五年级数学知识点分析
数学五年级公式以及知识点
数学五年级公式以及知识点数学是五年级学生学习的重要科目之一,它不仅涉及基础的算术运算,还包含了一些基本的几何知识和代数概念。
以下是五年级数学的一些关键公式和知识点:一、基础运算公式1. 加法:\( a + b = c \)2. 减法:\( a - b = c \)3. 乘法:\( a \times b = c \)4. 除法:\( a \div b = c \)5. 平方:\( a^2 = a \times a \)6. 立方:\( a^3 = a \times a \times a \)二、分数和小数1. 分数的加减法:- 同分母分数相加减:\( \frac{a}{b} + \frac{c}{b} =\frac{a+c}{b} \)- 异分母分数相加减:先通分再相加减。
2. 分数的乘除法:- 乘法:\( \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} \)- 除法:\( \frac{a}{b} \div \frac{c}{d} = \frac{a}{b}\times \frac{d}{c} \)3. 小数的加减乘除:与整数运算类似,注意小数点的对齐。
三、几何图形1. 长方形面积:\( 长 \times 宽 \)2. 正方形面积:\( 边长 \times 边长 \)3. 三角形面积:\( \frac{底 \times 高}{2} \)4. 圆的面积:\( \pi \times 半径^2 \)(π约等于3.14)四、代数初步1. 变量:用字母表示未知数,如 \( x, y \)。
2. 等式:表示两个量相等的式子,如 \( x + 3 = 5 \)。
3. 解方程:找出使等式成立的未知数的值。
五、比例和百分比1. 比例:两个比值相等的式子,如 \( \frac{a}{b} = \frac{c}{d} \)。
2. 百分比:表示一个数是另一个数的百分之几,如 \( 25\% \) 表示\( \frac{25}{100} \)。
五年级数学人教版知识点
五年级数学人教版知识点一、小数乘法。
1. 小数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:2.5×3表示3个2.5相加的和是多少。
- 计算方法:先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的小数部分末尾有0,要根据小数的基本性质把0去掉。
例如:0.72×5,先算72×5 = 360,因数0.72有两位小数,所以从360右边起数出两位点上小数点,结果是3.6。
2. 小数乘小数。
- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。
例如:2.1×0.8表示2.1的十分之八是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
例如:1.2×0.8,先算12×8 = 96,因数1.2有一位小数,0.8有一位小数,共两位小数,从96右边起数出两位点上小数点,结果是0.96。
3. 积的近似数。
- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”法求出近似数。
例如:0.78×1.3 = 1.014,保留一位小数,看百分位数字1,舍去,结果约是1.0。
4. 整数乘法运算定律推广到小数。
- 整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
- 交换律:a× b = b× a,例如:0.25×0.4 = 0.4×0.25。
- 结合律:(a× b)× c=a×(b× c),例如:(0.25×0.4)×0.3 = 0.25×(0.4×0.3)。
- 分配律:a×(b + c)=a× b+a× c,例如:2.5×(0.4 + 0.8)=2.5×0.4+2.5×0.8。
五年级数学必背知识点
1.数的认识和运算:
-自然数和整数的概念
-加法和减法的基本计算技巧
-乘法和除法的基本计算技巧
-倍数和约数的概念
-分数的概念和简单的分数运算
2.数的比较和顺序:
-数的比较大小和顺序关系
-小数的概念和发展
-小数之间的比较和顺序关系
-分数和小数之间的转换
3.数的整体转化:
-分数和百分数之间的转换
-分数和小数之间的转换
-百分数和小数之间的转换
-分数、百分数和小数之间的综合转换
4.有关平方、立方和算数平方根:
-平方数的概念和性质
-平方根的概念和运算
-立方数的概念和性质
-立方根的概念和运算
-算数平方根的概念和运算5.有关量的估测和计算:
-长度、质量和容量的换算-长度、质量和容量的估测-有时间的估测和计算
-有金额的估测和计算
6.有关图形的认识和分析:-二维图形的辨认和分类
-二维图形的属性和性质
-二维图形的面积和周长计算-三维图形的辨认和分类
-三维图形的属性和性质
7.有关数据的整理和图表:-数据的收集和整理
-数据的统计和图表
-数据的分析和解读
-图表之间的比较和关系
8.有关时间和日历的认识:
-时间的概念和单位
-日期和星期的表达
-闰年和平年的区别
-节假日和纪念日的认识
9.有关变量和代数式的认识:
-变量和常数的概念
-代数式的表示和计算
-一次方程式的解和应用
-简单的变量与代数式之间的转换。
新课标五年级数学知识点汇总
新课标五年级数学知识点汇总随着新课改的推进,五年级数学也发生了很大的变化,很多学生和家长都对五年级数学的知识点感到迷惑,不知道要如何学习。
为此,本文将对五年级数学的知识点进行汇总,以便学生和家长更好地了解五年级数学的主要内容。
一、数的认识与计数五年级数学的第一个主题是数的认识与计数。
主要涉及以下知识点:•数的读写、比较和大小的认识;•1-100000以内数的顺序、大小关系的比较;•数的加减法口诀和加减混合计算。
二、数的四则运算数的四则运算是五年级数学的另一个重点。
主要包括以下内容:1.加减法运算•两位数和两位数的加减法;•带有进位或借位的加减法;•复杂的加减法运算。
2.乘法运算•1-9的乘法口诀;•两位数和一位数的乘法;•两位数的乘法;3.除法运算•一位数除以一位数;•两位数除以一位数。
三、分数五年级数学中的分数主要包括以下内容:•分数的基本概念和表示方法;•真分数、假分数、带分数的相互转换;•分数的加减运算;•分数的乘法运算;•分数的简化和比较大小。
四、小数小数也是五年级数学的一个重要主题,主要包括以下内容:•小数的基本概念和表示方法;•小数的读法和写法;•小数的加减法;•小数的乘法;•小数与分数的关系;•小数的大小比较。
五、长方形、正方形、三角形等图形的认识与计算五年级数学的几何部分主要包括以下内容:•长方形、正方形、三角形等常见图形的基本性质、特征和名称;•图形的周长、面积和体积计算;•图形的对称性和平移性质。
六、时间、长度、重量和容积的计算时间、长度、重量和容积也是五年级数学的重要内容。
主要包括以下方面:•时间和时间段的表示方法和运算;•长度的单位、换算和计算;•重量的单位、换算和计算;•容积的单位、换算和计算。
七、数据分析最后一个主题是数据分析,包括以下内容:•统计图表的主要种类、名称和应用;•数据的调查、整理和分析;•数据的平均数、中位数和众数。
结语以上就是五年级数学的主要知识点汇总,希望对五年级的学生和家长有所帮助。
(完整版)五年级数学知识点整理
第一单元小数除法1.小数除法的意义:与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另个因数的运算。
2.小数除法的计算法则:(1)除数是整数:①按照整数除法的法则去除;②商的小数点要和被除数的小数点对齐(重点!)③每一位商都要写在被除数相同数位的上面。
