三角形有关知识点总结及习题大全打印

合集下载

小学四年级数学三角形的分类(知识点梳理+典型例题)

小学四年级数学三角形的分类(知识点梳理+典型例题)

小学四年级数学三角形的分类(知识点梳理+典型例题)三角形的相关概念考点一【三角形的特性】三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形三角形的高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段三角形的底:这条对边叫做三角形的底用字母A、B、C分别表示三角形的三个顶点,这个三角形可以表示成三角形ABC三角形的性质:①物理特性:三角形具有稳定性(不易变形)②三边的特性:三角形任意两边的和大于第三边知识典例题型一:画出三角形的底边上的高例1:画出下面每个三角形底边上的高。

例2:画三条不同的高1题型二:三角形的内角和例1、王爷爷家的屋顶是一个等腰例2、根据三角形的内角和是180°,三角形(如图),求顶角的度数。

你能求出下面五边形的内角和吗?例3、一个三角形两个内角的度数分别为35°,67°,另一个内角的度数是()°,这是一个()三角形。

例4、在一个直角三角形中,一个锐角是75°,另一个锐角是()。

题型三:等腰三角形和等边三角形的性质例1.一个三角形三条边的长度分别为7厘米,8厘米,7厘米,这个三角形是()三角形。

例2.等腰三角形的底角是75°,顶角是(),等边三角形的每个内角都是()。

例3.一个等腰三角形的一边长5厘米,另一边长4厘米,围成这个等腰三角形至少需要()厘米长的绳子。

例4.在一个三角形的三个角中,一个是50度,一个是80度,这个三角形既是()三角形,又是()三角形。

题型四、求出三角形各个角的度数。

40°三角形的分类2考点一【三角形的分类】三角形(按角来分)锐角三角形:三个角都是锐角的三角形直角三角形:有一个角是直角的三角形钝角三角形:有一个角是钝角的三角形三角形(按边来分)三边不等三角形:三条边都不相等等腰三角形:有两条边相等等边三角形(正三角形):三条边都相按照角大小来分:三角形,三角形,三角形。

(完整版)人教版小学四年级数学下册三角形知识点总结及其配套练习题

(完整版)人教版小学四年级数学下册三角形知识点总结及其配套练习题

【三角形】1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

2、从三角形的一个极点到它的对边做一条垂线,极点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。

三角形只有 3 条高。

要点:三角形高的画法。

3、三角形的特征: 1、物理特征:稳固性。

如:自行车的三角架,电线杆上的三角架。

4、边的特征:随意两边之和大于第三边。

5、为了表达方便,用字母A、B、C 分别表示三角形的三个极点,三角形可表示成三角形 ABC。

6、三角形的分类:依据角大小来分:锐角三角形,直角三角形,钝角三角形。

依据边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形7、三个角都是锐角的三角形叫做锐角三角形。

8、有一个角是直角的三角形叫做直角三角形。

(其余两个角必然是锐角)9、有一个角是钝角的三角形叫做钝角三角形。

(其余两个角比定是锐角)10、每个三角形都起码有两个锐角;每个三角形都至多有 1 个直角;每个三角形都至多有 1 个钝角。

11、两条边相等的三角形叫做等腰三角形。

(等腰三角形的特色:两腰相等,两个底角相等 )12、三条边都相等的三角形叫等边三角形(正三角形)(等边△的三边相等,每个角是 60 度)13、等边三角形是特别的等腰三角形14、三角形的内角和等于180°;四边形的内角和是360°;五边形的内角和是 540°15、图形的拼组:用随意 2 个完整同样的三角形必定能拼成一个平行四边形。

16、用 2 个同样的三角形能够拼成一个平行四边形。

17、用 2 个同样的直角三角形能够拼成一个长方形、一个平行四边形、一个大等腰三角形。

18、用 2 个同样的等腰直角的三角形能够拼成一个正方形、一个平行四边形、一个大的等腰的直角的三角形。

19、密铺:能够进行密铺的图形有长方形、正方形、三角形以及正六边形等。

讲堂稳固练习一、专心选一选。

1、一个三角形有()条高。

A、1B、3 C 、无数2、假如直角三角形的一个锐角是A、20° B 、 70°20°,那么另一个角必定是(C、 160°)。

(完整版)人教版-八年级上册-三角形的知识点及题型总结

(完整版)人教版-八年级上册-三角形的知识点及题型总结

三角形的知识点及题型总结一、三角形的认识定义:由不在同一条直线上的三条线段首尾按序相接所构成的图形。

分类:锐角三角形(三个角都是锐角的三角形)按角分类直角三角形(有一个角是直角的三角形)钝角三角形(有一个角是钝角的三角形)三边都不相等的三角形按边分类等腰三角形底边和腰不相等的等腰三角形等边三角形例题 1图1中共几个三角形。

