P = ∑∑ α i′j′ Aj′j E j
证: 刚体定轴转动:
ω
(Z轴)转轴
刚 体
(
)
v τi A ni O′ ri
v
刚体定轴转动
r2 r r I 质点:ij = m(rij δ ij − ( r )i ( r ) j ) O
v Ri
= m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3)
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩. 证: 质点:I ij = m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3) 九个分量:
δij在坐标变换后,其各个分量的值不变. 即在任意坐 标系中按上式定义的二价对称δ符号是一个二阶张量.
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩.
流体力学-第一讲 场论与张量分析初步ppt精选课件
•
标量场(scalar
field):f
(r,t)
• 向量场(vector field):g (r,t) g=f(r,t)
• 均匀场(homogeneous field):f c
• •
非 定均常匀流场场((nstoen-adhyomfoigeelndou)s:ffi(erl)d): field):f(r,t)
a x b x a yb y a zb z 标量
18.06.2021
ppt精选版
9
1
如a、b正交 ,则
abab0
2
如a、b平行 ,则
aba b
3 4
如 分a在 配b正 律交 ab投 c影 aba表 用 b示 ac
m a b a m b m a b
a
ax2ay 2az2
散度是标量,而不是向量。
diav l
im sa dsaxayaz a
v 0 v x y z
于是Gauss定理可以写作:
sa n d s sa d s v( a x x a y y a z z)d v v( a )dv
18.06.2021
ppt精选版
28
div A 0 的场称为无源场。其性质:
运动学 动力学
以实际流体为主
18.06.2021
ppt精选版
2
主要内容:
第一章 场论与张量分析初步
第二章 流体运动学
第三章 流体力学基本方程组
第四章 粘性流动基础
第五章 Navier-Stokes 方程的解
第六章 边界层理论
第七章 流体的旋涡运动
第八章 湍流理论
18.06.2021
ppt精选版
3
附录:张量分析
ui ei (2)分解式记法: u=u1e1+u2e2+u3e3= i 1
分量和基矢量
(3)分量记法:
ui(i=1,2,3)的集合
张量是具有多个分量的复杂物理量,为表达简洁,需引入一些记号和约定
指标符号
指标符号: 对于一组性质相关的n个量用相同的字母加不同的指标符号来表示
举例——
◈
a的n个分量
∑:通过哑指标可把多个项缩写成一项,通过自由指标又把多个方程缩写成一个方程。
指标符号使书写简洁,但也必须小心,因为许多重要的含义往往只表现在指标的细微变化上。
§ A.2 符号δij与erst
本节介绍两个张量分析中的常用符号
一、符号δij ,称为“Kronecker delta” 【使重复下标求和约定更加方便】
内容梗概
【坐标变换揭示各类量的性质、张量方程的特点等】 求和约定: 多项简写 自由标: 多个方程简写 符号δij 符号erst
哑标
⇒
自由标
⇒
换标符δij
⇒ 排列符erst
张量分析引论
张量分析以简洁的表达形式和清晰的推导过程描述复杂问题,被近代力学文献和教科书普遍采用。 本附录着重介绍笛卡儿坐标系和正交曲线坐标系中的张量。
❷ 同一项中出现两对(或几对)的不同哑标,表示重复求和。(共九项求和)
❸ 若对在同项内出现两次以上的指标进行遍历求和,一般应加求和号,或者,在多余指标下加一横, 表示该指标不计指标数。如:
❹ 当自由指标在同项内出现两次时,应申明该指标不求和。 或者,在其中一个指标下加一横,表示该指标不求和。例如:s=aii原表示s=a11+a22+a33 , 但
§A.1
矢量和张量的记法,求和约定
张量分析01
附录I 张量分析近代力学在电子计算机的辅助下冲破了数学求解上的重重困难,取得了突飞猛进的发展,力求对复杂的物理现象和工程问题做出更为系统和真实的描述和研究。
张量分析能以简洁的表达形式和清晰的推导过程来有效地描述复杂问题的本质,已被近代力学文献和教科书普遍采用。
作为入门,此处着重介绍笛卡儿坐标系和正交曲线坐标系中的张量。
I.1 矢量和张量的记法,求和约定力学中常用的量可以分成三类:只有大小没有方向性的物理量称为标量。
例如温度T 、密度ρ、时间t 等。
既有大小又有方向性的物理量称为矢量,常用黑体(或加箭头)表示,为与课堂讲述一致,此处选择用上加箭头表示矢量。
例如矢径r 、位移u 、速度v 、力f 等。
具有多重方向性的更为复杂的物理量称为张量,常用黑体(或加下横)表示,为与课堂讲述一致,此处选择用下加横线表示矢量。
例如一点的应力状态要用应力张量来表示,它是具有二重方向性的二阶张量,记为σ。
矢量可以在参考坐标系中分解。
例如图1 中P 点的位移u 在笛卡儿坐标系()321,,x x x 中分解为∑==++=31332211i i i e u e u e u e u u (I.1)其中1u 、2u 、3u 是位移的三个分量,1e 、2e 、3e是沿坐标轴的三个单位基矢量。
由此引出矢量(可推广至张量)的三种记法: ( l )实体记法:把矢量或张量的整个物理实体用一个黑体字母或上加箭头来表示。
例如把位移记为u 。
( 2 )分解式记法:同时写出矢量或张量的分量和相应分解方向的基矢量。
例如用式(I.1)表示位移u 。
( 3 )分量记法:把矢量或张量用其全部分量的集合来表示,省略相应的基矢量。
例如用三个位移分量()3,2,1=i u i 的集合表示位移u 。
下面详细讨论后两种记法中广泛采用的指标符号。
对于一组性质相关的n 个量可以采用指标符号来表示。
例如,n 维空间中矢量a 的n 个分量1a ,2a ,…,n a 可缩写成()n i a i ,,2,1 =。
1第一章 笛卡尔张量
序言张量分析对于现在的力学专业学生以及力学相关问题的解决,是应该掌握的重要数学工具。
事实上,如果没有张量的知识,就无法学习连续介质力学基本理论和阅读相关专业的文献资料。
无庸讳言,张量概念非常抽象,相对来说比较难于学习和把握。
但是,只要克服张量学习过程中的畏难情绪,抓住张量概念的关键点,梳理张量分析的基本数学规则,结合一定的力学实例的张量描述,从而建立张量分析的概念和基本分析方法,就能够为运用张量分析解决实际问题奠定坚实基础。
张量概念最早是由高斯(Gauss)、黎曼(Riemann)、克里斯托夫(Christoffel)等人在十九世纪发展微分几何过程中引入的,是从线性空间推广到非线性空间的纯粹数学的演绎,由于自然科学发展水平的限制,这种具有根本性变革的数学工具长期被自然科学领域所忽略。
直到1915年,爱因斯坦获得格罗斯曼的协助,借助张量分析这一数学工具创立了伟大的广义相对论,才凸显了张量分析在描述具有协变性质物理规律的关键作用。
这个事实再次有力地向我们传达了数学和自然科学之间彼此的依存关系,即数学的规则被赋予了自然规律的意义后才成为有生命力的学问,而借助数学工具建立起的自然规律才能呈现自然科学的奥秘。
此后,张量分析迅速渗透到理论物理、现代微分几何、连续介质力学等学科领域中。
就力学专业的学生而言,学习和掌握张量分析,可以更加深刻地领会连续介质力学的概念和一般力学规律,充分锻炼我们的理性思维能力,提高分析问题和解决问题的能力和水平。
用代数方法和解析方法描述空间问题时,必须引进坐标系或建立坐标基矢量。
坐标系的引入为建立各种物理或几何规律带来了可能和极大的方便,同时也往往使问题复杂化。