④如果除到末尾仍有余数,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。
⑤除得的商的哪一数位上不够商,就在那一位上写0占位。
(2)除数是小数:①先看除数中有几位小数,就把除数和被除数的小数点向右移动相同的位置,使除数变成整数,当被除数数位不够时,用0补足;②然后按照除数是整数的小数除法计算。
3、商不变的规律:被除数扩大a倍(或缩小),除数也扩大(或缩小)a倍,商不变。
简言之,被除数和除数同时扩大或者同时缩小相同的倍数,商不变。
4、被除数不变,除数扩大(或缩小)a倍,商缩小(或扩大)a倍。
被除数扩大(或缩小)a倍,除数不变,商扩大(或缩小)a倍。
5、被除数比除数大的,商大于1。
被除数比除数小的,商小于1。
6、一个数(0除外)除以1,商等于原来的数。
(一个数除以1,还等于这个数)一个数(0除外)除以大于1的数,商比原来的数小。
一个数(0除外)除以小于1的数,商比原来的数大。
0除以一个非零的数还得0 。
0不能作除数。
7、汉语表达A除以B A除B A去除B A被B除列式A÷B B÷A B÷A A÷B8、近似值相关知识点:(1)求商的近似值:计算时要比保留的小数多一位。
求积的近似值:计算出整个积的值后再去近似值。
(2)取商的近似值的方法:“四舍五入”法、“进一法”和“去尾法”在解决问题的时候,可以根据实际情况选择“进一法”和“去尾法”取商的近似值。
(3)保留商的近似值,小数末尾的0不能去掉。
9、循环小数相关知识点:(1)小数分类:可以分为无限小数和有限小数。
小数部分的位数是有限的小数,叫做有限小数。
五年级数学重要知识点整理
一、整数的运算1.计算加减法2.理解乘法的意义和运算法则3.运用乘法表计算乘法4.运用乘法分配律计算带括号的乘法5.计算除法的基本方法并解决简单问题6.运用乘法和除法计算带括号的复合运算7.运用整数的运算性质解决实际问题二、小数的认识和运算1.计算小数的加减法2.计算小数的乘法和除法3.运用小数解决实际问题4.切实应用小数在日常生活中的实际意义三、四则运算1.计算加减法2.计算乘除法3.运用四则运算法则解决实际问题四、分数的基本认识与运算1.计算分数的加减法2.计算分数的乘除法3.分数的最简化和约分4.分数的比较大小5.运用分数解决实际问题五、长度、面积和容积的认识和测量1.了解长度、面积和容积的基本概念2.运用常用的长度单位进行测量3.运用常用的面积单位进行测量4.运用常用的容积单位进行测量5.运用长度、面积和容积进行简单的换算和计算六、二维图形和三维图形的认识1.认识正方形、长方形、圆、三角形等二维图形的特征2.计算二维图形的周长和面积3.认识长方体、正方体、圆柱体等三维图形的特征4.计算三维图形的面积和体积5.运用二维和三维图形解决实际问题七、数据的处理1.进行数据的整理和归类2.进行数据的统计和分析3.进行数据的展示和解读4.运用数据解决实际问题八、时间的认识和计算1.认识基本的时间单位2.进行时间的计算和换算3.运用时间解决实际问题九、金钱的认识和计算1.认识不同面值的货币和人民币单位2.进行金钱的计算和换算3.运用金钱解决实际问题。
小学数学五年级知识点
小学数学五年级知识点一、分数和小数1. 分数的基本概念- 理解分数表示的是整体的一部分。
- 掌握分数的读法和写法。
- 识别真分数和假分数。
2. 分数的运算- 分数的加减法,特别是同分母分数的计算。
- 分数与整数的乘法。
- 初步了解分数的乘法和除法。
3. 小数的基本概念- 理解小数表示的是整数的十分之一、百分之一、千分之一等。
- 掌握小数的读法和写法。
4. 小数的运算- 小数的加法和减法。
- 小数与整数的乘法。
- 初步了解小数的乘法和除法。
二、几何图形1. 平面图形- 认识正方形、长方形、三角形、圆等基本图形。
- 理解图形的对称性。
- 掌握计算平面图形面积的基本方法。
2. 立体图形- 认识立方体、长方体、圆柱、圆锥等基本立体图形。
- 理解立体图形的表面积和体积的计算方法。
三、数与式1. 整数和四则运算- 掌握多位数的乘法和除法。
- 理解正负数的概念。
- 学习简单的整数运算技巧。
2. 代数初步- 理解用字母表示数的概念。
- 初步学习简单的一元一次方程。
四、数据处理1. 统计与概率- 收集、整理和分析数据。
- 制作和解读简单的统计图表。
- 初步了解概率的概念。
2. 应用题- 解决涉及分数、小数、整数运算的实际问题。
- 学会列方程解决实际问题。
五、数学思维与问题解决1. 逻辑推理- 培养逻辑思维能力。
- 学习通过分析和归纳解决问题。
2. 问题解决策略- 学习使用不同的方法解决数学问题。
- 培养独立思考和创新的能力。
六、数学应用1. 生活中的数学- 理解数学在日常生活中的应用。
- 学习使用数学解决实际问题。
2. 数学与其他学科的联系- 探索数学与科学、艺术等其他学科的关联。
七、复习与测试1. 定期复习- 定期复习所学知识点,巩固记忆。
2. 模拟测试- 通过模拟测试检验学习效果,查漏补缺。
请注意,以上内容仅为五年级数学知识点的概览,具体的教学计划和课程内容应根据学校的教学大纲和学生的实际情况进行调整。
教师和家长应鼓励学生通过实践活动和探究学习来深化对数学知识的理解。
2024小学数学五年级期中复习知识点
五年级期中考试是对学生在上半学期所学习的数学知识进行综合性测试的一次重要考试。
以下是五年级数学期中考试复习的一些知识点:1.加法和减法:-计算两位数或三位数的加法和减法。
-分析和解决两步加法和减法问题。
-理解进位和借位的概念,应用进位和借位进行计算。
-利用括号计算包含括号的数学式子。
-解决与生活场景相关的加法和减法问题,例如购物、找零等。
2.乘法和除法:-理解乘法的概念,计算两位数和一位数的乘法。
-利用乘法进行简单的面积和周长计算。
-理解除法的概念,计算两位数除以一位数的除法。
-利用除法进行简单的分组和分配计算。
-解决与生活场景相关的乘法和除法问题,例如购买多个商品的总价、分享一些食物等。
3.分数:-理解分数的概念,认识分子和分母的含义。
-比较大小和排序分数。
-分数相加和相减,带分数和假分数的转换。
-将分数表示为百分比。
-解决与生活场景相关的分数问题,例如分配食物、打折计算等。
4.小数:-理解小数的概念,将小数表示为分数。
-在数轴上标记小数并进行比较大小。
-小数的加法和减法运算。
-将小数表示为百分比。
-解决与生活场景相关的小数问题,例如测量长度、时间、货币换算等。
5.几何:-识别和命名常见的二维和三维几何图形。
-计算几何图形的周长和面积。
-进行简单的坐标图形绘制和读取坐标。
-利用几何图形解决与生活场景相关的问题,例如构造模型、设计图案等。
6.数据和统计:-收集和整理数据,制作表格和图表。
-读取和解释图表和图形的信息。
-利用平均数和范围进行数据分析。
-解决与生活场景相关的数据和统计问题,例如调查、比较、预测等。
以上是五年级数学期中考试复习的一些主要知识点。
学生可以通过反复练习相关的题目,加深对知识点的理解和掌握。
同时,还应该注重理解概念、培养解决问题的能力和思维方法,提高数学思维和推理能力。
人教版五年级上数学知识点详解
《人教版五年级上数学知识点详解》一、引言数学作为一门基础学科,对于学生的思维能力和逻辑思维能力有着重要的培养作用。
而人教版五年级上的数学知识点更是承接了四年级的基础,同时又引入了更多的抽象概念和思维方式,对学生的学习能力提出了更高的要求。
本文将从简到繁,由浅入深地对人教版五年级上数学知识点进行深度解析,帮助学生更好地理解这些知识点。
二、整体评估在人教版五年级上的数学教材中,包含了多个模块,涵盖了整数、分数、小数、几何图形、数据统计等多个方面的知识。
这些知识点不仅包括了具体的计算方法,还涉及到了实际问题的应用和思维能力的培养。