例题 2以下说法正确的选项是()A.三角形分为等边三角形和三边不相等三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形、直角三角形、钝角三角形例题 3 已知a、b、c为△ABC的三边长,b、c知足(b-2)2+|c-3|=0,且 a 为方程 |x -4|=2 的解 .求△ ABC的周长,并判断△ ABC的形状 .二、与三角形相关的边三边的关系:三角形的两边和大于第三边,两边的差小于第三边。

例题 1以以下各组数据为边长,能够成三角形的是(),4,5,4,8,7,10,4,5例题 2已知三角形的两边边长分别为4、5,则该三角形周长L 的范围是()A.1<L<9B.9<L<14C.10<L<18D.没法确立课后练习:1、若三角形的两边长分别为5、8,则第三边可能是()B. 62、等腰三角形的两边长分别为6、13,则它的周长为。

3、等腰三角形的两边长分别为4、已知三角形的两边长为 2 和4、5,则第三边长为。

4,为了使其周长是最小的整数,则第三边的为。

5、若等腰三角形的周长为13cm,此中一边长为 3cm,则等腰三角形的底边为()D.7cm 或3cm6、依据以下已知条件,能独一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠ A=30°C.∠A=60°,∠ B=45°, AB=4D.∠C=90°, AB=68、用7 根火柴棒首尾按序相连摆成一个三角形,能摆成个不一样的三角形。

