北师大八年级数学下册测试题
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)一、选择题(共10小题;共40分)1. 现有以下数学表达式:①−3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式有( )A. 5个B. 4个C. 3个D. 1个2. 自从11月起,贝贝每天至少跑步1800m,若他每天跑x m,则x满足的关系式是( )A. x>1800B. x<1800C. x≥1800D. x≤18003. 不等式组{2x−4<0,3−2x<1的解集为( )A. x<1B. x>2C. x<1或x>2D. 1<x<24. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A. x>−2B. x>3C. x<−2D. x<35. 下列说法中,错误的是( )A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个6. 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A. ∣a−c∣>∣b−c∣B. −a<cC. a+c>b+cD. ab <cb7. 使不等式 x −2≥2 与 3x −10<8 同时成立的 x 的整数值是 ( ) A. 3,4B. 4,5C. 3,4,5D. 不存在8. 已知点 P (2a −1,1−a ) 在第一象限,则 a 的取值范围在数轴上表示正确的是 ( )A.B.C. D.9. 篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负 1 场得 1 分.某队预计在 2014~2015赛季全部 32 场比赛中最少得到 54 分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是 ( ) A. 3x −(32−x )≥54 B. 3x +(32−x )≥54 C. 3x +(32−x )≤54D. 3x ≥5410. 若关于 x 的一元一次不等式组 {x −2m <0,x +m >2 有解,则 m 的取值范围为 ( )A. m >−23B. m ≤23C. m >23D. m ≤−23二、填空题(共8小题;共32分)11. 2016年6月9日某市最高气温是 34 ∘C ,最低气温是 27 ∘C ,则当天该市气温 t 的变化范围可表示为 .12. 若 x >y ,则 −3x +2 −3y +2(填“<”或“>”).13. 若 (m −2)x ∣m−1∣−3>6 是关于 x 的一元一次不等式,则 m = .14. 不等式组 {3x +10>0,163x −10<4x 的最小整数解是 .15. 小明借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,设以后几天里每天读 x 页,所列不等式为 .16. 函数 y =mx +n 和函数 y =kx 在同一坐标系中的图象如图所示,则关于 x 的不等式 mx +n >kx 的解集是 .17. 已知关于 x 的不等式 (a −1)x >4 的解集是 x <4a−1,则 a 的取值范围是 .18. 某商品的售价是 150 元,商家售出一件这种商品可获利润是进价的 10%∼20%,则进价的范围为 (结果取整数). 三、解答题(共7小题;共77分)19. 解不等式组 {4(x +1)≤7x +10,x −5<x−83, 并写出它的所有非负整数解.20. 若关于 x ,y 的方程组 {x +y =30−a,3x +y =50+a 的解都是非负数,求 a 的取值范围.21. 如图,一次函数 y 1=kx −2 和 y 2=−3x +b 的图象相交于点 A (2,−1).(1)求 k ,b 的值.(2)利用图象求出:当 x 取何值时,y 1≥y 2? (3)利用图象求出:当 x 取何值时,y 1>0 且 y 2<0?22. 解关于 x 的不等式 ax −x −2>0.23. 若关于x的不等式组{x2+x+13>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24. 按如图所示的程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算.(1)求程序运行一次便输出时的x的取值范围;(2)已知输入x后程序运行3次才停止,求x的取值范围.25. 去年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?参考答案第一部分 1. B 【解析】③ 是等式;④ 是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共 4个. 2. C 3. D 4. A 5. C 6. A 7. B8. C【解析】根据点 P 在第一象限,知横、纵坐标都是正数,可得到关于 a 的不等式组{2a −1>0,1−a >0, 求得 a 的取值范围是 0.5<a <1. 9. B10. C 【解析】{x −2m <0, ⋯⋯①x +m >2. ⋯⋯②解不等式 ① 得 x <2m ,解不等式 ② 得 x >2−m .∵ 不等式组有解,∴ 2m >2−m .∴ m >23. 第二部分11. 27 ∘C ≤t ≤34 ∘C 12. < 13. 0【解析】根据一元一次不等式的定义可知 ∣m −1∣=1 且 m −2≠0,求解即可. 14. −315. 2×5+(10−2)x ≥72 16. x <−1【解析】由图象可知,直线 y =mx +n 和直线 y =kx 的交点坐标是 (−1,−1),∴ 关于 x 的不等式 mx +n >kx 的解集是 x <−1. 17. a <1 18. 125∼136 元【解析】设进价为 x 元.依题意,得 0.1x ≤150−x ≤0.2x ,即 {150−x ≥0.1x,150−x ≤0.2x, 解得 125≤x ≤136411.∵ 结果取整数,∴ 进价的范围为 125∼136 元.第三部分 19.{4(x +1)≤7x +10, ⋯⋯①x −5<x −83. ⋯⋯②由 ① 得x ≥−2,由 ② 得x <72,∴−2≤x <72.∴ 非负整数的解为 0,1,2,3. 20. 解方程组,得{x =10+a,y =20−2a.依题意有{10+a ≥0,20−2a ≥0,解得−10≤a ≤10.21. (1) 将 A 点坐标代入 y 1=kx −2,得 2k −2=−1,即 k =12;将 A 点坐标代入 y 2=−3x +b ,得 −6+b =−1,即 b =5.(2) 从图象可以看出:当 x ≥2 时,y 1≥y 2. (3) 直线 y 1=12x −2 与 x 轴的交点为 (4,0), 直线 y 2=−3x +5 与 x 轴的交点为 (53,0).从图象可以看出:当 x >4 时,y 1>0;当 x >53 时,y 2<0, ∴ 当 x >4 时,y 1>0 且 y 2<0. 22. 由题意变形得(a −1)x >2.当 a −1>0,即 a >1 时,x >2a −1. 当 a −1=0,即 a =1 时,不等式无解; 当 a −1<0,即 a <1 时,x<2 a−1.23. 由不等式x2+x+13>0,解得x>−25.由不等式3x+5a+4>4(x+1)+3a,解得x<2a.∵不等式组恰有三个整数解,∴2<2a≤3.∴1<a≤32.24. (1)根据题意得2x−1>65,解得x>33.(2)根据题意得{2x−1≤65,2(2x−1)−1≤65,2[2(2x−1)−1]−1<65,解得9<x≤17.25. (1) 设饮用水有 x 件,则蔬菜有 (x −80) 件. 依题意,得x +(x −80)=320,解这个方程,得x =200. x −80=120.答:饮用水和蔬菜分别有 200 件和 120 件.(2) 设租用甲型货车 n 辆,则租用乙型货车 (8−n ) 辆. 依题意,得{40n +20(8−n )≥200,10n +20(8−n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数, ∴ n =2 或 3 或 4,所以安排甲、乙两种型号的货车时有 3 种方案,分别是: ①甲型货车 2 辆,乙型货车 6 辆; ②甲型货车 3 辆,乙型货车 5 辆; ③甲型货车 4 辆,乙型货车 4 辆. (3) 3 种方案的运费分别为:方案①:2×400+6×360=2960(元); 方案②:3×400+5×360=3000(元); 方案③:4×400+4×360=3040(元); ∴ 方案①运费最少,最少运费是 2960 元.答:选择甲型货车 2 辆,乙型货车 6 辆,可使运费最少,最少运费是 2960 元.。
北师大版八年级下册数学期末考试试题及答案
北师大版八年级下册数学期末考试试卷一、单选题1.下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2.已知m n >,则下列不等式中不正确的是()A .77m n +>+B .55m n >C .44m n -<-D .66m n -<-3.如图,在ABC 中,AB AC =,点D 是边AC 上一点,BC BD AD ==,则A ∠的大小是()A .72°B .54°C .38°D .36°4.一次函数y =ax+b 的图象如图所示,则不等式ax+b≥0的解集是()A .2x ≥B .2x ≤C .4x ≥D .4x ≤5.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是()A .-2B .2C .-50D .506.若代数式4xx -有意义,则实数x 的取值范围是()A .x =0B .x =4C .x ≠0D .x ≠47.在下列条件中,能判定四边形ABCD 是平行四边形的是()A .,AB BC AD DC==B .//,AB CD AD BC =C .//,AB CD AB CD =D .,A B C D∠=∠∠=∠8.如图,Rt △ABC 中,∠C=90°,AB 的垂直平分线DE 交AC 于点E ,连接BE ,若∠A=40°,则∠CBE 的度数为()A .10°B .15°C .20°D .25°9.若24x mx ++是完全平方式,则m 的值为()A .4m =B .2m =C .4m =-或4m =D .4m =-10.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的个数为()A .1B .2C .3D .4二、填空题11.若分式241x x -+的值为0,则x 的值为_______.12.多项式34a a -分解因式的结果是______.13.如图,将 ABC 绕点B 顺时针旋转60°得 DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .若AB =5,则AD =_______________________.14.如图,已知ABC 中,,AB AC AD =平分,BAC E ∠是AB 的中点,若6,AB =则DE 的长为_______________________.15.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.16.若不等式组841x x x m +<-⎧⎨>⎩的解集为x >3,则m 的取值范围___.17.已知1213435241110,S ,1,,1,a S S S S S S a S S >==--==-=,·……,(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2020S =_______________________.三、解答题18.解不等式组()12214x x -<-⎧⎨+>⎩,并求出它的最小整数解.19.先化简,21111x x x ⎛⎫-÷ ⎪+-⎝⎭,再从1,0,1-,2中选择一个合适的数代入求值.20.如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:(1)ABC ∆的顶点都在方格纸的格点上,先将ABC ∆向右平移2个单位,再向上平移3个单位,得到111A B C ∆,其中点1A 、1B 、1C 分别是A 、B 、C 的对应点,试画出111A B C ∆;(2)连接11AA BB 、,则线段11AA BB 、的位置关系为____,线段11AA BB 、的数量关系为___;(3)平移过程中,线段AB 扫过部分的面积_____.(平方单位)21.如图,在 ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=12BC ,连结DE ,CF .(1)求证:四边形CEDF 是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE 的长.22.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?23.如图,在Rt ABC 中,90,ACB D ∠= 是BC 延长线上的一点,线段BD 的垂直平分线EG 交AB 于点,E 交BD 于点G .()130B ∠= 时,AE 和EF 有什么关系?请说明理由.()2当点D 在BC 的延长线上()CD BC <运动时,点E 是否在线段AF 的垂直平分线上?24.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…(1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x++++11(2)(3)(3)(4)x x x x++++++.25.如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O 出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少.参考答案1.A【详解】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.2.D【分析】根据不等式的性质逐项分析即可.【详解】A.∵m n>,∴77m n+>+,故正确;B.∵m n>,∴55>,故正确;m nC.∵m n>,∴44m n-<-,故正确;D.∵m n>,∴66->-,故不正确;m n故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.D【解析】【分析】由BD=BC=AD,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC,则∠ABC=∠C=2x,在△ABC中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD,∴设∠A=∠ABD=x,则∠C=∠CDB=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得x=36°,即∠A=36°.