其中,整数、分数和小数是数学学习中的重要基础,几何图形和数据统计则是对学生综合运用数学知识的考察。
通过本文的阅读,读者将能够全面了解这些知识点,从而在学习中能够更加游刃有余。
三、整数的初步学习整数是五年级上数学的重要内容之一,学生在学习中需要掌握正整数、负整数以及它们的加减法运算。
在学习整数的过程中,学生不仅需要掌握具体的计算方法,还需要理解整数在实际生活中的应用,比如温度的正负、海拔的上下等。
通过这些实际问题的联系,学生可以更深入地理解整数的概念和意义,从而能够更加灵活地运用整数知识解决问题。
四、分数的深入学习分数是数学中比较抽象的概念之一,而在五年级的学习中,学生需要对分数进行加减法运算,并且还要学会将分数与整数进行运算。
分数在实际生活中也有着广泛的应用,比如食物的分配、比赛成绩的计算等。
通过实际问题的联系,学生可以更加深入地理解分数的加减法运算规则和意义,从而能够更加熟练地运用分数知识解决实际问题。
五、小数的运用与拓展在五年级的数学学习中,小数是与分数相关的内容,学生需要掌握小数的加减法运算,同时还要学会将小数转化为分数进行运算。
与整数和分数类似,小数在实际生活中也有着广泛的应用,比如货币的计算、长度的测量等。
通过这些实际问题的联系,学生可以更加灵活地运用小数知识解决实际问题,同时也能够更加深入地理解小数的概念和意义。
五年级数学《多边形的面积》知识重难点
五年级多边形面积计算知识点及重难点简析I. 知识点总结A. 平行四边形部分1. 平行四边形面积的计算公式沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,可以将平行四边形转化成长方形。
通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高。
通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积为:S=a×h。
2. 平行四边形面积公式的应用平行四边形的面积公式:S=a×h,经过变形得到:a=S÷h,h=S÷a。
在已知平行四边形的底、高和面积中任意两个量时,可求出第三个量。
B. 三角形部分1. 三角形面积的计算公式用两个完全相同的三角形,可以拼成一个平行四边形。
三角形的面积等于拼成的平行四边形的一半。
观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同。
通过平行四边形的面积公式,可以推导出三角形的面积公式。
如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=a×h÷2。
2. 三角形面积公式的应用三角形的面积公式:S=a×h÷2,经过变形得到:a=2S÷h,h=2S÷a。
在已知三角形的底、高和面积三个量中任意两个量,都可以求出第三个量。
C. 梯形部分1. 梯形面积的计算公式两个完全相同的梯形可以拼成一个平行四边形,梯形的面积等于拼成的平行四边形面积的一半。
通过观察可以发现,拼成的平行四边形的底等于梯形的上底、下底之和,平行四边形的高等于梯形的高。
根据平行四边形面积公式,可以推导出梯形的面积公式。
用S表示梯形的面积,a、b 和h分别表示梯形的上底、下底和高,梯形的面积公式为:S=(a+b)×h÷2。
2. 梯形面积公式的应用梯形的面积公式:S=(a+b)×h÷2,经过变形得到:h=2S÷(a+b),a=2S÷h-b,b=2S÷h-a。
小学五年级数学的重要知识点总结
小学五年级数学的重要知识点总结小学五年级数学知识点1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、公因数:几个数共有的因数叫做它们的公因数,其中的一个叫做公因数。
8、互质数:公因数只有1的两个数叫做互质数。
两个数互质的特殊判断方法:①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的公因数和最小公倍数:①成倍数关系的两个数,公因数就是较小的数,最小公倍数就是较大的数。
②互质的两个数,公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
小学五年级数学知识点总结(最新10篇)
小学五年级数学知识点总结(最新10篇)期末考试临近,同学们想要在期末考试中考出好成绩,就必须把这一学期所学过的内容认真复习。
下面是为大伙儿带来的10篇《小学五年级数学知识点总结》,希望可以启发、帮助到大朋友、小朋友们。
小学五年级数学知识点篇一最简分数:分子和分母只有公因数1的分数叫做最简分数。
约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
特殊情况下的公因数和最小公倍数:①成倍数关系的两个数,公因数就是较小的数,最小公倍数就是较大的数。
②互质的两个数,公因数就是1,最小公倍数就是它们的乘积。
分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
小学五年级数学知识点篇二长方体和正方体【概念】1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体有12条棱,它们的长度都相等,所有的面都完全相同。
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
小学数学五年级重难点整理
小学数学五年级重难点整理第一单元负数的初步认识第一课时:认识负数教学重点:初步认识正数和负数以及读法和写法。
教学难点:能应用正负数表示生活中具有相反意义的量;理解0既不是正数,也不是负数。
第二课时:正负数的应用教学重点:应用正、负数描述日常生活现象。
教学难点:从不同角度丰富对正、负数的认识,提高应用正、负数描述日常生活现象的能力。
第二单元多边形的面积第一课时:平行四边形的面积教学重点:理解并掌握平行四边形的面积公式。
教学难点:理解平行四边形面积公式的推导过程。
第二课时:三角形的面积教学重点:理解并掌握三角形形的面积公式。
教学难点:理解三角形面积公式的推导过程。
第三课时:梯形的面积计算教学重点:掌握梯形的面积计算方法。
教学难点:理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。
第四课时:认识公顷教学重点:认识1公顷,会进行平方米和公顷的单位转换。
教学难点:体会1公顷的实际大小。
第五课时:认识平方千米教学重点:让学生认识1平方千米,知道公顷和平方千米、平方米之间的进率,会进行简单的单位换算。
教学难点:体会 1平方千米的实际大小。
第六课时:简单组合图形的面积教学重点:探索并掌握组合图形的面积计算方法。
教学难点:理解并掌握组合图形的组合及分解方法。
第七课时:不规则图形的面积教学重点:用不同的方法估计不规则图形的面积。
教学难点:能用数方格的方法估算不规则物体表面的面积。
第三单元小数的意义和性质第一课时:小数的意义和读写教学重点:初步理解小数的含义,学会读、写小数。
教学难点:结合具体情境,理解小数的含义。
第二课时:小数的计数单位和数位顺序教学重点:进一步理解小数的意义,了解小数的各部分名称;掌握小数数位顺序表以及相应计数单位之间的进率。
教学难点:理解小数计数单位之间的进率,熟悉小数数位顺序表。
第三课时:小数的性质教学重点:理解掌握小数的性质,并会用小数的性质化简或改写小数。
教学难点:理解小数的性质,能运用小数的性质解决问题。
小学五年级数学知识点归纳