三角形基础知识归纳总结

三角形基础知识归纳总结

2、三角形的高、中线、角平分线(1)三角形的高、中线、角平分线都是线段 .(2)交点情况:① 三条高所在的直线交于一点:三角形是锐角三角形时交点位于三角形的内部;三角形是直角三角形时,交点位于直角三角形的直角顶点;三角形是钝角三角形时,交点位于三角形的外部 .三角形的高② 三角形的三条中线交于一点,交点位于三角形的内部,每条中线都把三角形分成面积相等的两个三角形 .三角形的中线③ 三角形的三条角平分线交于一点,交点位于三角形的内部 .3、三角形的内角和三角形内角和定理: 任何三角形的内角和都等于 180° .三角形的三个内角用数学符号表示为:在△ABC 中,∠1 + ∠2 + ∠3 = 180° .4、三角形的外角与内角的关系(1)等量关系:(2)不等量关系:三角形的一个外角大于任何与它不相邻的内角 .5、多边形多边形的定义:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的图形叫做多边形 .对角线: 连接多边形不相邻的两个顶点的线段 .六边形多边形对角线条数探索:归纳总结:(1)n 边形的内角和是(n - 2)180°,外角和是 360° ;正 n 边形的每个内角是:(2) 从 n 边形的一个顶点出发,可做 ( n - 3 ) 条对角线,把 n 边形分成 ( n - 2 ) 三角形,所以 n 边形的内角和是 ( n - 2 )180° ;一个 n 边形一共有 n ( n - 3 ) / 2 条对角线 ( n ≥ 3 ) .(3)如果一个角的两边分别平行于另一角的两边,则这两个角 相等或互补 ;如果一个角的两边分别垂直于另一角的两边,则这两个角 相等或互补 .二、习题练习【 三边关系 】1. 下列长度的三条线段,能组成三角形的是( B )A.4cm,5cm,9cmB.8cm,8cm,15cmC.5cm,5cm,10cmD.6cm,7cm,14cm2. 下列各组数中,能作为一个三角形三边边长的是( C )A.1,1,2B.1,2,4C.2,3,4D.2,3,53. 已知三角形两边的长分别是 3 和 7,则此三角形第三边的长可能是( C ) A.1 B.2 C.8 D.114. 下列长度的三条线段,能组成三角形的是( B )A.3,4,81、 如图,将直尺与含 30° 角的三角尺摆放在一起,若 ∠1 = 20°,则 ∠2的度数是( A )A.50° B.60° C.70° D.80°2、 如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则5、 如图,在 △ABC 中,CD 平分 ∠ACB 交 AB 于点 D,过点 D 作 DE∥BC 交 AC 于点 E.若 ∠A=54°,∠B=48°,则 ∠CDE 的大小为( C )A.44° B.40° C.39° D.38°6. 如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在 △ABC 外的 A'处,折痕为 DE.如果 ∠A = α,∠CEA′ = β,∠BDA' = γ,那么下列式子中正确的是(A )A.γ=2α+β B.γ=α+2β C.γ=α+β D.γ=180°﹣α﹣β7. 如图,∠ACD 是 △ABC 的外角,CE 平分 ∠ACD,若 ∠A=60°,∠B=40°,则∠ECD 等于( C )A.40° B.45° C.50° D.55°9、 如图,点 D 在 △ABC 边 AB 的延长线上,DE∥BC.若 ∠A = 35°,∠C = 24°, 则 ∠D 的度数是( B )A.24° B.59° C.60° D.69°10. 如图,∠B = ∠C = 90°,M 是 BC 的中点,DM 平分 ∠ADC,且 ∠ADC = 110°, 则 ∠MAB =( B )A.30° B.35° C.45° D.60°11. 如图,墙上钉着三根木条 a,b,c,量得 ∠1=70°,∠2=100°,那么木条 a,b 所在直线所夹的锐角是( B )A.5° B.10° C.30° D.70°12. 已知直线 m∥n,将一块含 45° 角的直角三角板 ABC 按如图方式放置,其中斜边BC 与直线 n 交于点 D.若 ∠1 = 25°,则 ∠2 的度数为( C )A.60° B.65° C.70° D.75°13、 已知:如图,△ABC 是任意一个三角形,求证:∠A+∠B+∠C=180°.14. 如图,在 △ABC 中,AB=AC,D 是 BC 边上的中点,连结 AD,BE 平分 ∠ABC 交 AC 于点 E,过点 E 作 EF∥BC 交 AB 于点 F.(1)若 ∠C = 36°,求 ∠BAD 的度数.( 答案:54° )(2)若点 E 在边 AB 上,EF∥AC 交 AD 的延长线于点 F.求证:FB = FE.【 三角形的重要线段 】1. 如图,在 △ABC 中有四条线段 DE,BE,EF,FG,其中有一条线段是 △ABC 的中线,则该线段是( B )A.线段 DE B.线段 BE C.线段 EF D.线段 FG2. 如图,△ABC 中,AD 是 BC 边上的高,AE、BF 分别是 ∠BAC、∠ABC的平分线,∠BAC = 50°,∠ABC = 60°,则 ∠EAD + ∠ACD =( A )【 三角形的稳定性 】1. 下列图形具有稳定性的是( A )【多边形】1. 如图,在五边形 ABCDE 中,∠A + ∠B + ∠E = 300°,DP、CP 分别平分∠EDC、∠BCD,则 ∠P=( C )2. 图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则 ∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 360 度.3、 通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有 2 条,那么该多边形的内角和是540 度.4. 一个 n 边形的每一个内角等于108°,那么 n = 5 .5、 若一个多边形的内角和是其外角和的 3 倍,则这个多边形的边数是 8 .6、 五边形的内角和是 540。

初二数学八上第十一章三角形知识点总结复习和常考题型练习

初二数学八上第十一章三角形知识点总结复习和常考题型练习

第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点:①三条线段;②不在同一直线上;③首尾顺次相接2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.注意:已知两边可得第三边的取值范围是:两边之差<第三边<两边之和3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.注意:①三角形的三条高是线段;②画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点,交点叫重心.②画三角形中线时只需连结顶点及对边的中点即可.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和定理:三角形的内角和为180°直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形.⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角. 三角形的一个外角和与之相邻的内角互补.过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.例题精选 1.(2015·郴州中考)以下列各组线段为边,能组成三角形的是( )A.1 cm ,2 cm ,4 cmB.4 cm ,6 cm ,8 cmC.5 cm ,6 cm ,12 cmD.2 cm ,3 cm ,5 cm2.(2015·恩施中考)如图,AB ∥CD ,直线EF 交AB于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于 ( )A.50°B.60°C.65°D.90°3.(2015·来宾中考)如图,在△ABC 中,已知∠A=80°,∠B=60°,DE ∥BC ,那么∠CED 的大小是 ( )A.40°B.60°C.120°D.140°4.(2015·南平中考)正多边形的一个外角等于30°,则这个多边形的内角和为( )A.720B.1260C.1800D.23405.(2015·来宾中考)如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.(2015·遂宁中考)若一个多边形内角和等于1260°,则该多边形有条对角线.2.下列说法错误的是().A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是().A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A =90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为().A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是().A.相等B.互补C.相等或互补D.互余10.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_____________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.19.一个正多边形的一个外角等于它的一个内角的13,这个正多边形是几边形?20.如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.21.如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.22.如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF =2,则S△ABC等于()A.16 B.14 C.12 D.109.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A.115°B.105°C.95°D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠314.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为________.24.(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__________,∠XBC+∠XCB=__________;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.25.平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.。

