五年级数学知识点整理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元小数除法

1.小数除法的意义:

与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另个因数的运算。

2.小数除法的计算法则:

(1)除数是整数:①按照整数除法的法则去除;②商的小数点要和被除数的小数点对齐(重点!)

③每一位商都要写在被除数相同数位的上面。④如果除到末尾仍有余数,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。

⑤除得的商的哪一数位上不够商,就在那一位上写0占位。

(2)除数是小数:

①先看除数中有几位小数,就把除数和被除数的小数点向右移动相同的位置,使除数变成整数,当被除数数位不够时,用0补足;②然后按照除数是整数的小数除法计算。

3、商不变的规律:

被除数扩大a倍(或缩小),除数也扩大(或缩小)a倍,商不变。简言之,被除数和除数同时扩大或者同时缩小相同的倍数,商不变。

4、被除数不变,除数扩大(或缩小)a倍,商缩小(或扩大)a倍。

被除数扩大(或缩小)a倍,除数不变,商扩大(或缩小)a倍。

5、被除数比除数大的,商大于1。被除数比除数小的,商小于1。

6、一个数(0除外)除以1,商等于原来的数。(一个数除以1,还等于这个数)

一个数(0除外)除以大于1的数,商比原来的数小。一个数(0除外)除以小于1的数,商比原来的数大。

0除以一个非零的数还得0 。0不能作除数。

7、

8、近似值相关知识点:

(1)求商的近似值:计算时要比保留的小数多一位。

求积的近似值:计算出整个积的值后再去近似值。

(2)取商的近似值的方法:“四舍五入”法、“进一法”和“去尾法”

在解决问题的时候,可以根据实际情况选择“进一法”和“去尾法”

取商的近似值。

(3)保留商的近似值,小数末尾的0不能去掉。

9、循环小数相关知识点:

(1)小数分类:可以分为无限小数和有限小数。小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数叫做无限小数。循环小数就是无限小数中的一种。

(2)循环小数的定义:一个数的小数部分,从某一位起,一个数字或者几

个数字依次不断重复出现,这样的小数叫做循环小数。

(3)循环小数必须满足的条件:①必须是无限小数;②一个数字或者几个数字依次不断重复出现。

(4)循环节的定义:一个循环小数的小数部分,依次不断重复出现的一个数字或者几个数字,叫做这个循环小数的循环节。如 5.33……循环节是3。

7.14545……的循环节是45。

(5)循环小数的记法:①省略后面的“……”号;②在第一个循环节首尾的数字上分别加点。如:5.33……=5.3(3上面有一个点),读作五点三,三的循环7.14545……=7.145(4和5上面分别有一个点) ,读作七点一四五,四五的循环。

(6)循环小数一定是无限小数,无限小数不一定是循环小数。

10、竖式中的小数点和数位的对齐方式:在加法和减法中,必须小数点对齐;在乘法中,要末尾对齐;在除法时,商的小数点要和被除数的小数点对齐。

11、除法性质:

推广:或

第二单元轴对称和平移

具体目标:

(1)图形的平移

①通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质。

②能按要求作出简单平面图形平移后的图形。

③利用平移进行图案设计,认识和欣赏平移在现实生活中的应用。

(2)图形的旋转

①通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心

连线所成的角彼此相等的性质。

②了解平行四边形、圆是中心对称图形。

③能够按要求作出简单平面图形旋转后的图形。

④欣赏旋转在现实生活中的应用。

⑤探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

⑥灵活运用轴对称、平移和旋转的组合进行图案设计。

(3)图形的轴对称

①通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。

②能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系,并

能指出对称轴。

③探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质。

④欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称

进行图案设计。

三、知识考点梳理

知识点一、平移

1、平移概念:

把一个图形整体沿一方向移动,得到一个新的图形,图形的这种移动,叫做平移变换,简称平移。

2、平移变换的性质

①对应线段平行(或共线)且相等;对应点所连结的线段平行且相等,因为经过平移,图形的每个点都

沿同一个方向移动了相同的距离,平移变换前后的两条对应线段的四个端点所围成的四边形为平行四

边形(四点共线除外).

②对应角分别相等,且对应角的两边分别平行,方向一致.

③平移后的图形与原图形全等,因为平移只改变图形位置,不改变图形的形状和大小.

3、平移作图步骤

①确定平移的方向和距离;

②根据对应点的连线平行(或在一条直线上)且相等作出图形各关键点的对应点;

③按原图形的连结方式顺次连结各点.

知识点二、旋转

1、旋转概念:

把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。点O叫做旋转中心,转动的角叫做旋转角。

2、中心对称与中心对称图形

中心对称:

把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点。

中心对称图形:

把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.

3、旋转变换的性质

图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心

相关文档
最新文档