小学五年级数学知识点归纳五年级上册知识点概念总结1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少.2.小数乘法法则先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足.3.小数除法小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.4.除数是整数的小数除法计算法则先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除.5.除数是小数的除法计算法则先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位位数不够的补“0”,然后按照除数是整数的除法法则进行计算.6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同.但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的.7.数的互化1小数化成分数原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分.2分数化成小数用分母去除分子.能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数.3化有限小数一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数.4小数化成百分数只要把小数点向右移动两位,同时在后面添上百分号.5百分数化成小数把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.6分数化成百分数通常先把分数化成小数除不尽时,通常保留三位小数,再把小数化成百分数.7百分数化成小数先把百分数改写成分数,能约分的要约成最简分数.8.小数的分类1有限小数:小数部分的数位是有限的小数,叫做有限小数. 例如:、、都是有限小数.2无限小数:小数部分的数位是无限的小数,叫做无限小数. 例如:…………3无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数.4循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数. 例如:………………;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节. 例如:……的循环节是“ 9 ” , ……的循环节是“ 54 ” .9. 循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节.把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数.10.简易方程:方程ax±b=ca,b,c是常数叫做简易方程.11.方程:含有未知数的等式叫做方程.注意方程是等式,又含有未知数,两者缺一不可方程和算术式不同.算术式是一个式子,它由运算符号和已知数组成,它表示未知数.方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 .12.方程的解使方程左右两边相等的未知数的值,叫做方程的解.如果两个方程的解相同,那么这两个方程叫做同解方程.13.方程的同解原理:1方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程.2方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程.14.解方程:解方程,求方程的解的过程叫做解方程.15.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法.16.列方程解答应用题的步骤1弄清题意,确定未知数并用x表示;2找出题中的数量之间的相等关系;3列方程,解方程;4检查或验算,写出答案.17.列方程解应用题的方法1综合法先把应用题中已知数量和所设未知数量列成有关的代数式,再找出它们之间的等量关系,进而列出方程.这是从部分到整体的一种思维过程,其思考方向是从已知到未知.2分析法先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数量和所设的未知数量列成有关的代数式进而列出方程.这是从整体到部分的一种思维过程,其思考方向是从未知到已知.18.列方程解应用题的范围:小学范围内常用方程解的应用题:1一般应用题;2和倍、差倍问题;3几何形体的周长、面积、体积计算;4分数、百分数应用题;5比和比例应用题.19.平行四边形的面积公式:底×高推导方法如图;如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah20.三角形面积公式:S△=1/2aha是三角形的底,h是底所对应的高21.梯形面积公式1梯形的面积公式:上底+下底×高÷2.用字母表示:a+b×h÷22另一计算公式:中位线×高用字母表示:l·h3对角线互相垂直的梯形:对角线×对角线÷2扩展资料1.小数分类1纯小数:整数部分是零的小数,叫做纯小数.例如:、都是纯小数.2带小数:整数部分不是零的小数,叫做带小数. 例如:、都是带小数.3纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数. 例如:…………4混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数. …………写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点.如果循环节只有一个数字,就只在它的上面点一个点.2.循环节的表示方法小数化分数分成两类.一类:纯循环小数化分数,循环节做分子;连写几个九作分母,循环节有几位写几个九.另一类:混循环小数化分数问题就是这类的,小数部分减去不循环的数字作分子;连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环小数部分的数是几个就写几个0.3.平行四边形的面积平行四边形的面积等于两组邻边的积乘以夹角的正弦值;4.三角形的面积1S△=1/2aha是三角形的底,h是底所对应的高2S△=1/2acsinB=1/2bcsinA=1/2absinC三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数3S△=abc/4R R是外接圆半径4S△=a+b+cr/2 r是内切圆半径5S△=c2sinAsinB/2sinA+B五年级下册知识点概括总结1.轴对称:如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线成轴对称.对称轴:折痕所在的这条直线叫做对称轴.如下图所示:2.轴对称图形的性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点.轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的.3.轴对称的性质经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.这样我们就得到了以下性质:1如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.2类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.3线段的垂直平分线上的点与这条线段的两个端点的距离相等.4对称轴是到线段两端距离相等的点的集合.4.轴对称图形的作用1可以通过对称轴的一边从而画出另一边;2可以通过画对称轴得出的两个图形全等.5.