三角形(知识点+题型分类练习+基础检测+能力提高)

三角形(知识点+题型分类练习+基础检测+能力提高)

三角形章节复习全章知识点梳理:一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.3. 三角形三边的关系(重点)三角形的任意两边之和大于第三边。

三角形的任意两边之差小于第三边。

(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。

三角形知识点与对应习题资料

三角形知识点与对应习题资料

三角形知识点与对应习题一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.二、三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可三、三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.四、三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°结论2:在直角三角形中,两个锐角互余.注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.五、三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.六、多边形①多边形的对角线2)3(nn条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°与三角形有关的线段一、选择题:1.如图,在△ABF中,∠B的对边是()A.ADB.AEC.AFD.AC2.关于三角形的边的叙述正确的是()A.三边互不相等B.至少有两边相等C.任意两边之和一定大于第三边D.最多有两边相等3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm, 4cm, 8cmB.8cm, 7cm, 15cmC.13cm, 12cm, 20cmD.5cm, 5cm, 11cm4.等腰三角形两边长分别为3,7,则它的周长为( )A.13B.17C.13或17D.不能确定5.在平面直角坐标系中,点A(-3,0),B(5,0),C(0,4)所组成的三角形ABC的面积是()A.32B.4C.16D.86.已知三角形的三边长分别为4、5、x,则x不可能是()A.3B.5C.7D.97.下列说法错误的是( ).A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

三角形知识梳理(完美打印版)

三角形知识梳理(完美打印版)
就是直角三角形
知识点三:角平分线及线段垂直平分线
1.角平分线:角平分线上的点到这个角两边的距离相等;角的内部到角的两边距离相等的点在角的
平分线上
2.线段垂直平分线:线段垂直平分线上的点到这条线段两个端点的距离相等;
到一条线段两个端点距离相等的点在这条线段的垂直平分线上
注意:在一个三角形中,证明两条线段或两个角相等的常用方法:
性质:(1)直角三角形两锐角互余
(2)直角三角形中,斜边的中线等于斜边的一半
(3)直角三角形中,30°的角所对的直角边等于斜边的一半
(4)勾股定理:直角Βιβλιοθήκη 角形中两直角边的平方和等于斜边的平方
判定:(1)如果三角形一边上的中线等于这条边的一半,那么这个三角形为直角三角形
(2)勾股定理的逆定理:如果三角形的两边的平方和等于第三边的平方,那么这个三角形
1、正弦定义:在直角三角形ABC中,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即
sinA= ;
2、余弦定义:在直角三角形ABC中,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即
cosA= ;
3、正切定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即
tanA= ;
直角三角形全等的判定,除以上的方法还有HL定理
3.全等三角形的性质:全等三角形对应边相等,对应角相等
4.全等三角形的面积相等、周长相等、对应高线、对应中线、对应角平分线相等
5.证明三角形全等的思路:
找夹角
(1)已知两边找直角
找第三边
边为角的对边时,找角
(2)已知一边一角找夹角的另一边
边为角的邻边时找夹边的另一角
注意:锐角的三角函数值的范围:0<sin <1,0<cos <1.

三角形 知识点+考点+典型例题(含答案)

三角形  知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

全等三角形讲义知识点+典型例题(完美打印版)

全等三角形讲义知识点+典型例题(完美打印版)

BPAa专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA%③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .,【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形 已知:如图,线段a ,b ,c.'求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法:【例4】已知两边及夹角作三角形 已知:如图,线段m ,n, ∠ .求作:△ABC,使∠A=∠α,AB=m,AC=n.…【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.@随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.3.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角#C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半%C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题