故选:D.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.4.B【解析】【分析】利用函数图象,写出函数图象不在x轴下方所对应的自变量的范围即可.【详解】解:不等式ax+b≥0的解集为x≤2.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A【解析】【详解】试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.当a+b=5时,a2b+ab2=ab(a+b)=5ab=-10,解得:ab=-2.考点:因式分解的应用.6.D【解析】【详解】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.7.C【解析】【分析】根据平行四边形的判定定理:对角线互相平分的四边形是平行四边形可得答案.【详解】解:A、AB=BC,AD=DC,不能判定四边形ABCD是平行四边形,故此选项错误;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB∥CD,AB=CD能判定四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故此选项正确;D、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误;故选:C.【点睛】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.A【解析】【分析】根据垂直平分线的性质和等边对等角即可计算.【详解】∵∠C=90°,∠A=40°,∴∠ABC=90°-40°=50°.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=50°-40°=10°.故选A.9.C【解析】【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】解:∵x2+mx+4=x2+mx+22是完全平方式,∴m=±4,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.a2+2ab+b2和a2-2ab+b2都是完全平方式,注意不要漏解.10.D【解析】【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【详解】解;∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】此题主要考查了平行四边形的性质、线段垂直平分线的性质、以及等腰三角形的判定与性质等知识,正确应用等腰三角形的判定与性质是解题关键.11.2.【解析】【详解】试题分析:由分式的值为0时,分母不能为0,分子为0,可得2x-4=0,x+1≠0,解得x=2.考点:分式的值为0的条件.12.(2)(2)a a a +-【解析】【分析】先提出公因式a ,再利用平方差公式因式分解.【详解】解:a 3-4a=a (a 2-4)=a (a+2)(a-2).故答案为a (a+2)(a-2).【点睛】本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.13.5【解析】【分析】由旋转可得AB =BD ,∠ABD =60°,可得 ABD 为等边三角形,则可得出答案.【详解】解:∵将 ABC 绕点B 顺时针旋转60°得 DBE ,∴AB =BD ,∠ABD =60°,∴ ADB 是等边三角形,∴AB =AD =5.故答案为:5.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,关键是灵活运用旋转性质解决问题.14.3【解析】【分析】根据等腰三角形的性质可得AD ⊥BC ,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】解:∵AB =AC ,AD 平分∠BAC ,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=12AC=3.故答案为:3.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.15.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.16.m≤3【解析】【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的范围.【详解】解:解不等式x+8<4x−1,得:x>3,∵不等式组的解集为x>3,∴m≤3,故答案为:m≤3.【点睛】本题考查的是解一元一次不等式组,解题的关键是正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.17.11a -+【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2020=336×6+4,即可得出S 2020=S 4,此题得解.【详解】解:S 1=1a ,S 2=﹣S 1﹣1=﹣1a ﹣1=﹣1a a+,S 3=21S =﹣1a a +,S 4=﹣S 3﹣1=1a a +﹣1=﹣11a +,S 5=41S =﹣(a+1),S 6=﹣S 5﹣1=(a+1)﹣1=a ,S 7=61S =1a,…,∴Sn 的值每6个一循环.∵2020=336×6+4,∴S 2020=S 4=﹣11a +故答案为:﹣11a +【点睛】本题考查了规律型中数字的变化类,根据数值的变化找出Sn 的值,每6个一循环是解题的关键.18.不等式组的解集为3,x >最小整数解是4x =.【解析】【分析】先分别求出两个不等式的解集,然后求出公共解集,进而可得最小整数解.【详解】()12214x x -<-⎧⎪⎨+>⎪⎩①②,解不等式①,得3x >,解不等式②,得1x >,∴不等式组的解集为3,x >则它的最小整数解是4x =.【点睛】本题主要考查了解一元一次不等式组,根据“同大取大”求出公共解集是关键.19.x -1,1【解析】【分析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个合适的数代入求值.【详解】解:原式21111x x x x+--=⨯+()()111x x x x x+-=⨯+1x =-;x 取1,0和1-时分式无意义,x \取2,当2x =时,原式211=-=.【点睛】本题考查了分式的化简求值,解题的关键是分子、分母的因式分解,以及通分、约分.20.(1)见解析;(2)平行,相等;(3)15.【解析】【分析】(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)利用平移的性质得出线段AA 1、BB 1的位置与数量关系;(3)利用三角形面积求法进而得出答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.故答案为:平行,相等;(3)平移过程中,线段AB扫过部分的面积为:2×12×3×5=15.故答案为:15.【点睛】此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21.(1)见解析(213【解析】【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【详解】(1)证明:在▱ABCD中,AD BC,且AD=BC∵F是AD的中点∴DF=12 AD又∵CE=12 BC∴DF=CE,且DF CE∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD 中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=12CD=2,3在▱CEDF 中,CE=DF=12AD=3,则EH=1.∴在Rt △DHE 中,根据勾股定理知2(23)113+=.22.(1)2元;(2)至少购进玫瑰200枝.【解析】【详解】试题分析:(1)设降价后每枝玫瑰的售价是x 元,然后根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,列分式方程求解即可,注意检验结果;(2)根据店主用不多于900元的资金再次购进两种鲜花共500枝,列不等式求解即可.试题解析:(1)设降价后每枝玫瑰的售价是x 元,依题意有=×1.5.解得x =2.经检验,x =2是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.(2)设购进玫瑰y 枝,依题意有2(500-y)+1.5y≤900.解得y≥200.答:至少购进玫瑰200枝.23.(1)AE=EF ,理由详见解析;(2)点E 是在线段AF 的垂直平分线上,理由详见解析【解析】(1)根据线段垂直平分线性质得出DE=BE,求出∠D=∠B=30°,根据三角形内角和定理和三角形外角性质求出∠A=∠DEA=60°,即可得出答案;(2)求出∠A=∠AFE,根据线段垂直平分线性质得出即可.【详解】解:(1)AE=EF,理由是:∵线段BD的垂直平分线EG交AB于点E,交BD于点G,∴DE=BE,∵∠B=30°,∴∠D=∠B=30°,∴∠DEA=∠D+∠B=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∴∠A=∠DEA=60°,∴△AEF是等边三角形,∴AE=EF;(2)点E是在线段AF的垂直平分线,理由是:∵∠B=∠D,∠ACB=90°=∠FCD,∴∠A=∠DFC,∵∠DFC=∠AFE,∴∠A=∠AFE,∴EF=AE,∴点E是在线段AF的垂直平分线.【点睛】本题考查了线段垂直平分线性质,等腰三角形的性质,等边三角形的性质和判定的应用,能熟记线段垂直平分线内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.(1)一般性等式为111=(+11n n n n-+);(2)原式成立;详见解析;(3)244x x+.【解析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+);(2)1111(1)(1)n n n n n n n n +-=-+++ 111(1)1n n n n ==++,∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++1111112x x x x =-+-+++11112334x x x x +-+-++++114x x =-+244x x=+.【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.25.(1)证明见解析;(2)四边形ADEC 的周长为+.【解析】【分析】(1)连接CD 交AE 于F ,根据平行四边形的性质得到CF=DP ,OF=PF ,根据题意得到AF=EF ,又CF=DP ,根据平行四边形的判定定理证明即可;(2)根据题意计算出OC 、OP 的长,根据勾股定理求出AC 、CE ,根据平行四边形的周长公式计算即可.【详解】(1)证明:如答图,连接CD 交AE 于F.∵四边形PCOD 是平行四边形,∴CF =DF ,OF =PF.∵PE =AO ,∴AF =EF.又∵CF =DF ,∴四边形ADEC 为平行四边形.(2)解:当点P 运动的时间为32秒时,OP =32,OC =3,则OE =92.由勾股定理,得AC 22OA OC +3,CE 22OC OE +3132.∵四边形ADEC 为平行四边形,∴四边形ADEC 的周长为(33132)×2=6+13【点睛】本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.。
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。
北师大版初中数学八年级下册期末试卷及答案
北师版初中数学八年级下册期末试卷一、选择题(本大题共小题,共分)下列图形中是中心对称图形的是()A B C D如图,在A B C D 中,E 为C D 上一点,连接A E 、B D ,且A E 、B D 交于点F ,D E A B =,则D F B F 等于()AB C D 如果a <b ,那么下列各式中,一定成立的是()A a >bB a c<b c C a -<b -D a>b 下列各式从左到右的变形中,是因式分解的为().A ()()x y x x y -+=+-+B ()()x x x -=+-C ()x a b a x b x -=-D ()ax b x c x a b c ++=++如图,R t △A B C 中,∠C =D ,A C =,B C =,D E 是A C 边的中垂线,分别交A C ,A B 于点E ,D ,则△D B C 的周长为()A B C D 如果关于x 的方程a x x +=-的解为非负数,且关于x,y 的二元一次方程组x y a x y +=+ìí+=î解满足x y +>-,则满足条件的整数a 有()个.A B C D 在正三角形,正方形,正五边形,正六边形这几个图形中,单独选用一种图形不能进行平面镶嵌的图形是()A 正三角形B 正方形C 正五边形D 正六边形“a 是正数”用不等式表示为()A a 5B a 6C a <D a >下列计算正确的是().A a a a ¸=B -=C -=D a b a b¸´=能判定四边形是平行四边形的是()A 对角线互相垂直B 对角线相等C 对角线互相垂直且相等D 对角线互相平分二、填空题(本大题共小题,共分)当x ___时,分式xx +-的值为零如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填的整数之和都相等,则第个格子中的数为_____________.-ab c-…若a b a b a b -+++=,则a b +=______.如图,A B C是边长为的等边三角形,取B C边中点E,作E D A B,E F A C,得到四边形E D A F,它的面积记作S;取B E中点E;作E D F B,E F E F,得到四边形E D F F,它的面积记作S.照此规律作下去,S=_______.(第题)(第题)如图,在等边△ABC中,AD平分∠BAC交BC与点D,点E为AC边的中点,BC=8;在AD上有一动点Q,则QC+QE的最小值为_______.