因数整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数.在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数.6.自然数的因数举例6的因数有:1和6,2和3.10的因数有:1和10,2和5.15的因数有:1和15,3和5.25的因数有:1和25,5.7.因数的分类除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数.我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数.8.倍数:对于整数m,能被n整除n/m,那么m就是n的倍数.如15能够被3或5整除,因此15是3的倍数,也是5的倍数.一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集.注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数.9.完全数:完全数又称完美数或完备数,是一些特殊的自然数.它所有的真因子即除了自身以外的约数的和即因子函数,恰好等于它本身.10.偶数:整数中,能够被2整除的数,叫做偶数.11.奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数,12.奇数偶数的性质关于奇数和偶数,有下面的性质:1奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;2奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;3两个奇偶数的差是偶数;一个偶数与一个奇数的差是奇数;4除2外所有的正偶数均为合数;5相邻偶数最大公约数为2,最小公倍数为它们乘积的一半.6奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;7 偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9.13.质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数.14.合数:比1大但不是素数的数称为合数.1和0既非素数也非合数.合数是由若干个质数相乘而得到的.质数是合数的基础,没有质数就没有合数.15.长方体:由六个长方形特殊情况有两个相对的面是正方形围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同.16.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.17.长方体的特征:1长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同.特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同.2长方体有12条棱,相对的棱长度相等.可分为三组,每一组有4条棱.还可分为四组,每一组有3条棱.3长方体有8个顶点.每个顶点连接三条棱.4 长方体相邻的两条棱互相相互垂直.18.长方体的表面积因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面.设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:S = 2ab + 2bc+ 2ca= 2 ab + bc + ca19.长方体的体积长方体的体积=长×宽×高设一个长方体的长、宽、高分别为a、b、c,则它的体积V:V = abc=Sh20.长方体的棱长长方体的棱长之和=长+宽+高×4长方体棱长字母公式C=4a+b+c相对的棱长长度相等长方体棱长分为3组,每组4条棱.每一组的棱长度相等21.正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”.正方体是特殊的长方体.22.正方体的特征1有6个面,每个面完全相同.2有8个顶点.3有12条棱,每条棱长度相等.4相邻的两条棱互相相互垂直.23.正方体的表面积:因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6设一个正方体的棱长为a,则它的表面积S:S=6×a×a或等于S=6a224.正方体的体积正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:V=a×a×a25.正方体的展开图正方体的平面展开图一共有11种.26.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数.表示这样的一份的数叫分数单位.27.分数分类:分数可以分成:真分数,假分数,带分数,百分数28.真分数:分子比分母小的分数,叫做真分数.真分数小于一.如:1/2,3/5,8/9等等.真分数一般是在正数的范围内研究的.29.假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.假分数通常可以化为带分数或整数.如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数.30.分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变.31.约分:把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分32.公因数:在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数.任何两个自然数都有公因数 1.除零以外而这些公因数中最大的那个称为这些正整数的最大公因数.33.通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的且分母相同的分数,叫做通分.34.通分方法1求出原来几个分数的分母的最小公倍数2根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数35.公倍数:指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数.这些公倍数中最小的,称为这些整数的最小公倍数36.分数加减法1同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数.2异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数.37.统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化.折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况.扩展资料1.约数与因数区别:1数域不同.约数只能是自然数,而因数可以是任何数.2关系不同.约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=,12不能被10整除,10不是12的约数.因数是两个或两个以上的数对它们的乘积关系而言的.如:8×2=16,8和2都是积16的因数,离开乘积算式就没有因数了.3大小关系不同.当数a是数b的约数时,a不能大于b,当a是b的因数时,a 可以大于b,也可以小于b.一般情况下,约数等于因数.2.公因数两个或多个非零自然数公有的因数叫做它们的公因数.两个数共有的因数里最大的那一个叫做它们的最大公因数.