课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。

中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。

初二三角形知识点总结和常考题

初二三角形知识点总结和常考题

初二三角形知识点总结和常考题一、三角形的基本概念。

1. 定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形的边、顶点、内角。

- 组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

3. 三角形的表示方法。

- 三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

二、三角形的分类。

1. 按角分类。

- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形。

直角三角形可以用符号“Rt△”表示,直角所对的边叫做斜边,另外两条边叫做直角边。

- 钝角三角形:有一个角是钝角的三角形。

2. 按边分类。

- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另外一边叫做底边;两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

等腰三角形中,三边都相等的三角形叫做等边三角形(也叫正三角形)。

三、三角形的三边关系。

1. 定理。

- 三角形两边的和大于第三边。

2. 推论。

- 三角形两边的差小于第三边。

四、三角形的高、中线与角平分线。

1. 高。

- 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形的三条高所在直线相交于一点。

2. 中线。

- 在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线相交于一点,这点叫做三角形的重心。

3. 角平分线。

- 在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线相交于一点。

五、三角形的内角和定理及推论。

1. 内角和定理。

- 三角形三个内角的和等于180°。

2. 推论。

- 直角三角形的两个锐角互余。

- 有两个角互余的三角形是直角三角形。

六、三角形的外角。

1. 定义。

- 三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

人教版八年级上册第十一章 三角形知识点复习及习题练习

人教版八年级上册第十一章 三角形知识点复习及习题练习

第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

要点:①三条线段;②不在同一条直线上;③首尾顺次相连。

2、基本概念:三角形有三条边,三个内角,三个顶点。

边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。

夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。

练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。

(2)写出△ABD的三个内角。

(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。

(完整版)三角形全章知识点总结

(完整版)三角形全章知识点总结

(完整版)三角形全章知识点总结三角形全章知识点总结
1.三角形的定义
三角形是由三条边和三个内角组成的图形。

2.三角形的分类
- 根据边长分类:
- 等边三角形:三条边长度相等。

- 等腰三角形:两条边长度相等。

- 普通三角形:三条边长度都不相等。

- 根据角度分类:
- 直角三角形:有一个内角为直角(90度)。

- 钝角三角形:有一个内角大于直角。

- 锐角三角形:三个内角都小于直角。

3.三角形的性质
- 三角形内角和等于180度。

- 三角形的任意两边之和大于第三边。

- 等边三角形的三个角都相等,每个角为60度。

- 等腰三角形的两个底角相等,顶角大于底角。

- 直角三角形的两个锐角的正弦、余弦、正切关系等于对边、邻边和斜边的比值。

4.三角形的计算公式
- 周长(P):P = a + b + c,其中a、b、c分别为三角形的三边长度。

- 面积(A):A = 1/2 * 底 * 高,其中底为底边长度,高为顶点到底边的垂直距离。

5.三角形的重要定理
- 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的三边长度,A、B、C为对应的内角。

- 余弦定理:c^2 = a^2 + b^2 - 2ab * cosC,其中a、b、c为三角形的三边长度,C为对应的内角。

- 正切定理:tanA = sinA/cosA,其中A为三角形的一个内角。

以上是关于三角形的全章知识点总结。

希望能对您的学习有所帮助!。

四年级下册三角形知识点归纳及同步练习

四年级下册三角形知识点归纳及同步练习

三角形一、知识要点:(1)三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,它有三条边、三个内角和三个顶点,三角形可用符号“△”表示(2)三角形的高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线.2、 三角形的有关性质(1)边的性质:三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.(2)角的性质:三角形的内角和为180°,一个外角等于和它不相邻的两个内角的和,一个外角大于任何一个和它不相邻的内角,直角三角形的两个锐角互余.(3)稳定性:即三角形的三边的长度确定后,三角形的形状保持不变.3、 三角形的分类(1)按边分⎪⎩⎪⎨⎧⎩⎨⎧等边三角形角形底与腰不相等的等腰三等腰三角形不等边三角形(2)按角分 ⎪⎩⎪⎨⎧⎩⎨⎧钝角三角形锐角三角形斜三角形直角三角形 当堂练习一、填 空。