三、解答题(本大题共小题,共分)判断命题“一组对边平行另一组对边相等的四边形是平行四边形”真假,若是真命题,请给出证明;若是假命题,请修改其中一个条件使其变成真命题(一个即可)并请写出证明过程.(要求:画出图形,写出已知,求证和证明过程)下列运算正确吗?如果不正确,请改正.()a b a b m m m++=;()a ax y y x-=--;()a a+=;()x yx y x y+=++.如图,正方形网格中,每个小正方形的边长均为,每个小正方形的顶点叫格点.()在图①中,以格点为端点,画线段M N;()在图②中,以格点为顶点,画正方形A B C D,使它的面积为.已知:如图,A B C为等边三角形,B D为中线,延长B C至E,使C E=C D,连接D E.()证明:B D E是等腰三角形;()若A B=,求D E的长度.东东在完成一项“社会调查”作业时,调查了城市送餐员的收入情况,他了解到劳务公司为了鼓励送餐员的工作积极性,实行“月总收入=基本工资(固定)+计单奖金”的方法计算薪资,并获得如下信息:营业员小李小杨月送餐单数单月总收入元送餐每单奖金为a元,送餐员月基本工资为b元.()求a、b的值;()若月送餐单数超过单时,超过部分每单奖金增加元,假设月送餐单数为x单,月总收入为y元,请写出y与x之间的函数关系式,并求出送餐员小李计划月总收入不低于元时,小李每月至少要送餐多少单?如图,在边长为的正方形A B C D中,动点E以每秒个单位长度的速度从点A开始沿边A B向点B运动,动点F以每秒个单位长度的速度从点B开始沿折线B C﹣C D向点D运动,动点E比动点F先出发秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.()点F在边B C上.①如图,连接D E,A F,若D E⊥A F,求t的值;②如图,连结E F,D F,当t为何值时,△E B F与△D C F相似?()如图,若点G是边A D的中点,B G,E F相交于点O,试探究:是否存在在某一时刻t,使得B OO G=?若存在,求出t的值;若不存在,请说明理由.上海“迪士尼”于今年“”开园,准备在暑假期间推出学生门票优惠价如下:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)我市某慈善单位欲购买三种类型的票共张奖励品学兼优的留守学生,其中购买的A种票x张,B种票数是A种票数的倍少张,C种票y张.()请求出y与x之间的函数关系式;()设购票总费用为w元,求w(元)与x(张)之间的函数关系式;()为方便学生游玩,计划购买的每种票至少购买张,则有几种购票方案?并指出哪种方案费用最少?参考答案一、选择题:C A C B CD C D C D二、填空题-三、解答题假命题.改为:两组对边分别相等的四边形是平行四边形.已知:如图,在四边形A B C D 中,A B C D =,A D B C =.求证:四边形A B C D 是平行四边形.证明:连接A C,如图所示:在A B C 和C D A 中,A B C D A D C B A C C A =ìï=íï=î∴()A B C C D A SS S ≌.∴B A C D C A Ð=Ð,A C B C A D Ð=Ð,∴A B C D ,B C A D ,∴四边形A B C D 是平行四边形.()a b a bm m m++=,故原题计算错误;()a a a a a x y y x x y x y x y -=+=-----,故原题计算错误;()a a a aa a+=++=,故原题计算错误;()x y x y x y x y x y++==+++,故原题计算正确.()如图①所示:()如图②所示.()证明:A B C 为等边三角形,D C B \Ð=°C E CD = ,CE D C D E \Ð=Ð,D C B CE D C D E Ð=Ð+Ð=° ,C ED C DE \Ð=Ð=°,B D Q 为中线D BC \Ð=°,D B C CE D \Ð=Ð,B D D E \=,B D E \是等腰三角形;()解:B D Q 为中线,A D A C \==,B D A C ^,A DB \Ð=°,在R t A B D △中,由勾股定理得:B D =D E B D \==.()由题意得:a b a b +=ìí+=î,解得,a =,b =,答:a =,b =.()①当x ££时,y x =+,②x >时,()y x x =´+-+=+,y \与x 的函数关系式为:()x x y x x ì+££=í+>î,´+=< ,x \>,当x +³时,x ³,因此每月至少要送单,答:月总收入不低于元时,每月至少要送餐单.()①如图∵D E ⊥A F ,∴∠A O E D ,∴∠B A F ∠A E O D ,∵∠A D E ∠A E O D ,∴∠B A E ∠A D E ,又∵四边形A B C D 是正方形,∴A E A D ,∠A B F ∠D A E D ,在△A B F 和△D A E 中,{B A E A D E A E A D A B F D A EÐ=Ð=Ð=Ð∴△A B F≌△D A E(A S A)∴A E B F,∴t t,解得t.②如图∵△E B F∽△D C F∴E B B FD C F C=,∵B F t,A E t,∴F C﹣t,B E﹣﹣t﹣t,∴t tt -=-,解得:t=,t=(舍去),故t-=.()①<t5时如图,以点B为原点B C为x轴,B A为y轴建立坐标系,A的坐标(,),G的坐标(,),F点的坐标(t,),E的坐标(,﹣t)E F所在的直线函数关系式是:y tt-x﹣t,B G所在的直线函数关系式是:y x,∵B G=∵B OO G =,∴B O,O G,设O 的坐标为(a ,b ),{a b b a+==解得{a b ==∴O 的坐标为(,)把O 的坐标为(,)代入y t t -x ﹣t ,得t t -F ﹣t ,解得,t+(舍去),t-,②当6t >时如图,以点B 为原点B C 为x 轴,B A 为y轴建立坐标系,A 的坐标(,),G 的坐标(,),F 点的坐标(,t ﹣),E 的坐标(,﹣t )E F 所在的直线函数关系式是:y t -x ﹣t ,B G 所在的直线函数关系式是:y x ,∵B G =∵B OO G =,∴B O,O G,设O 的坐标为(a ,b ),{a b b a+==解得{a b ==∴O 的坐标为(,)把O 的坐标为(,)代入y t -x ﹣t ,得t -F ﹣t ,解得:t .综上所述,存在t-或t ,使得B O O G =.() 购买的A 种票x 张,\购买的B 种票为()x -张,x x y \+-+=,y x \=-;()()()w x x x =+-+-x =-+;()依题意得x x x ³ìï-³íï-³î,解得x ££,x 为整数,x \=、、,\共有种购票方案,方案一:A 种票张,B 种票张,C 种票张;方案二:A种票张,B种票张,C种票张;方案三:A种票张,B种票张,C种票张,=-+中,k=-<,在w x\随x的增大而减小,w´-+=元,\当x=时,w最小,最小值为()即当A种票为张,B种票张,C种票为张时,费用最少,最少费用为元。
北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)
矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加
,
四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().
新北师大版八年级下册数学期末考试测试题
新北师大版八年级下册数学期末考试测试题八年级下数学期末测试第一套一、填空1、分解因式:ab-2ab+a= -ab+a2、宽与长的比等于黄金比的矩形也称为黄金矩形,若一黄金矩形的长为2 cm,则其宽为 1.236 cm.3、若 2/4x+= 345.则 x+y+z= 1384.若 x+2(m-3)x+16 是完全平方式,则 m 的值是5.5.某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过 25.2 元.6.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DF=CF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号): ①②③④.7.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是 (2.5.1.5).8.如图,Rt△ABC中,∠ACB=90°直线EF∥BD,交AB于点E,交AC于点G,交AD于点F,若,1/CF=3/AD,则S△AEG= S四边形EBCG。
3/5.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是 2.10、若不等式(m-2)x>2的解集是x<2/(m-2)。
则x 的取值范围是 (2/(m-2)。
+∞).11、化简的结果为 2a+2b,12、如果x<-2,则(x+2)·(25abx-y)= (2x+4)·(25abx-y);13、已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为√2.二、选择题:1、如果a>b,那么下列各式中正确的是()A、a-3-b答案:A2、下列各式:(1-x)/(5π-3x^2),其中分式共有()个。
北师大版八年级下册数学期末考试试卷及答案
北师大版八年级下册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.a、b 都是实数,且a<b,则下列不等式正确的是()A.a+x >b+x B.1-a<1-b C.5a <5b D.2a >2b 3.在平面直角坐标系内,将点M(3,1)先向上平移2个单位长度,再向右平移3个单位长度,则移动后的点的坐标是()A.(6,3)B.(6,﹣1)C.(0,3)D.(0,﹣1)有意义的x 的取值范围是()A.3x >B.3x <C.3x ≥D.3x ≤5.若()234a m a +-+能用完全平方公式进行因式分解,则常数m 的值是()A.1或5B.1C.-1D.7或1-6.如图,l∥m,等边三角形ABC 的顶点B 在直线m 上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°7.函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +≥的解集是()A.2x ≤B.2x ≥C.0x ≤D.0x ≥8.化简22a b a b a b ---的结果为()A.-a b B.a b +C.a ba b +-D.a ba b-+9.如图,点P 在∠AOB 的平分线上,PC⊥OA 于点C,∠AOB=30°,点D 在边OB 上,且OD=DP=2.则线段PC 的长度为()A.3B.2C.1D.1210.如图,边长为a ,b 的长方形,它的周长为14,面积为10,则22a b ab ab +-的值为()A.70B.60C.130D.14011.若正多边形的一个外角是72 ,则该正多边形的内角和为()A.360 B.540 C.720 D.90012.如图,E 是▱ABCD 的边DC 的延长线上一点,连接AE ,且AE DE =,若46E ∠=︒,则B Ð的度数为()A.65︒B.66︒C.67︒D.68︒二、填空题13.如图,在△ABC 中,EF 是△ABC 的中位线,且EF=5,则AC 等于________.14.把多项式x 2+ax +b 分解因式得(x+1)(x﹣3),则a-b 的值是_____.15.在ABCD 中,:3:5AB BC =,它的周长是32,则BC =______.16.关于x 的分式方程21122mx x x +-=--有增根,则m =______.三、解答题17.解不等式组:102332x x x ->⎧⎨-<-⎩18.先化简,再求值:22131369x xx x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =19.因式分解:(1)2222416a x a y -;(2)()2(21)6219x x ---+.20.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △≌CBE △.21.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且28AC BD +=,12BC =,求AOD ∆的周长.22.如图,在ABC 中,4AB =,7BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转一定角度得到ADE ,当点B 的对应点D 恰好落在BC 边上时,求CD 的长.23.如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD AB ⊥交BC 于点D ,2AD =,求BC 的长.24.△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)写出中心对称图形△A1B1C1的顶点坐标.25.已知:如图A、C是▱DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.26.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?27.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?28.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.参考答案1.C【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形(不考虑颜色),故本选项不符合题意;故选:C.2.C【详解】解:A.∵a<b,∴a+x<b+x,计算错误;B.∵a<b,∴-a>-b,∴1-a>1-b,计算错误;C.∵a<b,∴5a<5b,计算正确;D.∵a<b,∴22a b <,计算错误.故答案为:C.【点睛】本题主要考查不等式的基本性质,熟练掌握不等式得基本性质是解题的关键.3.A【解析】【分析】横坐标右移加,左移减;纵坐标上移加,下移减;依此即可求解.【详解】解:3+3=6,1+2=3.故点M 平移后的坐标为(6,3).故选:A.【点睛】本题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件,由被开方数大于等于0,分母不等于0即可求解.【详解】解:根据二次根式的性质,被开方数x-3≥0,解得x≥3,≠,即x-3≠0,解得x≠3有意义的x的取值范围是3x>.故选A.【点睛】本题主要考查了二次根式有意义的条件和分式有意义的条件.