零除外其它:1是所有非零自然数的公因数.两个成倍数关系的自然数之间,小的那一个数就是这两个数的最大公因数.3.完全数的由来:公元前6世纪的毕达哥拉斯是最早研究完全数的人,他已经知道6和28是完全数.毕达哥拉斯曾说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身.”不过,或许印度人和希伯来人早就知道它们的存在了.有些圣经注释家认为6和28是上帝创造世界时所用的基本数字,他们指出,创造世界花了六天,二十八天则是月亮绕地球一周的日数.圣·奥古斯丁说:6这个数本身就是完全的,并不因为上帝造物用了六天;事实恰恰相反,因为这个数是一个完全数,所以上帝在六天之内把一切事物都造好了.4.完全数的性质1它们都能写成连续自然数之和例如:6=1+2+328=1+2+3+4+5+6+7496=1+2+3+……+30+312每个都是调和数它们的全部因数的倒数之和都是2,因此每个完全数都是调和数.例如:1/1+1/2+1/3+1/6=21/1+1/2+1/4+1/7+1/14+1/28=23可以表示成连续奇立方数之和除6以外的完全数,还可以表示成连续奇立方数之和.例如: 28=13+33496=13+33+53+738128=13+33+53+……+1533+33+53+……+1253+12734都可以表达为2的一些连续正整数次幂之和5.完全数都是以6或8结尾:如果以8结尾,那么就肯定是以28结尾.6.各位数字相加直到变成个位数则一定是1除6以外的完全数,把它的各位数字相加,直到变成个位数,那么这个个位数一定是1.亦即:除6以外的完全数,被9除都余17.与质数有关的猜想1哥德巴赫猜想哥德巴赫猜想大致可以分为两个猜想前者称“强”或“二重哥德巴赫猜想”后者称“弱”或“三重哥德巴赫猜想”:1、每个不小于6的偶数都可以表示为两个奇素数之和;2、每个不小于9的奇数都可以表示为三个奇素数之和.2黎曼猜想黎曼猜想是一个困扰数学界多年的难题,最早由德国数学家波恩哈德·黎曼提出,迄今为止仍未有人给出一个令人完全信服的合理证明.即如何证明“关于素数的方程的所有意义的解都在一条直线上”.此条质数之规律内的质数月经过整形,“关于素数的方程的所有意义的解都在一条直线上”化为1球体素数分布.3孪生素数猜想1849年,波林那克提出孪生素数猜想,即猜测存在无穷多对孪生素数.猜想中的“孪生素数”±1的孪生素数.8.分数由来分数在我们中国很早就有了,最初分数的表现形式跟现在不一样.后来,印度出现了和我国相似的分数表示法.再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了.200多年前,瑞士数学家欧拉,在通用算术一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是7/3米.像7/3就是一种新的数,我们把它叫做分数.9.分数乘除法1分数乘整数,分母不变,分子乘整数,最后要化成最简分数.2分数乘分数,用分子乘分子,用分母乘分母,最后要化成最简分数.3分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后要化成最简分数.4分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后要化成最简分数.5分数除以分数,等于被除数乘除数的倒数,最后不是最简分数要化成最简分数.。
小学五年级数学必备知识点总归纳
一、整数1.整数的概念及正整数、负整数的说明和规律2.整数的相反数与绝对值的概念3.加法、减法与整数的运算规则4.整数的乘法与除法规则5.整数的加法和减法混合运算6.带有整数的两步混合运算7.判断与比较带有整数的数的大小8.用数轴表示带有整数的数二、小数1.小数的概念及小数点的位置2.小数的读法和写法3.小数的比较与排序4.加法与减法运算小数5.乘法与除法运算小数6.分数与小数的换算7.将小数化成分数8.在数轴上表示小数三、分数1.分数的概念及分数的读法和写法2.分数的约分与通分3.分数的比较与排序4.分数加法与减法5.分数乘法与除法6.分数与整数的运算规则7.带分数与假分数的互换8.将数化成带分数或假分数四、运算法则与运算思想1.倍数与约数的概念及应用2.原因角3.简便运算法则4.除法的取整和取余5.割补法解决问题6.逆向思维解决问题五、面积和周长1.长方形的面积和周长2.正方形、长方形和周长3.平行四边形的面积和周长4.三角形的面积和周长5.等边三角形的面积和周长6.四边形的面积和周长7.面积和周长的换算8.实际问题中的面积和周长的应用六、容积和体积1.立方体的体积和表面积2.圆柱体的体积和表面积3.实际问题中的容积和体积的应用七、数的四则运算1.加法和减法的运算法则2.乘法和除法的运算法则3.运算问题的口算与翻译八、数的整式运算1.有理数和系数的乘法2.有理数和系数的除法3.有理数的加法和减法4.有理数的混合运算5.带有系数的两步运算九、数的应用和变化1.钱币的计算和找零2.平面图形的旋转和推移3.有尺度的图形4.问题的发现、整理和解决5.问题的归纳和推理6.图表的分析与应用7.定义和应用单位8.计算有时间单位以上是小学五年级数学必备知识点的总结,希望能对你的学习有所帮助!。
五年级数学小数除法知识点归纳(附习题及解析),一定要给孩子看
五年级数学小数除法知识点归纳(附习题及解析),一定要给孩子看《小数除法》要点知识1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。
2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大(缩小),商随着扩大(缩小)。
③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。
6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。
如6.3232……的循环节是32.简写作6.327.小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。
小数分为有限小数和无限小数。
易错题解析1、9.97÷4.21的商保留两位小数是( )保留整数是()。
2.37 22.去掉0.25的小数点,就是把这个数扩大();把50.4的小数点向左移动两位,就是把它缩小到原来的()。
100倍百分之一3、125缩小到它的()是0.125;()扩大到它的100倍是0.3。
千分之一 0.0034、0.25除以0.15,当商是1.6时,余数是();0.79÷0.04,商是19,余数是()。
数学五年级上册知识点整理
数学五年级上册知识点整理
一、数与代数
1. 认识亿以内的数,并能根据需要选择数。
2. 认识分数,掌握分数的加减运算。
3. 认识负数,会用负数表示一些日常生活中的问题。
4. 掌握四则运算的意义、性质和法则,会进行简单的运算。
二、空间与图形
1. 认识分数,掌握分数的加减运算。
2. 认识长方体、正方体、圆柱和球等几何图形,并能够测量或估计它们的大小。
3. 会画直线、线段,并能够画垂线、平行线。
4. 了解比例尺,会进行简单的图上计算。
三、统计与可能性
1. 认识复式条形统计图和复式折线统计图,并能够根据统计图进行简单的数据分析。
2. 会设计简单的调查表。
3. 了解可能性和可能性大小的含义,会求一些事件的可能性大小。
四、实践与综合应用
1. 探索事物的奥秘,发现事物的规律。
2. 开展有趣的数学
活动,体会数学学习的乐趣。
3. 综合运用数学知识解决实际问题,体会数学在日常生活中的应用价值。
以上是五年级上册数学知识点整理的主要内容,希望能够帮助学生们更好地理解和掌握数学知识,提高数学素养。
五年级数学主要知识点