1.由三条( )围成的图形叫三角形。

2.三角形按角可分为( )三角形、( )三角形、( )三角形。

3.三角形的内角和是( )。

4.等腰直角三角形中三个内角分别是( ),( )和( )。

二、选 择。

1.一个等腰三角形,其中一个底角是750,顶角是( )A .750B .450C .300D .6002.任意一个三角形都有( )高。

A .一条B .两条C 三条D .无数条3.( )个角是锐角的三角形,叫锐角三角形。

A .三B .二C .—4.三角形越大,内角和( )A .越大B .不变C .越小三、求下面三角形中/3的度数,并指出是什么三角形。

1.∠1=300, ∠2=1080,∠3= ( ),它是( )三角形。

2.∠1=900, ∠2=450, ∠3=( ),它是( )三角形。

3.∠1=700, ∠2=700, ∠3=( )。

它是( )三角形。

4.∠1=900, ∠2=300, ∠3=( ),它是( )三角形。

四、作图。

1.画出下面三角形底边上的高。

四年级三角形的知识点总结及练习题

四年级三角形的知识点总结及练习题

四年级三角形的知识点总结及练习题一、三角形的定义在平面内,由三条不在一条直线上的线段连接成的图形叫做三角形。

二、三角形的分类三角形可以根据边长和角度的不同分为以下几种:1.根据边长分类(1)等边三角形三条边都相等的三角形,也叫正三角形。

(2)等腰三角形至少有两条边相等的三角形,其中相等的两边成为两腰,两腰之间的夹角叫做顶角。

(3)普通三角形三条边都不相等的三角形。

2.根据角度分类(1)锐角三角形三个角都小于90度的三角形。

(2)直角三角形三角形中有一个90度的角,这个角所对的边叫做斜边,另外两个角和边分别叫做直角和直角边。

(3)钝角三角形三个角中有一个角大于90度的三角形。

三、三角形的性质1.角的性质三角形的三个内角一定相加等于180度。

2.边的性质(1)任何一条边都小于其它两边之和。

(2)任何一条边都大于其它两边之差。

(3)两边之和大于第三边。

四、三角形的面积1.海龙公式当已知三角形的三边长a、b、c时,海龙公式计算三角形的面积S:s = (a+b+c)/2S = sqrt(s(s-a)(s-b)(s-c))2.高度公式当已知三角形的底边长b和高度h时,高度公式计算三角形的面积S:S = 1/2 * b * h五、练习题1.判断下列各图形是否为三角形。

image1解答:不是三角形,三条线段不在同一平面内。

2.判断下列各图形是否为等边三角形。

image2解答:不是等边三角形,两边长度不相等。

3.已知三角形的三边长分别为3cm、4cm和5cm,求其面积。

解答:s = (a+b+c)/2 = (3+4+5)/2 = 6S = sqrt(s(s-a)(s-b)(s-c)) = sqrt(632*1) = 3√6 所以该三角形面积为3√6(cm²)。

4.已知三角形的底边长为6cm,高度为4cm,求其面积。

解答: S = 1/2 * b * h = 1/2 * 6 * 4 = 12 所以该三角形面积为12(cm²)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


、三角形内角和


一、 选择题
1.如图,在△ABC 中,D 是BC 延长线上一点, ∠B?=?40°,∠ACD?=?120°,则∠A 等于( )
A .60°
B .70°
C .80°
D .90°
2.将一副三角板按图中的方式叠放,则角α等于( )A .75o
B .60o
C .45o
D .30o
3.如图,直线m n ∥,︒∠1=55,︒∠2=45,
则∠3的度数为( ) A .80︒ B .90︒ C .100︒ D .110︒ 5.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°, 则3∠的度数等于( ) A .50°
B .30°
C .20°
D .15°
6.已知△ABC 的一个外角为50°,则△ABC 一定是( )
A .锐角三角形
B .钝角三角形
C .直角三角形
D .钝角三角形或锐角三角形 8.如图,11002145∠=∠=o
o ,,那么3∠=( )
A .55°
B .65°
C .75°
D .85°
二、 解答题
15.(2009·淄博中考)如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37o ,求∠D 的度数. 16.在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小. 二、特殊三角形
1.△ABC 中,∠A :∠B :∠C=4:5:9,则△ABC 是( )
A . 直角三角形,且∠A=90°
B . 直角三角形,且∠B=90°
C . 直角三角形,且∠C=90°
D . 锐角三角形
2.在等腰△ABC 中,如果AB 的长是BC 的2倍,且周长为40,那么AB 等于( )
A . 20
B . 16
C . 20或16
D . 以上都不对
3.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 考点: 三角形内角和定理;角平分线的定义。

5.如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为
6.如图,AD 是等腰三角形ABC 的底边BC 上的高,DE ∥AB ,交AC 于点E ,判断△ADE 是不是等腰三角形,并说明理由. 三:三角形全等的判定及其应用 一、 选择题 1.如图,已知AB AD =