二次根式中被开方数必须是非负数,否则二次根式无意义,当二次根式在分母上时,还要考虑分母不等于零.5.D【解析】【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:∵a2+(m-3)a+4能用完全平方公式进行因式分解,∴m-3=±4,解得:m=-1或7.故选:D.【点睛】本题考查了公式法分解因式,熟练掌握完全平方公式的结构特点是解题的关键.6.C【详解】解:过C作CM∥直线l,∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB-∠MCB=60°-20°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.A【详解】解:由图可知,当x≤2时,kx+b≥0.故选:A.8.B【详解】解:22a b a b a b---22a b a b-=-()()a b a b a b+-=-a b =+,故选:B .9.C【详解】解:如图,过点P 作PE⊥OB 于E,∵∠AOB=30°,点P 在∠AOB 的平分线上,∴∠AOP=∠POB=15°,∵OD=DP=2,∴∠OPD=∠POB=15°,∴∠PDE=30°,∴PE=12PD=1,∵OP 平分∠AOB,PC⊥OA,PE⊥OB,∴PC=PE=1,故选:C.【点睛】此题考查的是角平分线的性质和直角三角形30°所对的边等于斜边的一半的应用、等腰三角形的性质,掌握角平分线上的点到角的两边距离相等和直角三角形30°所对的边是斜边的一半是解题关键.10.B【解析】【分析】先根据长方形的周长和面积得出a+b 和ab 的值,再将22a b ab ab +-的前两项提出ab,然后代入求出即可.【详解】解:∵边长为a ,b 的长方形,它的周长为14,面积为10,∴a+b=7,ab=10,∴()22=+a b ab ab ab a b ab+--=10710⨯-=60故选:B【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.11.B【解析】【分析】先根据正多边形的外角和为360°求出边数,然后再运用多边形的内角和公式解答即可.【详解】解:多边形的边数为360°÷72°=5则多边形的内角和为:(5-2)×180°=540°.故答案为B.【点睛】本题考查了正多边形的每一个外角都相等、多边形的外角和为360°以及多边形的内角和公式,求得正多边形的边数和掌握多边形内角和公式是解答本题的关键.12.C【解析】【分析】根据平行四边形的性质得到∠B=∠D,再由等腰三角形的性质与三角形的内角和定理求出∠D 即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠B=∠D,∵AE=DE,∴∠D=∠DAE,∵∠E=46°,∠E+∠D+∠DAE=180°,∴()1=180=672D E ∠-∠ ∴∠B=67°.故选C.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.10【解析】【分析】根据三角形中位线定理即可求出AC.【详解】解:在△ABC中,∵EF是△ABC的中位线,∴EF=12 AC,∴AC=2EF,∵EF=5,∴AC=2×5=10,故答案为:10.【点睛】本题主要考查了三角形中位线定理,熟记三角形的中位线等于第三边的一半是解决问题的关键.14.1【解析】【分析】把因式分解后的式子展开即可得出答案.【详解】∵()()21323x x x x +-=--又()()213x x x ax b+-=++∴23a b ,=-=-∴1a b -=故答案为1.【点睛】本题考查的是因式分解,属于基础题型,解题关键是因式分解后的式子展开后与原式对应项系数相等.15.10【解析】【分析】设3,5AB x BC x ==,然后根据周长等于32列方程.【详解】解:设3,5AB x BC x==由题意得,()23532x x +=解得2x =所以BC=10.故答案为10.【点睛】本题主要考查了运用方程解决实际问题,利用平行四边形的周长,求边长.16.5【解析】【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=--通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.17.1x >【解析】【分析】分别把两个不等式的解集求出来,再借助数轴求出两个解集的公共部分,即得不等式组的解集.【详解】解不等式(1)得:1x >解不等式(2)得:1x >-两个解集在数轴上表示如下:∴不等式组的解集为:1x >【点睛】本题考查了解不等式组及利用数轴求不等式组的解集.18.4xx -,1【解析】【分析】先根据分式的混合运算法则进行化简,再把x【详解】解:原式()213(3)33x x x x x -+-=⋅--4xx-=当x =时,原式1=.【点睛】本题考查了分式的化简求值以及分母有理化,熟练掌握运算法则是解题的关键19.(1)()()2422ax y x y -+;(2)()242x -【解析】【分析】(1)先提取公因式,再用平方差公式分解即可;(2)先用完全平方公式分解,再提取公因式即可.【详解】解:(1)2222416a x a y-=()22246ax y -=()()2422a x y x y -+;(2)()2(21)6219x x ---+=2(213)x --=()242x -.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解,注意:因式分解要彻底.20.见解析.【解析】【分析】由等边三角形性质得到AB=BC,BD=BE,∠ABC=∠DBE=60°,从而有∠ABD=∠CBE ,即可得到结论【详解】证明:∵ABC 和BDE 是等边三角形∴60ABC DBE ∠=∠=︒∴ABC DBC DBE DBC∠-∠=∠-∠∴ABD CBE∠=∠又∵AB BC =,BD BE =,∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌CBE △()SAS 【点睛】本题考查了全等三角形的判定,以及等边三角形的性质,熟练掌握全等三角形的判定定理是解题关键.21.26【解析】【分析】根据平行四边形对角线互相平分的性质,由28AC BD +=,得到14AO OD +=,再根据平行四边形对边相等得到12AD BC ==,最后算出AOD ∆的周长.【详解】解:∵四边形ABCD是平行四边形,∴AO CO =,BO DO =,∵28AC BD +=,∴14AO OD +=,∵12AD BC ==,∴AOD ∆的周长141226AO OD AD =++=+=.本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质.22.3【解析】【分析】由旋转的性质可证得ABD △是等边三角形,则可求得BD 的长,再利用线段的和差即可求得答案.【详解】解:∵将ABC 绕点A 顺时针旋转一定角度得到ADE ,∴4AD AB ==.∵60B ∠=︒,∴ABD △是等边三角形,∴4BD AD AB ===,∴743CD BC AD =-=-=.【点睛】本题考查了旋转的性质、等边三角形的判定和性质、线段的和差等,证得ABD △是等边三角形是解题的关键.23.6BC =【解析】【分析】由题意易得∠B=∠C=30°,进而可得∠CAD=∠C=30°,则有2CD AD ==,由含30°的直角三角形的性质可得BD=4,进而问题可求解.解:∵AB AC =,120BAC ∠=︒,∴()1180302B C BAC ∠=∠=︒-∠=︒,∵AD AB ⊥,∴90BAD ∠=︒,∴1209030CAD BAC BAD C ∠=∠-∠=︒-︒=︒=∠,∴2CD AD ==,在Rt BAD 中,30B ∠=︒,∴24BD AD ==,∴426BC BD CD =+=+=.【点睛】本题主要考查等腰三角形的性质与判定及含30°的直角三角形的性质,熟练掌握等腰三角形的性质与判定及含30°的直角三角形的性质是解题的关键.24.(1)画图见解析;(2)A 1(1,-2),B 1(3,-3),C 1(4,0)【解析】【分析】(1)依据中心对称的性质,即可得到△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(2)根据图象可得各点坐标.【详解】解:(1)如图所示:(2)由图可知:A 1(1,-2),B 1(3,-3),C 1(4,0).【点睛】本题主要考查了作图—中心对称,掌握中心对称的性质是解决问题的关键.25.证明见解析【解析】【分析】根据平行四边形和平行线的性质,推导得DEA BFC ∠=∠,DFC BEA ∠=∠;根据全等三角形的判定和性质,证明DEA BFC △≌△、DFC BEA △≌△,得AD BC =、CD AB =,即可完成证明.【详解】证明:∵平行四边形DEBF,∴//DE BF ,//DF BE ,∴DEF BFE ∠=∠,DFE BEF ∠=∠,∵180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,∴DEA BFC ∠=∠,DFC BEA ∠=∠,∵平行四边形DEBF,∴DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩∴DEA BFC △≌△,∴AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩∴DFC BEA △≌△,∴CD AB =,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形、平行线、全等三角形的知识;解题的关键是熟练掌握平行四边形、全等三角形的判定和性质,从而完成求解.26.甲每秒加工口罩15个,乙每秒加工口罩20个.【解析】【分析】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.再根据题意可列出关于x 的分式方程,求解即可.【详解】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.根据题意可列方程9012035x x=-.解得:15x =,经检验15x =是原方程的解.故甲每秒加工口罩15个,乙每秒加工口罩35-15=20个.【点睛】本题考查分式方程的实际应用.根据题意列出等量关系式是解答本题的关键.27.(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】【分析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩,解得2040 xy=⎧⎨=⎩,答:篮球、足球各买了20个,40个;(2)设购买了a个篮球,根据题意,得()708060a a≤-,解得32a≤,∴最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.28.(1)10-t;(2)5秒;(3)见解析【解析】【分析】(1)先证明△APO≌△CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP∥BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=10,∴BQ=10-t;(2)∵AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,∴当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,在Rt△ABC中,∵AB=6,BC=10,,∴AO=CO=12AC=4,∵S△ABC=12AB AC⋅=12BC EF⋅,∴AB•AC=BC•EF,∴6×8=10×EF,∴EF=24 5,∴OE=125,165,当325t=时,AP=325,∴2AE=AP,即点E是AP中点,∴点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。
八年级数学下册期末考试卷附答案(北师大版)
八年级数学下册期末考试卷附答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。
(每小题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.若x >y ,则下列不等式一定成立的是( )A.x+4>y+6B.x -8<y -8C.x9>y9 D.﹣a >﹣b 3.下列各式:①3x ;②a+b 4;③y 3y ;④xyπ+2,其中是分式的是( )A.①③B.③④C.①②D.①②③④ 4.关于x 的方程5x x -2=ax -2+1有增根,则a 的值是( )A.0B.2或3C.2D.3 5.如果把5a a+b中的a ,b 同时扩大10倍,那么这个代数式的值( )A.不变B.扩大50倍C.扩大10倍D.缩小大原来的1106.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列添加的条件不正确的是( )A.AB=CDB.BC=ADC.∠A=∠CD.BC ∥AD(第6题图) (第7题图) (第8题图) 7.如图,正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( ) A.30° B.36° C.54° D.72°8.如图,一个长为2,宽为1的长方形以所示姿态从直线l的左侧水平平移至右侧(图中的虚线是水平线),其中,平移的距离是()A.1B.2C.3D.2√29.若不等式组{x<1x<a的解集是x<a,则a的取值范围是()A.a≤1B.a=1C.a≥1D.a<1二.填空题。
(每小题4分,共24分)11.因式分解:a2-6a= .12.若分式x+1x-1的值为0,则x的值是 .13.如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE等于 .(第13题图)(第15题图)(第16题图)14.若不等式(a-4)x>1的解集是x<1a-4,则m的取值范围是 .15.如图,在平行四边形ABCD中,CE平分∠BCD,若CD=5,BC=3,则AE的长是 .16.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 .三.解答题。
北师大版八年级下册数学期末试卷8套
120°
B.
90°
C.
60°
D.
30°
6.(3分)如图,Rt△ABC中,∠C=90°,AB的垂直平分线DE交AC于点E,连接BE.若∠A=35°,则∠CBE的度数是( )
A.
20°
B.
25°
C.
30°
D.
35°
第6题第8题第9题
7.(3分)计算 的结果是( )
A.
B.