五年级数学主要知识点学习不是一昧的埋头苦学,我们要有学习的方向和学习的重点,只有搞清楚该学什么,我们才能快速掌握知识.为了让您在写的过程中更加简单方便,一起来参考是怎么写的吧!下面给大家分享关于五年级数学主要知识点,欢送阅读!五年级数学主要知识点总结知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算.知识点二:积中小数末尾有0的乘法. 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0.如:3.60 “0〞应划去知识点三:知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐.思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数.2 小数乘法中积的小暑局部末尾如有0可以根据小数的根本性质去掉小数末尾的0而整数乘法中是不能去掉的.五年级数学主要知识点归纳1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算.如:1.5×3 表示1.5 的3 倍是多少或3 个1.5 的和的简便运算.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少.如:1.5×0.8 就是求1.5 的十分之八是多少.1.5×1.8 就是求1.5 的1.8 倍是多少.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点.注意:计算结果中,小数局部末尾的0 要去掉,把小数化简;小数局部位数不够时,要用0 占位.3、规律(1)(P9):一个数(0 除外)乘大于1 的数,积比原来的数大;一个数(0 除外)乘小于1 的数,积比原来的数小.4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保存两位小数,表示计算到分.保存一位小数,表示计算到角.6、(P11)小数四则运算顺序跟整数是一样的.7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)五年级数学主要知识点整理一、学习目标:1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;2.会用“四舍五入〞法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;3.理解用字母表示数的意义和作用;4.理解简易方程的意思及其解法;5.在理解的根底上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.二、学习难点:1.能正确进行乘号的简写,略写;小数乘法的计算法则;2.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;3.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;4.构建初步的空间想象力;5.用字母表示数的意义和作用;6.多边形面积的计算.三、知识点概念总结:1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少.2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数zhong gonng有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0〞补足.3.小数除法:小数除法的意义与整数除法的意义相同,就是两个因数的积与其中一个因数,求另一个因数的运算.4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0〞,再继续除.5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0〞),然后按照除数是整数的除法法则进行计算.6.积的近似数:四舍五入是一种精确度的计数保存法,与其他方法本质相同.但特殊之处在于,采用四舍五入,能使被保存局部的与实际值差值不超过最后一位数量级的二分之一:假设0~9等概率出现的话,对大量的被保存数据,这种保存法的误差总和是最小的.7.数的互化:(1)小数化成分数原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分.(2)分数化成小数用分母去除分子.能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保存三位小数.(3)化有限小数一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数.(4)小数化成百分数只要把小数点向右移动两位,同时在后面添上百分号.(5)百分数化成小数把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.(6)分数化成百分数通常先把分数化成小数(除不尽时,通常保存三位小数),再把小数化成百分数.(7)百分数化成小数先把百分数改写成分数,能约分的要约成最简分数.8.小数的分类:(1)有限小数:小数局部的数位是有限的小数,叫做有限小数.例如:41.7、25.3、0.23都是有限小数.(2)无限小数:小数局部的数位是无限的小数,叫做无限小数.例如:4.33……3.1415926……(3)无限不循环小数:一个数的小数局部,数字排列无规律且位数无限,这样的小数叫做无限不循环小数.(4)循环小数:一个数的小数局部,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数.例如:3.555……0.0333……12.109109……;一个循环小数的小数局部,依次不断重复出现的数字叫做这个循环小数的循环节.例如:3.99……的循环节是“9〞,0.5454……的循环节是“54〞.9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节.把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数.10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程.11.方程:含有未知数的等式叫做方程.(注意方程是等式,又含有未知数,两者缺一不可)方程和算术式不同.算术式是一个式子,它由运算符号和数组成,它表示未知数.方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立.12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解.如果两个方程的解相同,那么这两个方程叫做同解方程.13.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程.(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程.14.解方程:解方程,求方程的解的过程叫做解方程.15.列方程解应用题的意义:用方程式去解容许用题求得应用题的未知量的方法.16.列方程解容许用题的步骤:(1)弄清题意,确定未知数并用x表示;(2)找出题中的数量之间的相等关系;(3)列方程,解方程;(4)检查或验算,写出答案.17.列方程解应用题的方法:(1)综合法先把应用题中数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程.这是从局部到整体的一种思维过程,其思考方向是从到未知.(2)分析法先找出等量关系,再根据具体建立等量关系的需要,把应用题中数(量)和所设的未知数(量)列成有关的代数式进而列出方程.这是从整体到局部的一种思维过程,其思考方向是从未知到.18.列方程解应用题的范围:小学范围内常用方程解的应用题:(1)一般应用题;(2)和倍、差倍问题;(3)几何形体的周长、面积、体积计算;(4)分数、百分数应用题;(5)比和比例应用题.19.平行四边形的面积公式:底×高(推导方法如图);如用“h〞表示高,“a〞表示底,“S〞表示平行四边形面积,则S平行四边形=ah20.三角形面积公式:S△=1/2_ah(a是三角形的底,h是底所对应的高)21.梯形面积公式:(1)梯形的面积公式:(上底+下底)×高÷2.用字母表示:(a+b)×h÷2(2)另一计算公式:中位线×高用字母表示:l·h(3)对角线互相垂直的梯形:对角线×对角线÷2.。