那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( ) A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠ D .90B D ==︒∠∠
3.如图,ACB A CB ''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A.20° B.30° C.35° D.40°
6.如图所示,90E F ∠=∠=o
,B C ∠=∠,AE AF =,结论:①EM FN =;
②CD DN =
;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )
A
B
C
D 40° 120°
A
E
F
B
C
D M
N
A .1个
B .2个
C .3个
D .4个 二、 填空题 9、如图,已知
AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是
10、如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使 △ABF ≌△DCE ,需要补充的一个条件是 (写出一个即可). 解答题
15.如图,已知点E C ,在线段BF 上,BE CF AB DE ACB F =∠=∠,∥,.
求证:ABC DEF △≌△.
16.如图,点C 、E 、B 、F 在同一直线上, AC ∥DF ,AC =DF ,BC =EF ,
17.如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、 F 分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4. (1) 证明:△ABE ≌△DAF ; (2)若∠AGB=30°,求EF 的长.
19.如图, ,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.
二、已知,如图,AB 、CD 相交于点O ,△ACO ≌△BDO ,CE ∥DF 。

求证:CE=DF 。

10、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重合), 以CG 为一
边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。

求证:① △BCG ≌△DCE
② BH ⊥DE
四、多边形及其内角和
一、选择题:(每小题3分,共24分)
1.一个多边形的外角中,钝角的个数不可能是( ) A.1个 B.2个 C.3个 D.4个 3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:4
5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )
A.都是钝角;
B.都是锐角
C.是一个锐角、一个钝角
D.是一个锐角、一个直角 7.若一个多边形共有十四条对角线,则它是( ) A.六边形 B.七边形 C.八边形 D.九边形 例1、角平分线的性质
如图,将直角边AC=6cm,BC=8cm 的直角△ABC 纸片折叠,使点B 与点A 重合,折痕为DE, 则CD 等于( ) (A)
425 (B) 322 (C) 4
7 (D) 35
例2、直角三角形斜边上的中线等于斜边的一半;
如图所示,BD 、CE 是三角形ABC 的两条高,M 、N 分别是BC 、DE 的中点。

求证:MN 堂上练习
1、如图,四边形ABCD 中,∠DAB=∠DCB=90o ,点M 、N 分别是BD 、AC 的中点。

MN 系如何?证明你的猜想。

3、过矩形ABCD 对角线AC 的中点O 作EF ⊥AC 分别交AB 、DC 于E 、F ,点G 为AE
的中点,若∠AOG =30o 求证:3OG=DC
4、如图所示;过矩形ABCD 的顶点A 作一直线,交BC 的延长线于点
A
C
E
B
D
F
E
O
D
C
B
A
F
E
D C
A B
G
H
A(B)
C
D E
N
M
E
D
C
A
N
M
D
C
O
F
D
A
E ,
F 是AE 的中点,连接FC 、FD 。

求证:∠FDA=∠FCB 例3、三角形(梯形)中位线
(a)如图,△ABC 的三边长分别为AB =14,BC =16,AC =26,P 为∠A 的平分线AD 上一点,且BP ⊥AD ,M 为BC 的中点,求PM 的长。

(b)如图,梯形ABCD 中,AD ∥BC ,M 是腰AB 的中点,且AD +BC =DC 。

求证:MD ⊥MC 。

堂上练习
1、三角形各边长为5、9、12,则连结各边中点所构成的三角形的周长是 。

2、若梯形中位线被它的两条对角线分成三等分,则梯形的两底之比为 。

7、如图,直角梯形ABCD 的中位线EF =a ,垂直于底的腰AB =b ,则图中阴影部分的面积是 。

9. 如图1,在四边形ABCD 中,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延
长,分别与BA CD 、的延长线交于点M N 、,求证:则BME CNE ∠=∠
问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB CD =,E F 、分别是BC AD 、的中点,连结EF ,分别交DC AB 、于点M N 、,判断OMN △的形状,并证明结论.
问题二:如图3,在ABC △中,AC AB >,D 点在AC 上,
AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,与BA 的延长线交于点G ,若60EFC ∠=°,连结GD ,判断AGD △的形状并证明. A
C D
F
E N
M O B
C D
H A F N
M
1 2 图1
图2 图3
A
B
D
F G
E。

相关文档
最新文档