C.
y
D.
x
8.(3分)如图,已知△ABC中,AB=AC,D为BC中点,DE⊥AB于E,且DE=3,F是AC上一动点,则DF的最小值为( )
C.
平行四边形的对角线相等
D.
三角形的三条角平分线相交于一点,并且这一点到三角形三条边的距离相等
11.(3分)周末,小亮和同学去书店买书,他们先用30元买一种文学书,又用60元买一种艺术书.已知艺术书的价格比文学书高出一半,他们所买的艺术书比所买的文学书多1本.如果设文学书的价格为x元/本,那么依题意可列方程为( )
A. B. C. D.
10.如图, 中, 边的垂直平分线交 于点 ,交 于点 ,已知 cm, 的周长为 cm,则 的长为
A. cmB. cmC. cmD. cm
11.已知关于 的不等式组 的整数解共有6个,则 的取值范围是
A. B. C. D.
12.如图1,在平面直角坐标系中,将□ 放置在第一象限,且 轴.直线 从原点出发沿 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度 与直线在 轴上平移的距离 的函数图象如图2,那么□ 的面积为
(1)当 =2s时,四边形 的面积为 cm2;
(2)若以 、 、 、 为顶点的四边形是平行四边形,求 的值;
北师大版八年级数学下册《三角形的证明》单元测试1(含答案)
第一章 三角形的证明单元测试一、选择题(每题3分,共30分)1、△ABC 中,AB = AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC = 75°,则∠A 的度数为( )A 35°B 40°C 70°D 110°2、适合条件∠A =∠B =31∠C 的三角形一定是( )A 锐角三角形B 钝角三角形C 直角三角形D 任意三角形3、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是( )A ①②④B ②④C ①④D ②③④4、已知△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60 cm 和38 cm ,则△ABC 的腰和底边长分别为 ( ) A 24 cm 和12 cm B 16 cm 和22 cm C 20 cm 和16 cm D 22 cm 和16 cm5、如图,△ABC 中,AC =BC ,直线l 经过点C ,则 ( ) A l 垂直AB B l 平分AB C l 垂直平分AB D 不能确定6、三角形中,若一个角等于其他两个角的差,则这个三角形是 ( ) A 钝角三角形 B 直角三角形 C 锐角三角形 D 等腰三角形7、已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( ) A 9㎝B 12㎝C 12㎝或者15㎝D 15㎝8、如图,已知在△ABC中,AB=AC,D为BC上一点,BE=CD,CF=BD,那么∠EDF等于( )A 90°-∠A B 90°-21∠A C 45°-21∠A D 180°-∠A9、一个正方形和一个等腰三角形有相等的周长,已知等腰三角形有两边长分别为5.6 cm和13.2 cm,则这个正方形的面积为()A 64 cm2B 48 cm2C 36 cm2D 24 cm210、如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A 45°B 55°C 60°D 75°二、填空题(每小题3分,共30分)1、“直角三角形两条直角边的平方和等于斜边的平”的方逆定理是2、等腰三角形的腰长为2cm,面积等于1cm2,则它的顶角的度数为 .3、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB相交于D点,则∠BCD的度数是 .4、等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是 .5、正三角形的边长为a,则它的面积为.6、在△ABC中,AB=AC,∠A=58°,AB的垂直平分线交AC于N,则∠NBC = .7、在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边长为.8、已知:如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=.9、在等腰三角形ABC中,AB=AC=5,BC=6,D是BC上一点,作DE⊥AB,DF⊥AC,则DE+DF= .10、如图,一张直角三角形的纸片,象图中那样折叠,使A与B重合,∠B=30°,AC=3,则折痕DE等于.三、解答题(本题共8个小题,共60分)1、(7分)已知:如图,等腰三角形ABC 中,AC =BC ,∠ACB =90°,直线l 经过点C(点A 、B 都在直线l 的同侧),AD ⊥l ,BE ⊥l ,垂足分别为D 、E .求证:△ADC ≌△CEB.2、(7分)用反证法证明一个三角形中不能有两个角是直角.3、(8分)如图,在△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE 于G .求证:①G 是CE 的中点. ②∠B=2∠BCE .4、(7分)在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,且AE =21(AB +AD ),求∠ABC +∠ADC 的度数.ABCDEGABCED5、(7分)如图,△ABC 中,E 是BC 边上的中点,DE ⊥BC 于E ,交∠BAC 的平分线AD 于D ,过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,试证明:BM =CN .6、(7分)已知:如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F . 求证:AC=2BF .7、(7分)在△ABC 中,AB =AC ,D 是AB 上一点,E 是AC 延长线上一点,且BD =CE . 求证:DM =EM .ABC DMNEBFABCDE8、(10分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.参考答案一、选择题1、B2、B3、A4、D5、D6、B7、D8、B9、A 10、C二、填空题1、如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形2、30°或150°3、10°4、32a 5、234a 6、3°7、 6 8、55° 9、24510、1三、解答题(本题共8个小题,共60分) 1、略 2、略3、提示:连结DE ,由直角三角形斜边中线等于斜边的一半易证.4、提示:过C 点作AD 的延长线的垂线,垂足为F .利用角平分线的性质和AE=21(AB+AD )可知BE=DF ,CF=CE ,再由△CDF ≌CBE 即得. 5、提示:连结BD 、CD 利用角平分线和中垂线的性质证△BDM ≌CDN . 6、提示:证△ACD ≌CBF .7、提示:过D 点作AC 的平行线(或者过E 点作AB 的平行线)利用三角形全等可证.8、(1)∠A = 30°;证明略(2)△ABC。
北师大版八年级数学下册第4章测试题及参考答案
北师大版八年级数学下册第4章测试题一、选择题1.下列运算正确的是()A.(a+b)2=a2+b2B.(﹣2ab3)2=﹣4a2b6C.3a2﹣2a3=a6D.a3﹣a=a(a+1)(a﹣1)2.因式分解3y2﹣6y+3,结果正确的是()A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.3.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)4.下列各因式分解正确的是()A.x2+2x﹣1=(x﹣1)2B.﹣x2+(﹣2)2=(x﹣2)(x+2)C.x3﹣4x=x(x+2)(x﹣2)D.(x+1)2=x2+2x+15.把代数式x3﹣4x2+4x分解因式,结果正确的是()A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2 6.因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)7.把多项式x2﹣8x+16分解因式,结果正确的是()A.(x﹣4)2B.(x﹣8)2C.(x+4)(x﹣4)D.(x+8)(x﹣8)8.下列代数式变形正确的是()A.﹣a+b=(a+b)B.﹣4a2+b2=(2a﹣b)(2a+b)C.(﹣x﹣y)2=(x+y)2D.x2﹣4x﹣3=(x﹣2)2﹣39.下列各式中,能用完全平方公式进行因式分解的是()A.x2﹣1B.x2+2x﹣1C.x2+x+1D.4x2+4x+110.因式分解4﹣4a+a2正确的是()A.(2﹣a)2B.(2+a)2C.(2﹣a)(2+a)D.4(1﹣a)+a2 11.把x2y﹣y分解因式,正确的是()A.y(x2﹣1)B.y(x+1)C.y(x﹣1)D.y(x+1)(x﹣1)12.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3﹣4a2=a2(a﹣4)D.1﹣4x2=(1+4x)(1﹣4x)二、填空题13.分解因式:x2﹣4=.14.把多项式x2﹣3x因式分解,正确的结果是.15.因式分解:x2+6x=.16.分解因式:m2+4m=.17.因式分解3a2+a=.三、解答题18.一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.19.若一个两位正整数m的个位数为8,则称m为“好数”.(1)求证:对任意“好数”m,m2﹣64一定为20的倍数;(2)若m=p2﹣q2,且p,q为正整数,则称数对(p,q)为“友好数对”,规定:H(m)=,例如68=182﹣162,称数对(18,16)为“友好数对”,则H(68)==,求小于50的“好数”中,所有“友好数对”的H(m)的最大值.20.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.21.先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.22.对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当D(p,q)=30时,求的最大值.23.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m 的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.答案与解析1.下列运算正确的是()A.(a+b)2=a2+b2B.(﹣2ab3)2=﹣4a2b6C.3a2﹣2a3=a6D.a3﹣a=a(a+1)(a﹣1)【考点】55:提公因式法与公式法的综合运用;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.【专题】选择题【分析】A、原式利用完全平方公式化简得到结果,即可做出判断;B、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;C、原式不能合并,错误;D、原式提取公因式,再利用平方差公式分解即可.【解答】解:A、原式=a2+b2+2ab,错误;B、原式=4a2b6,错误;C、原式不能合并,错误;D、原式=a(a+1)(a﹣1),正确,故选D【点评】此题考查了提公因式法与公式法的综合运用,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.2.因式分解3y2﹣6y+3,结果正确的是()A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】直接提取公因式3,进而利用完全平方公式分解因式即可.【解答】解:3y2﹣6y+3=3(y2﹣2y+1)=3(y﹣1)2.故选:A.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.3.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2,故选B【点评】此题考查了提公式法与公式法的综合运用,要注意有没有分解到不能分解.4.下列各因式分解正确的是()A.x2+2x﹣1=(x﹣1)2B.﹣x2+(﹣2)2=(x﹣2)(x+2)C.x3﹣4x=x(x+2)(x﹣2)D.(x+1)2=x2+2x+1【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【解答】解:A、x2+2x﹣1无法因式分解,故A错误;B、﹣x2+(﹣2)2=(2+x)(2﹣x),故B错误;C、x3﹣4x=x(x+2)(x﹣2),故C正确;D、(x+1)2=x2+2x+1,是多项式的乘法,不是因式分解,故D错误.故选:C.【点评】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.5.把代数式x3﹣4x2+4x分解因式,结果正确的是()A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】根据提公因式,完全平方公式,可得答案.【解答】解:原式=x(x2﹣4x+4)=x(x﹣2)2,故选:D.【点评】本题考查了因式分解,利用提公因式,完全平方公式是解题关键.6.因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.1【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2).故选:D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.7.把多项式x2﹣8x+16分解因式,结果正确的是()A.(x﹣4)2B.(x﹣8)2C.(x+4)(x﹣4)D.(x+8)(x﹣8)【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用完全平方公式分解因式得出答案.【解答】解:x2﹣8x+16=(x﹣4)2.故选:A.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.8.下列代数式变形正确的是()A.﹣a+b=(a+b)B.﹣4a2+b2=(2a﹣b)(2a+b)C.(﹣x﹣y)2=(x+y)2D.x2﹣4x﹣3=(x﹣2)2﹣3【考点】54:因式分解﹣运用公式法;36:去括号与添括号;4C:完全平方公式.【专题】选择题【分析】直接利用添括号法则以及公式法分解因式、配方法的应用分别分析得出答案.【解答】解:A、﹣a+b=﹣(a﹣b),故此选项错误;B、﹣4a2+b2=(b﹣2a)(2a+b),故此选项错误;C、(﹣x﹣y)2=(x+y)2,正确;D、x2﹣4x﹣3=(x﹣2)2﹣7,故此选项错误;故选:C.【点评】此题主要考查了添括号法则以及公式法分解因式、配方法的应用,正确掌握运算法则是解题关键.9.下列各式中,能用完全平方公式进行因式分解的是()A.x2﹣1B.x2+2x﹣1C.x2+x+1D.4x2+4x+1【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】根据完全平方公式,可得答案.【解答】解:4x2+4x+1=(2x+1)2,故D符合题意;故选:D.【点评】本题考查了因式分解,熟记公式是解题关键.10.因式分解4﹣4a+a2正确的是()A.(2﹣a)2B.(2+a)2C.(2﹣a)(2+a)D.4(1﹣a)+a2【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用公式法分解因式进而得出答案.【解答】解:4﹣4a+a2=(2﹣a)2.故选:A.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.11.