小学五年级数学主要知识点
以下是小学五年级数学主要知识点的梳理:
数的运算:进一步学习四则运算,包括加减乘除和加减混合运算。
要求能够进行多位数的加减乘除计算,如三位数加、减、乘、除两位数。
小数和分数:能够熟练进行小数和分数的加减乘除运算,包括分数的化简和通分,小数的四舍五入和比较大小。
数据的统计和分析:能够利用图表进行数据的分类、整理和分析,包括柱状图、折线图、饼图等。
平面图形和立体图形:掌握更多的平面图形和立体图形,包括梯形、菱形、六边形等多边形,以及圆锥、圆柱、棱柱等立体图形的认识、分类和性质。
量的比较和计量单位的换算:能够进行不同量的比较和计量单位的换算,包括时间、长度、面积、体积、质量、温度等。
代数式和方程式:能够认识代数式和方程式的概念,掌握简单的代数式和一元一次方程的解法,如2x+3=7,x+4=8等。
几何证明:初步了解几何证明的基本思想和方法,如正方形对角线垂直定理、等腰三角形底角相等定理等。
以上是小学五年级数学主要知识点的梳理,需要注意的是,这些知识点只是基础,需要在后续学习中不断加深、拓展和巩固。
小学五年级数学可能性知识点
小学五年级数学可能性知识点
小学五年级数学可能性的知识点包括:
1. 排列和组合:了解排列和组合的概念与计算方法,能够解决有关排列和组合的问题。
2. 同样可能性:了解同样可能性的概念,能够比较事件发生的可能性大小。
3. 抽样调查:了解抽样调查的概念与方法,能够进行简单的调查与统计分析。
4. 判断可能性:根据已知的信息,判断某事件发生的可能性大小。
5. 数据分析:能够根据给定的数据,进行简单的分析和对比,找出规律与特点。
6. 概率:初步了解概率的概念和计算方法,能够计算简单的概率。
7. 统计图表:了解柱状图、折线图、饼图等统计图表的基本概念与应用,能够读取和
分析统计图表中的数据。
8. 预测与估计:了解预测和估计的概念,能够用已知的数据进行预测和估计。
9. 近似数与精确数:初步了解近似数和精确数的概念,能够根据题目要求进行数值的
近似和精确处理。
10. 实际问题的数学化:能够将实际问题转化为数学问题,并能够用数学方法进行解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学知识点分析
五年级是六年级小升初前的最后一个学年,对于整个小学阶段的数学学习起着至关重要的作用,只有这一关过好了,才可能在小升初的备考中游刃有余。
五年级寒假的学习是全年学习中奋起直追最关键的一个阶段,是超前者百尺竿头更进一步的绝好时期,也是后来者突飞猛进,超越他人的重要时机。
一、专家给您的建议:
1、巩固基础知识
由于还有一年就要转入小升初的复习阶段,所以五年级之前的数学基础内容一定要掌握好。
之前的数学培优内容以应用题、计算为主。
而进入五年级,就开始要建立方程思想,接触分数,所以后期的学习需要大量的基础知识做铺垫,需要孩子构建知识体系,为后来的小升初作好准备。
2、多做专题练习
五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段。
其中数论、行程问题、排列组合是重中之重,如果这几个专题掌握的不好,想上一个理想的中学是非常困难的。
做专题练习也不能光看做了多少道题,要保证练一道会一道,真正的理解并掌握所做的题目,日积月累,几个重点难点也就不再是老大难问题了。
3、积极参加各种竞赛
五年级的学生,要尽早参加数学竞赛(希望杯、华杯赛等),能够帮助孩子开阔眼界,拓展思维。
另外熟悉比赛题型,为五、六年级在重要竞赛中获奖无疑打下了很好的基础。
二、数学教材分析:
数学将依从新教学大纲的要求,实行全新的数学课程体系。
《拓维数学》以长沙小学教材大纲为编写蓝本,开发“学校基础+奥数同步提高”教程。
重在培养能力和提高校内考试成绩。
主要有如下特色:
(1)校内知识要点讲解:知识点的重难点总结式讲解,让学生有主次、有条理性的掌握知识点;
(2)经典例题分析:知识点的巩固性应用,解题方法的传授,总结性强;
(3)易错考点总结:总结易错点,帮助学生有效避错,感受考试真题,强化考试能力;(4)奥数真题拓展:拓展思维,拔高学习,帮助和培养学生建立知识体系。
我们的数学课程有很强的系统性、趣味性、实用性、权威性。
无论是注重打牢数学基础的学生,还是希望在奥数思维上有所突破的学生,在这里都可以找到适合你的课程。
三、五年级重点难点解析:
五年级属于小学高年级,孩子进入五年级以后,随着年龄的增长,孩子的计算能力,认知能力,逻辑分析能力都比以前有很大的提高,这个时期是奥数思维形成的关键时期,是学奥数的黄金时段,所以是否把握住五年级这个黄金时段,关系到以后小升初的成与败。
那么在整个五年级阶段都有哪些重点知识呢?为了孩子更好的把握五年级的学习重点,下面就介绍一下五年级的关键知识点。
1、数字家族的新成员——小数与分数
在五年级以后我们会深入的学习到小数。
首先是小数的计算,小数计算比较以前的整数
计算具有灵活度更高,难度更大的特点,特别的前面学过的计算方法在引入小数之后,需要思维更加开阔,很多同学在刚一接触小数时会觉不习惯它的解题方法。
分数的重要不仅仅是多了一种计算的方式,更多得在于小数和以后要学习的分数关系密切,如果小数学不好,就影响到分数掌握得不扎实,那么后面的行程问题,工程问题及应用题综合都会受到很大的影响。
2、变化无穷的行程问题
提到行程问题,同学们可能就感到头疼,的确不错,因为行程问题中各个物体的速度、时间、路程都在变化,而且各个物体都是在运动中,位置是随着时间在变化,所以分析起来就很麻烦,为了更好的解决这个问题,我们把行程问题进行了细分:基本行程(单个物体)、平均速度、相遇、追及、流水行船、火车过桥、火车错车、钟表问题、环形线路上的行程。
只要我们掌握这些每个小类型中的诀窍,形成一种分析思路,复杂的行程问题无非是这些类型的变形而已,解决起来就容易多了。
3、复杂的图形面积计算
求图形的面积也是五年级中的一个难点,对于这类题我们首先要掌握好各种基本图形的面积计算公式,然后记住一些重要的结论:比如说三角形的等积变形、梯形中蝴蝶翅膀原理、三角形中边与面积的关系。
在计算面积时的方法有:直接计算法、割补法、方程法等。
在图形面积计算中,难题往往得添加辅助线,这个就是难点所在,因为添加辅助线非常灵活,这就要我们多做些这方面的题,多积累一些添加辅助线的技巧,做到心中有数。
四、课程目标规划:
1、充分掌握课内知识。
2、掌握一些相应的奥数知识。
3、实现从课内数学到奥数的“无缝对接”。
4、知识与能力相结合,在培养学生知识学习的同时,注重提升学生的数学能力。
五年级要接触大量的新知识:几何会更上一个难度;大量的抽象的数论知识都要在五年级学习;组合问题也将走上一个新的台阶;应用题这个让学生望而生畏的题型,会在五年级大量的、深入学习;小数与分数的加入,使得计算进入一个新的阶段,所以五年级的数学学习需要学生更加努力的付出,才有更大的收获。