可以设想,客观规律应该独立于坐标系,但客观规律的表达形式却严重依赖于所用的具体坐标系,使得客观规律本身的内在性质与建立在坐标系上的数学表达形式完全融为一体。
这样,一方面可能会因其数学的形式外壳而不易揭示问题的内在本质,另一方面,甚至对很多客观规律根本无法进行数学表述。
张量ppt
示多重求和。
例如:
33
aij xi xj
aij xi x j
i1 j1
★ 若要对在同项内出现两次以上的指标进行遍历求和,
一般应加求和号。如:
3
a 1b1c1 a 2b2c2 a 3b3c3 aibici i 1
24
张量基本概念
★ 一般说不能由等式
aibi aici
bi ci
两边消去ai导得
3. 换标符号,具有换标作用。例如:
d s2 ij d xi d xj d xi d xi d xj d xj
即:如果符号 的两个指标中,有一个和同项中其它
因子的指标相重,则可以把该因子的那个重指标换成
的另一个指标,而 自动消失。
29
符号ij 与erst
类似地有
ij a jk aik ; ij aik a jk ij akj aki ; ij aki akj ij jk ik ; ij jk kl il
符号ij 与erst
➢ 常用实例
1. 三个相互正交的单位基矢量构成正交标准化基。 它具有如下重要性质:
✓ 每个基矢量的模为1,即 ei e j 1 (当i=j时) ✓ 不同基矢量互相正交,即 ei e j 0 (当i≠j时)
上述两个性质可以用ij 表示统一形式:
2. 两个矢量 a 和 b 的分量的点积(或称数量积)为:
3
a b= a1b1 a2b2 a3b3 aibi i1
Appendix A.1
张量基本概念
➢求和约定
如果在表达式的某项中,某指标重复地出现两次, 则表示要把该项在该指标的取值范围内遍历求和。 该重复的指标称为哑指标,简称哑标。
3
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
张量分析
第一篇 张量分析第一章 矢 量 §1—1 矢量表示法物理中的位移、速度、力都是矢量。
利用三维空间中的有向线段ν表示矢量是最直观的表示法,如图1-1所示。
有向线段的长度v 代表矢量的大小。
这种方法不依赖于坐标系的选择。
矢量的分量表示法是另一种表示方法,选定一个坐标系。
比如通常的正交直线坐标系,即卡氏坐标系,然后确定矢量对于该坐标系的分量(,,)x y z v v v ν(1-1a)这一有序数也可视作一个单行矩阵。
矢量也可以用基矢与其对应分量写成x y z iv jv kv ν=++ (1-1b)其中,,x y z iv jv kv 称为分矢量。
而i(1,0,0),j(0,1,0),k(0,0,1) (1-1c)是单位矢量,它们组成卡氏系中的一组基矢(称为标架)。
§1-2指标符号上面所述用分量(,,)x y z v v v 或用基矢量i,j,k 来表示矢量的方法,在推广到比三维更高的空间时就有困难了。
因此,发展了另一种记法。
把x 、y 、z 分别记为111,,x y z 这样,一个n 维空间的矢量(无法用直观图表示)用分量表示时为123(,,,...,)n v v v v ν= (1-2a)它可视为一个M 维的单行矩阵,且可写为{}i v ν= (1,2,3,...,)i n =同理,基矢i,j,k 可分别写为123,,e e e ,n 维空间的基矢i e (1,2,3,...,)i n =。
而与式(1-1b)对应的写法为112233n n e v e v e v e v ν=++++ (1-2b)相应的分矢量为11,,,i i e v e v ,其中1e =(0,…,0,1,0,…,0) (1-2c)↑ 顺序第i 个这里i 叫做v 的下标,也有记作jv (如本书第三章以后章节所出现)的,这时j 称为上标。
有些量比矢量更复杂,只用一个下(或上)指标还不够,还要采用更多的指标,比如,,,ij ij ijk A B C ,等等。