把x2y﹣y分解因式,正确的是()A.y(x2﹣1)B.y(x+1)C.y(x﹣1)D.y(x+1)(x﹣1)【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】先提取公因式y,然后利用平方差公式进行分解.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1).故选:D.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3﹣4a2=a2(a﹣4)D.1﹣4x2=(1+4x)(1﹣4x)【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】各项利用提取公因式法及公式法分解得到结果,即可作出判断.【解答】解:A、原式不能分解,错误;B、原式不能分解,错误;C、原式=a2(a﹣4),正确;D、原式=(1+2x)(1﹣2x),错误,故选C【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.分解因式:x2﹣4=.【考点】54:因式分解﹣运用公式法.【专题】填空题【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.把多项式x2﹣3x因式分解,正确的结果是.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提公因式x即可.【解答】解:原式=x(x﹣3),故答案为:x(x﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确确定公因式.15.因式分解:x2+6x=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】根据提公因式法,可得答案.【解答】解:原式=x(6+x),故答案为:x(x+6).【点评】本题考查了因式分解,利用提公因式法是解题关键.16.分解因式:m2+4m=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.因式分解3a2+a=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提公因式a即可.【解答】解:3a2+a=a(3a+1),故答案为:a(3a+1).【点评】此题主要考查了提公因式法进行因式分解,关键是正确确定公因式.18.一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)根据题意可以表示出M的友谊数,然后作差再除以15即可解答本题;(2)根据题意可以表示出N和N的团结数,然后作差即可解答本题.【解答】解:(1)由题意可得,设M为100a+10b+c,则它的友谊数为:100b+10a+c,(100a+10b+c)﹣(100b+10a+c)=100a+10b+c﹣100b﹣10a﹣c=100(a﹣b)+10(b﹣a)=90(a﹣b),∵,∴M与其“友谊数”的差能被15整除;(2)由题意可得,N=2×100+10a+b=200+10a+b,N的团结数是:10×2+a+10a+2+10×2+b+10×b+2+10a+b+10b+a=22a+22b+44,∴22a+22b+44﹣(200+10a+b)=24,解得,或,即N是284或218.【点评】本题考查因式分解的应用、解二元一次方程,解答本题的关键是明确题意,找出所求问题需要的条件.19.若一个两位正整数m的个位数为8,则称m为“好数”.(1)求证:对任意“好数”m,m2﹣64一定为20的倍数;(2)若m=p2﹣q2,且p,q为正整数,则称数对(p,q)为“友好数对”,规定:H(m)=,例如68=182﹣162,称数对(18,16)为“友好数对”,则H(68)==,求小于50的“好数”中,所有“友好数对”的H(m)的最大值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)设m=10t+8,1≤t≤9,且t为整数,由于m2﹣64=20(5t2+8t),于是得到结论;(2)根据已知条件得到10t+8=(p+q)(p﹣q),于是得到H(28)=,H (48)=或H(48)==或H(48)=,即可得到结论.【解答】(1)证明:设m=10t+8,1≤t≤9,且t为整数,∴m2﹣64=(10t+8)2﹣64=100t2+160t+64﹣64=20(5t2+8t),∵1≤t≤9,且t为整数,∴5t2+8t是正整数,∴m2﹣64一定为20的倍数;(2)解:∵m=p2﹣q2,且p,q为正整数,∴10t+8=(p+q)(p﹣q),当t=1时,18=1×18=2×9=3×6,没有满足条件的p,q;当t=2时,28=1×28﹣3×14=4×7,其中满足条件的p,q的数对有(8,6),即28=82﹣62,∴H(28)=,当t=3时,38=1×38=2×19,没有满足条件的p,q;当t=4时,48=1×48=2×24=3×16=4×12=6×8,满足条件的p,q的数对为或或,解得:或或,即48=132﹣92=82﹣42=72﹣12,∴H(48)=或H(48)==或H(48)=,∵,∴H(m)的最大值为.【点评】本题考查了因式分解的应用,正确的理解”好数”和“友好数对”是解题的关键.20.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.【考点】59:因式分解的应用.【专题】解答题【分析】(1)根据题意即可得到结论;(2)设这个“和平数”为,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7,②、当a=4,d=8时,得到c=4则b=8,于是得到结论;(3)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.【解答】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②、当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为2754和4848.(3)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则+=1100(a+b)+11(c+d)=1111(a+b),即两个“相关和平数”之和是1111的倍数.【点评】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.21.先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)根据欢喜数的定义可得出a+c=b,由=100a+10b+c可得出=99a+11b,结合b能被9整除即可证出“欢喜数”能被99整除;(2)设m=,n=(且a1>a2),根据F(m)﹣F(n)=(a1﹣a2)(b﹣a1﹣a2)=3结合a1、a2、b均为整数,即可得出a1﹣a2=1或a1﹣a2=3,将其代入m﹣n=99(a1﹣a2)中即可得出结论.【解答】(1)证明:∵为欢喜数,∴a+c=b.∵=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“欢喜数”能被99整除.(2)设m=,n=(且a1>a2),∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=297.∴若F(m)﹣F(n)=3,则m﹣n的值为99或297.【点评】本题考查了因式分解的应用,解题的关键是:(1)找出=99a+11b;(2)由F(m)﹣F(n)=3,求出a1﹣a2=1或a1﹣a2=3.22.对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当D(p,q)=30时,求的最大值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)当k为奇数时,k+1是偶数,则k(k+1)是能被3整除的偶数,故k(k+1)是6的倍数;当k为偶数时,则k(k+1)是能被3整除的偶数,故k(k+1)是6的倍数,(2)根据题意得p=t(t+1),q=s(s+1),D(p,q)=t(t+1)﹣s(s+1)=30,即t2+t﹣s2﹣s=30,分解因式得到(t﹣s)(t+s+1)=30,根据30=1×30=2×15=3×10=5×6,得到方程组求得或或或,于是得到结论.【解答】解:(1)若“矩数”m=k(k+1)是3的倍数,则k(k+1)是3的倍数,k是正整数,当k为奇数时,k+1是偶数,则k(k+1)是能被3整除的偶数,故k(k+1)是6的倍数;当k为偶数时,则k(k+1)是能被3整除的偶数,故k(k+1)是6的倍数,综上所述,若“矩数”m是3的倍数,则m一定是6的倍数;(2)根据题意得p=t(t+1),q=s(s+1),D(p,q)=t(t+1)﹣s(s+1)=30,即t2+t﹣s2﹣s=30,∴(t﹣s)(t+s+1)=30,∵t,s是正整数,t>s,∴t﹣s,t+s+1是正整数,且t+s+1>t﹣s,∵30=1×30=2×15=3×10=5×6,∴或或或,解得:或或或,∵t,s是正整数,∴符合条件的是:或或,∴或=或=,∵,∴的最大值是.【点评】本题考查了因式分解的应用,解二元一次方程组,正确的理解题意是解题的关键.23.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m 的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【考点】51:因式分解的意义.【专题】解答题【分析】根据例题中的已知的两个式子的关系,两个中二次三项式x2﹣4x+m 的二次项系数是1,因式是(x+3)的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子2x2+3x﹣k的二次项系数是2,因式是(2x﹣5)的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【解答】解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)【点评】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.。
北师大版八年级数学下册单元测试《第1章 三角形的证明》(解析版)
《第1章三角形的证明》一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=24.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.456.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.97.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.《第1章三角形的证明》参考答案与试题解析一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】由三角形的三个内角度数比为1:1:2,可设三角形的三个内角分别为:x,x,2x,然后由三角形的内角和等于180°,即可得方程:x+x+2x=180°,解此方程即可求得答案.【解答】解:∵三角形的三个内角度数比为1:1:2,∴设三角形的三个内角分别为:x,x,2x,∴x+x+2x=180°,解得:x=45°,∴三角形的三个内角度数分别为:45°,45°,90°.∴这个三角形为等腰直角三角形.故选:D.【点评】此题考查了三角形的内角和定理.此题比较简单,解题的关键是根据三角形的三个内角度数比为1:1:2,设三角形的三个内角分别为:x,x,2x,利用方程思想求解.2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形【考点】等腰三角形的判定.【分析】认真阅读各选项,结合各选项提供的已知条件及等腰三角形的定义可得.【解答】解:A、第三个角180°﹣50°﹣65°=65°,有两等角的三角形是等腰三角形,正确;B、外角相等,则对应的内角也相等,有两等角的三角形是等腰三角形,正确;C、利用两直线平行,内错角相等,同位相等,可知,另外的两内角也相等,有两等角的三角形是等腰三角形,正确;D、两个内角不相等的三角形可能是等腰三角形,错误.故选D.【点评】本题考查了等腰三角形的判定;找出各选项的正误是正确解答本题的关键.3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2【考点】反证法.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【考点】反证法.【专题】证明题.【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.45【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题意可得EB=ED,根据等边对等角的性质,易得∠B=∠EDB=∠ACB,即可得EF∥AC,又由AE=BE,根据平行线等分线段成比例定理,可得BD=CD,然后利用SAS即可证得△EBD≌△CFD,即可得∠F=∠BED.【解答】解:∵以点E为圆心,EB为半径画弧,交BC于点D,∴EB=ED,∴∠EDB=∠B=70°,∴∠BED=180°﹣∠B=∠BDE=40°,∵AB=AC,∴∠ACB=∠B,∴∠EDB=∠ACB,∴EF∥AC,∵E是AB的中点,即BE=AE,∴BD=CD,在△EBD和△FCD中,,∴△EBD≌△FCD(SAS),∴∠F=∠BED=40°.故选A.【点评】此题考查了全等三角形的判定与性质、等腰三角形的性质以及平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用,注意理解题意.6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里【考点】等腰三角形的判定与性质;方向角;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.【解答】解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选:D.【点评】本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是6.【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,根据等腰三角形的性质与三角形内角和定理,易求得各角的度数,继而求得答案.【解答】解:∵在△ABC中,AB=AC,∠ABD=36°,即△ABC是等腰三角形,∴∠C=∠B=36°,∴∠BAC=108°,∵∠DAE=∠EAC=36°,∴∠BAD=36°,∴∠BAD=∠B=36°,∠EAC=∠C=36°,∴△ABD,△ACE是等腰三角形,∴∠ADE=∠AED=∠DAC=∠BAE=72°,∴△ADE,△ABE,△ACD是等腰三角形.故答案为:6.【点评】此题考查了等腰三角形的性质与判定.此题难度不大,注意掌握数形结合思想的应用.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9.【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【考点】等腰三角形的判定与性质.【专题】压轴题.【分析】可根据等腰三角形三线合一的性质来判断①②是否正确;③④要通过作等腰三角形来判断其结论是否成立.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.【点评】此题主要考查的是等腰三角形的判定和性质;本题的难点是结论③的证明,能够正确的构建出等腰三角形是解答③题的关键.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.【考点】反证法.【专题】证明题.【分析】运用反证法进行求解:(1)假设结论PB≠PC不成立,PB=PC成立.(2)从假设出发推出与已知相矛盾.(3)得到假设不成立,则结论成立.【解答】证明:假设PB≠PC不成立,则PB=PC;∵在△ABP和△ACP中,,∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC.【点评】解此题关键要懂得反证法的意义及步骤.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【考点】等腰三角形的判定与性质;作图—基本作图.【专题】作图题.【分析】(1)以D为圆心,以任意长为半径画弧,交AD于G,交DC于H,分别以G、H为圆心,以大于GH为半径画弧,两弧交于N,作射线DN,交AM 于F.(2)求出∠BAD=∠CAD,求出∠FAD=×180°=90°,求出∠CDF=∠AFD=∠ADF,推出AD=AF,即可得出答案.【解答】解:(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.【点评】本题考查了作图﹣基本作图,等腰三角形的性质和判定的应用,主要培养学生的动手操作能力和推理能力,题目比较典型,难度也适中.13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.【考点】作图—应用与设计作图;角平分线的性质;等腰三角形的判定.【分析】(1)作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB于点C、D,则△OCD是以CD为底边的等腰三角形;(2)根据PQ∥OA,得出∠QPR=∠OCD,进而得出OD=CD,即可得出答案;(3)作QP∥DO,再作∠ODR=∠O,即可得出答案.【解答】解:(1)能.画法:作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB 于点C、D,则△OCD是以CD为底边的等腰三角形,如图①.(2)∵PQ∥OA,∴∠QPR=∠OCD,又∵∠QPR=∠AOB,∴∠OCD=∠AOB.∴OD=CD.即△OCD是以OC为底的等腰三角形.(3)如图②.【点评】此题主要考查了基本作图角平分线的性质等知识;作角平分线是正确解答本题的关键.。
北师大版八年级下册数学期末考试题及答案
北师大版八年级下册数学期末考试卷一、选择题(共12小题,每小题3分,计36分)1.若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.ab>b22.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交AB、AC 于D、E,△BEC的周长是14cm,BC=5cm,则AB的长是()A.14cm B.9cm C.19cm D.12cm3.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是A.m+1 B.2m C.2 D.m+24.若关于x的分式方程+=1有增根,则m的值是()A.m=0或m=3 B.m=3 C.m=0 D.m=﹣15.如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个7.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为()A.3 B.4 C.4.5 D.58.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,BD是角平分线,若CD=m,AB=2n,则△ABD的面积是()A.mn B.5mn C.7mn D.6mn11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.1612.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,在共有学生人数为()A.6人B.5人C.6人或5人D.4人二.填空题(共4小题,每小题3分,计12分)13.在平面直角坐标系中,点P(2,﹣1)关于原点的对称点在第象限.14.若x是整数,且满足不等式组,则x=.15.如图,P是∠AOB的平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA 于点C,若∠AOB=30°,PD=2cm,则PC=cm.16.某市为治理污水,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.则实际每天铺设污水排放管道的长度为m.三.解答题(共8小题,满分52分)17.(6分)解不等式组:,并把解集在数轴上表示出来.18.(6分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求(m﹣p)n的值19.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.20.(6分)解分式方程:.21.(6分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.22.(6分)如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC 于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.23.(8分)如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.(8分)如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.参考答案一、选择题(共12小题,每小题3分,计36分)1.若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.ab>b2选A.2.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交AB、AC 于D、E,△BEC的周长是14cm,BC=5cm,则AB的长是()A.14cm B.9cm C.19cm D.12cm解:∵DE是AB边的垂直平分线,∴AE=BE(线段垂直平分线上的点到线段两端点的距离相等),∵△BEC的周长=BE+BC+CE=AE+CE+BC=AC+BC=14cm,BC=5cm,∴AC=14﹣5=9cm,∵AB=AC,∴AB的长是9cm.故选B.3.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.4.若关于x的分式方程+=1有增根,则m的值是()A.m=0或m=3 B.m=3 C.m=0 D.m=﹣1解:去分母得:3﹣x﹣m=x﹣4,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:3﹣4﹣m=0,解得:m=﹣1,故选D.5.如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形解:设多边形的边数为n,根据题意(n﹣2)•180°=360°,解得n=4.故选A.6.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个解:∵在△ABC中,∠A=36°,∠C=72°∴∠ABC=180°﹣∠A﹣∠C=72°=∠C∴AB=AC,∴△ABC是等腰三角形BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°∵∠A=∠ABD=36°,∴△ABD是等腰三角形∠BDC=∠A+∠ABD=36°+36°=72°=∠C∴△BDC是等腰三角形∴共有3个等腰三角形故选D.7.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为()A.3 B.4 C.4.5 D.5解:如图,连结DN,∵DE=EM,FN=FM,∴EF=DN,当点N与点B重合时,DN的值最大即EF最大,在RTABD中,∵∠A=90°,AD=3,AB=3,∴BD===6,∴EF的最大值=BD=3.故选A.8.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△ABD经旋转后到达△ACE的位置,∴∠BAC等于旋转角,即旋转角等于60°.故选B.9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.解:当x<﹣1时,y1<y2,所以关于x的不等式x+m<kx﹣1的解集为x<﹣1,用数轴表示为:.故选D10.如图,在Rt△ABC中,∠C=90°,BD是角平分线,若CD=m,AB=2n,则△ABD的面积是()A.mn B.5mn C.7mn D.6mn解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=m,∴△ABD的面积=×2n×m=mn,故选:A.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.16解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.12.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,在共有学生人数为()A.6人B.5人C.6人或5人D.4人解:设共有学生x人,0≤(3x+8)﹣5(x﹣1)<3,解得,5<x<6.5,故共有学生6人,故选A.二.填空题(共4小题,每小题3分,计12分)13.在平面直角坐标系中,点P(2,﹣1)关于原点的对称点在第二象限.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故点P(2,﹣1)关于原点的对称点在第二象限.故答案为:二.14.若x是整数,且满足不等式组,则x=3.解:,解①得x>2,解②得x<,所以不等式组的解为2<x<,所以整数x的值为3.故答案为3.15.如图,P是∠AOB的平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA 于点C,若∠AOB=30°,PD=2cm,则PC=4cm.解:如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,PD=2cm,∴PE=PD=2cm,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PC=2PE=2×2=4cm.故答案为:4.16.某市为治理污水,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.则实际每天铺设污水排放管道的长度为50m.解:设实际每天铺设污水排放管道的长度为xm,则计划每天铺设污水排放管道的长度为xm,根据题意得:﹣=15,解得:x=50,经检验,x=50是原分式方程的解.故答案为:50.三.解答题(共8小题,满分52分)17.解不等式组:,并把解集在数轴上表示出来.解:由①得x≥4,由②得x<1,∴原不等式组无解,18.过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求(m﹣p)n的值.解:∵过m边形的一个顶点有8条对角线,∴m﹣3=8,m=11;n边形没有对角线,n=3;∵p边形有p条对角线,∴p=p(p﹣3)÷2,解得p=5,所以(m﹣p)n=(11﹣5)3=216.19.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.20.解分式方程:.解:方程的两边同乘(x+1)(x﹣1),得2(x﹣1)=x(x+1)﹣(x+1)(x﹣1),2x﹣2=x2+x﹣x2+1,2x﹣x=1+2,解得x=3.检验:把x=3代入(x+1)(x﹣1)=8≠0.∴原方程的解为:x=3.21.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B (0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(2,﹣1).解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).22.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.证明:∵∠B=90°,∠ACB=30°,∴∠BAC=60°∵AB∥DE,∴∠EFC=∠BAC=60°,∵∠CDE=30°,∴∠FCD=∠EFC﹣∠CDE=60°﹣30°=30°,∴∠FCD=∠FDC,∴FD=FC,即△FCD为等腰三角形.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM 平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.24.如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.解:(1)如图,连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=BC,ME=BC,∴DM=ME又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB),=360°﹣2(∠ABC+∠ACB),=360°﹣2(180°﹣∠A),=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,。
最新北师大版八年级数学下册单元测试题全套及答案
最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。
北师大版数学八年级下册期末达标测试卷(含答案)
期末达标测试卷一、选择题(每题3分,共30分)1.若分式x 2-4x 的值为0,则x 的值是( )A .2或-2B .2C .-2D .02.【2021·牡丹江】下列美术字中,既是轴对称图形又是中心对称图形的是( )3.下列式子从左到右的变形中,属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .x 2-2x +1=x (x -2)+1C .a 2-b 2=(a +b )(a -b )D .mx +my +nx +ny =m (x +y )+n (x +y )4.【2021·丽水】若-3a >1,两边都除以-3,得( )A .a <-13B .a >-13C .a <-3D .a >-35.【2022·张家界】把不等式组⎩⎨⎧x +1>0,x +3≤4的解集表示在数轴上,下列选项正确的是( )6.【2022·雅安】在平面直角坐标系中,点(a +2,2)关于原点的对称点为(4,-b ),则ab 的值为( ) A .-4 B .4C .12D .-127.【2022·山西】化简1a -3-6a 2-9的结果是( ) A.1a +3 B .a -3 C .a +3 D.1a -3 8.在▱ABCD 中,对角线AC ,BD 交于点O ,下列结论不一定...成立的是( ) A .∠ABO =∠CDO B .∠BAD =∠BCDC .AB =CDD .AC ⊥BD9.【教材P 132复习题T 12变式】为了防止疫情扩散,确保人民健康,某区计划开展全员核酸检测,甲、乙两个检测队分别负责A,B两个生活区的核酸检测.已知A生活区参与核酸检测的共有3 000人,B生活区参与核酸检测的共有2 880人,乙检测队因工作原因比甲检测队晚开始检测10分钟.已知乙检测队的检测速度是甲检测队的1.2倍,结果两个检测队同时完成检测,设甲检测队每分钟检测x人,根据题意,可以得到的方程是()A.2 880x=3 0001.2x+10 B.3 000x=2 8801.2x+16C.3 000x=2 8801.2x D.3 000x=2 8801.2x+1010.【2022·百色】活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如已知△ABC中,∠A=30°,AC=3,∠A所对的边为3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.2 3 B.23-3C.23或 3 D.23或23-3二、填空题(每题3分,共24分)11.【2022·金华】因式分解:x2-9=____________.12.【2022·福建】如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为________.(第12题)(第15题)(第16题)(第17题)13.计算mm2-1-11-m2的结果是__________.14.【教材P156例2改编】一个多边形的内角和是外角和的2倍,这个多边形的边数是________.15.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是边AB的垂直平3分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为________. 16.如图,已知函数y =kx +2与函数y =mx -4的图象交于点A ,根据图象可知不等式kx +2<mx -4的解集是__________.17.如图,将△ABC 绕点C 按顺时针方向旋转20°,B 点落在B′的位置,A 点落在A ′的位置,若AC ⊥A′B ′,则∠BAC =________. 18.【2022·齐齐哈尔】若关于x 的分式方程1x -2+2x +2=x +2m x 2-4的解大于1,则m 的取值范围是__________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.【2022·梧州】解方程:1-23-x =4x -3.20.【2022·常德】解不等式组:⎩⎪⎨⎪⎧5x -1>3x -4,-13x ≤23-x .21.【2022·盘锦】先化简,再求值:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1,其中x =|-2|+1.22.【2021·达州】如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.23.【2023·云南大学附属中学模拟】如图,在平行四边形ABCD中,F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.24.【2022·聊城】为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3 600米的街道地下管网时,每天的施工效率比原计划提高了20%.按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?25.【动态探究题】点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点,连接EF.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否仍然成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,请说明理由;如果变化,请直接写出EF,BE,CF之间的数量关系.5答案一、1.A 2.C 3.C 4.A 5.D 6.D 7.A 8.D 9.D10.C 【点拨】如图,满足已知条件的三角形为△ABC 和△AB ′C ,其中CB ′=CB ,作CH ⊥AB 于H . ∴B ′H =BH . ∵∠A =30°, ∴CH =12AC =32.∴AH =AC 2-CH 2=32 3.在Rt △CBH 中,由勾股定理得BH =BC 2-CH 2=3-94=32,∴AB =AH +BH =332+32=23,AB ′=AH -B ′H =AH -BH =332-32= 3.二、11.(x +3)(x -3) 12.6 13.1m -114.6 15.16 16.x <-3 17.70° 18. m >0且m ≠1【点思路】解分式方程,得x =m +1.经检验,当m +1≠2,m +1≠-2,即m ≠1且m ≠-3时,x =m +1是原分式方程的解.根据题意,得m +1>1,所以m >0且m ≠1. 三、19.解:去分母,得x -3+2=4,解得x =5.检验:当x =5时,x -3≠0. 所以x =5是原分式方程的根. 20.解:⎩⎪⎨⎪⎧5x -1>3x -4,①-13x ≤23-x .②7解不等式①,得x >-32; 解不等式②,得x ≤1.所以这个不等式组的解集为-32<x ≤1. 21.解:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1=x -3(x +1)(x -1)·(x +1)2x -3-⎝⎛⎭⎪⎫1x -1+x -1x -1 =x +1x -1-x x -1=1x -1. ∵x =|-2|+1=2+1, ∴原式=12+1-1=12=22.22.解:(1)如图,△A 1B 1C 1即为所求.(2)如图所示.S △A 1C 1C 2=8×4-12×3×2-12×2×8-12×4×5=11. 23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC . ∴AD ∥BE . ∴∠ADF =∠BEF . ∵F 是AB 的中点, ∴AF =BF .在△ADF 和△BEF 中,⎩⎨⎧∠ADF =∠BEF ,∠AFD =∠BFE ,AF =BF ,∴△ADF ≌△BEF (AAS). ∴AD =BE . 又∵AD ∥BE ,∴四边形AEBD 是平行四边形.(2)解:如图,过点D 作DG ⊥BC 于点G ,过点B 作BH ⊥CD 于点H . ∵BD =BC =5,CD =6, ∴CH =DH =12CD =3. ∴BH =BC 2-CH 2=4. ∵S △BCD =12BC ·DG =12CD ·BH , ∴DG =CD ·BH BC =6×45=245. ∵四边形AEBD 是平行四边形, ∴BE =AD . ∴BE =BC =5.∴S 平行四边形AEBD =BE ·DG =5×245=24.24.解:(1)设原计划每天改造管网x 米,则实际施工时每天改造管网(1+20%)x米.由题意得3 600x - 3 600(1+20%)x =10,解得x =60.经检验,x =60是原方程的解,且符合题意. 此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米. (2)设以后每天改造管网还要增加m 米. 由题意得(40-20)(72+m )≥3 600-72×20, 解得m ≥36.答:以后每天改造管网至少还要增加36米.25.(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°.∴∠DBE=∠DBC+∠ABC=90°,∠DCF=∠DCB+∠ACB=90°.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.∴∠AEF=∠AFE.∴AE=AF.∴BE=AB-AE=AC-AF=CF.又∵DB=DC,∠DBE=∠DCF=90°,∴△BDE≌△CDF(SAS).∴DE=DF,∠BDE=∠CDF.又∵∠BDC=120°,∠EDF=60°,∴△DEF是等边三角形,∠BDE=∠CDF=30°.∴DE=DF=EF,BE=12DE=12DF=CF.∴BE+CF=12DE+12DF=EF,即EF=BE+CF.(2)解:仍然成立.理由如下:如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得∠DBE=∠DCF=90°,则∠DBF′=∠DCF=90°.又∵BD=CD,∴△DCF≌△DBF′(SAS).9∴DF=DF′,∠BDF′=∠CDF.∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠CDF=60°.∴∠EDB+∠BDF′=∠EDF′=60°.∴∠EDF′=∠EDF.又∵DE=DE,∴△EDF′≌△EDF(SAS).∴EF=EF′=BE+BF′=BE+CF.(3)解:结论发生变化.EF=CF-BE.【点要点】利用旋转解决问题时要注意以下几点:1.旋转中的变(图形的位置)与不变(图形的形状、大小);2.旋转前后的对应关系(顶点、边、角);3.旋转过程中的相等关系.。
(完整版)北师大版八年级下册数学期末测试卷及含答案(查漏补缺)
北师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a 为常数,且a≠0)相交于点P,则不等式kx+b<ax的解集是()A.x>1B.x<1C.x>2D.x<22、如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC 与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线,作过C点且与AC垂直的直线,交于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3、下列命题:(1)如果a<0,b>0,那么;(2)同角的补角相等;(3)同位角相等;(4)如果,那么;(5)有公共顶点且相等的两个角是对顶角。
其中正确的个数是()A.1B.2C.3D.44、如图,AD是正五边形ABCDE的一条对角线,则∠BAD等于()A.72°B.108°C.36°D.62°5、若不等式组的解集是x>4,则m的取值范围是()A.m>4B.m≥4C.m≤4D.m<46、已知整数x满足是不等式组,则x的算术平方根为()A.2B.±2C.D.47、下列基本图形中经过平移、旋转或轴对称变换后不能得到右图的是()A. B. C. D.8、若将分式中的x和y都扩大到原来的2倍,那么分式的值()A.扩大到原来的4倍B.扩大到原来的2倍C.不变D.缩小到原来的.9、如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为( )A. B. C. D.10、如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.511、如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=()A. B. C. D.12、如图,中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A. B. C.D.13、如图,△ABC的顶点都在⊙O上,∠BAO=50°,则∠C的度数为()A.30°B.40°C.45°D.50°14、如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则∠a的度数是( )A.42°B.40°C.36°D.32°15、若整数使得关于的不等式组的解集为,且关于的分式方程的解为负数,则所有符合条件的整数的和为()A.0B.-3C.-5D.-8二、填空题(共10题,共计30分)16、因式分解:________ .17、若m+n=2,计算6﹣2m﹣2n=________.18、如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有________个.19、如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为________.20、如图,在矩形中,,,那么的度数为________.21、若关于的分式方程有增根,则=________ .22、在函数y=中,自变量x的取值范围是________.23、在□ABCD中,若∠A=50°,则∠D的度数为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
第四章测试题
备课人:梁亚荣 审核人:邬海彬 备课时间:2015.5.25使用人: 使用时间:
一、选择题:(每小题3分,共24分)
1.下列各多项式中,不能用平方差公式分解的是( )
A.a 2b 2-1 B .4-0.25a 2 C .-a 2-b 2 D .-x 2+1
2.如果多项式x 2-mx+9是一个完全平方式,那么m 的值为( )
A .-3
B .-6
C .±3
D .±6
3.下列变形是分解因式的是( )
A .6x 2y 2=3xy ·2xy
B .a 2-4ab+4b 2=(a -2b)2
C .(x+2)(x+1)=x 2+3x+2
D .x 2
-9-6x=(x+3)(x -3)-6x
4.下列多项式的分解因式,正确的是( )
A .)34(391222xyz xyz y x xyz -=- B.)2(363322+-=+-a a y y ay y a
C.)(22z y x x xz xy x -+-=-+-
D.)5(522a a b b ab b a +=-+
5.满足0106222=+-++n m n m 的是( )
A.3,1==n m
B.3,1-==n m
C.3,1=-=n m
D.3,1-=-=n m
6.把多项式)2()2(2a m a m -+-分解因式等于(
) A ))(2(2m m a +- B ))(2(2m m a --
C 、m(a-2)(m-1)
D 、m(a-2)(m+1) 7.已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )
A 、1,3-==c b
B 、2,6=-=c b
C 、4,6-=-=c b
D 、6,4-=-=c b
8、若n 为任意整数,()n n +-1122的值总可以被k 整除,则k 等于( )
A. 11
B. 22
C. 11或22
D. 11的倍数
二、填空题:(每小题3分,共24分)
9.多项式-2x 2-12xy 2+8xy 3的公因式是_____________.
10.分解因式:2183
x x -=__________
11.完全平方式49222
x y -+=()
12.利用分解因式计算:32003+6×32002-32004=_____________.
13.若A x y B y x =+=-353,,则A A B B 222-⋅+=_________ 14.若)4)(2(2-+=++x x q px x ,则p = ,q = 。
15.已知31=+a a ,则221a
a +的值是 。
16.已知正方形的面积是2269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 。
三、解答题:(共52分)
17:分解因式(16分)
(1)(x 2+2x)2+2(x 2+2x)+1 (2)m m n n m 2224()()---
(3) -+-x x x 3214 (4))()3()3)((22a b b a b a b a -+++-
18. 计算(每小题4分,共8分)
(1)2022+1982
(2)2004220042002
2004200420053232-⨯-+-
19.已知x 2-2(m -3)x+25是完全平方式,你能确定m 的值吗?不妨试一试.(6分)
20.先分解因式,再求值:(6分)
已知22==+ab b a ,,求32232
121ab b a b a ++的值。
21.不解方程组⎩⎨⎧=-=+1
362y x y x ,求32)3(2)3(7x y y x y ---的值。
(8分)
22.读下列因式分解的过程,再回答所提出的问题:(8分)
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x) =(1+x)3
(1)上述分解因式的方法是,共应用了次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法次,结果
是 .
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).。