数据库基础第二章 关系数据模型与关系运算PPT课件
合集下载
数据库基础知识2
厂长
生产副厂长
技术副厂长
经营副厂长
车间主任
处长
部门经理
层次模型具有层次分明、结构清晰的优点。 层次模型具有层次分明、结构清晰的优点。但只能反映实体 一对多”的联系。 间“一对多”的联系。
网状模型用 图结构” 网状模型用“图结构”来表示数据之间的联 系
网状数据模型反映现实世界较为复杂的事物间的联系。特点是: 网状数据模型反映现实世界较为复杂的事物间的联系。特点是: (1)可以有两个以上的根结点。 可以有两个以上的根结点。 一个父结点可以有多个子结点, (2 ) 一个父结点可以有多个子结点, 一个子结点也可以有多个父 结点。 结点。 专业系
2.1 数据模型概述
2.1.2 数据模型的组成三要素
1、数据结构——用于描述现实世界数据(系统)的静态特性 数据结构——用于描述现实世界数据(系统) ——用于描述现实世界数据 规定数据的存储和表示方式。 规定数据的存储和表示方式。 2、数据操作—用于描述现实世界数据(系统)的动态特性 数据操作—用于描述现实世界数据(系统) 是数据库中各种数据的操作集合以及相应的操作规则。 是数据库中各种数据的操作集合以及相应的操作规则。 如:创建、插入、替换、删除、查询、统计等操作。 创建、插入、替换、删除、查询、统计等操作。 3、数据的约束条件—一组完整性规则的集合 数据的约束条件— 是给定的数据模型中的数据及其联系所具有的制约和依存关 系,用以保证数据的正确、有效、相容。 用以保证数据的正确、有效、相容。 如:有效性规则,参照完整性,触发器等。 有效性规则,参照完整性,触发器等。
层次模型用 树结构” 层次模型用“树结构”来表示数据之间的联系
把客观问题抽象为一个严格的自上而下的层次关系。 把客观问题抽象为一个严格的自上而下的层次关系。 其特点是:(1)只有一个根结点. 其特点是:(1)只有一个根结点. 只有一个根结点 (2) 一 个 父 结 点 可 以 有 多 个 子 结 点 , 但 每 个 子 结点只能有一个父结点。 结点只能有一个父结点。
生产副厂长
技术副厂长
经营副厂长
车间主任
处长
部门经理
层次模型具有层次分明、结构清晰的优点。 层次模型具有层次分明、结构清晰的优点。但只能反映实体 一对多”的联系。 间“一对多”的联系。
网状模型用 图结构” 网状模型用“图结构”来表示数据之间的联 系
网状数据模型反映现实世界较为复杂的事物间的联系。特点是: 网状数据模型反映现实世界较为复杂的事物间的联系。特点是: (1)可以有两个以上的根结点。 可以有两个以上的根结点。 一个父结点可以有多个子结点, (2 ) 一个父结点可以有多个子结点, 一个子结点也可以有多个父 结点。 结点。 专业系
2.1 数据模型概述
2.1.2 数据模型的组成三要素
1、数据结构——用于描述现实世界数据(系统)的静态特性 数据结构——用于描述现实世界数据(系统) ——用于描述现实世界数据 规定数据的存储和表示方式。 规定数据的存储和表示方式。 2、数据操作—用于描述现实世界数据(系统)的动态特性 数据操作—用于描述现实世界数据(系统) 是数据库中各种数据的操作集合以及相应的操作规则。 是数据库中各种数据的操作集合以及相应的操作规则。 如:创建、插入、替换、删除、查询、统计等操作。 创建、插入、替换、删除、查询、统计等操作。 3、数据的约束条件—一组完整性规则的集合 数据的约束条件— 是给定的数据模型中的数据及其联系所具有的制约和依存关 系,用以保证数据的正确、有效、相容。 用以保证数据的正确、有效、相容。 如:有效性规则,参照完整性,触发器等。 有效性规则,参照完整性,触发器等。
层次模型用 树结构” 层次模型用“树结构”来表示数据之间的联系
把客观问题抽象为一个严格的自上而下的层次关系。 把客观问题抽象为一个严格的自上而下的层次关系。 其特点是:(1)只有一个根结点. 其特点是:(1)只有一个根结点. 只有一个根结点 (2) 一 个 父 结 点 可 以 有 多 个 子 结 点 , 但 每 个 子 结点只能有一个父结点。 结点只能有一个父结点。
第2章 数据库-关系模型1
• 在关系数据模型中一般将数据完整性分为三类
– 实体完整性
– 参照完整性 – 用户定义完整性
需要说明两点
• 关系是元组的集合,集合(关系)中的元素(元组) 是无序的;而元组不是分量di的集合,元组中的分量
是有序的。
例如,在关系中(a,b)≠(b,a),但在集合中{a,b}={b,a}。
• 若一个关系的元组个数是无限的,则该关系称为无限
实体完整性规则
• 实体完整性是要保证关系中的每个元组都是可识别和唯一的。 • 实体完整性规则要求关系中元组的主键值不可以为空值。
• 实体完整性是关系模型必须满足的完整性约束条件,也称作是
关系的不变性。 • 关系数据库管理系统用主键实现实体完整性,这是由关系系统 自动支持的。
对实体完整性规则的几点说明
关系数据语言
• 关系代数语言:如ISBL
• 关系演算语言:
– 元组关系演算语言(如Aplha,Quel)
– 域关系演算语言(如QBE)
• 具有关系代数和关系演算双重特点的语言:如SQL
返回
关系完整性约束
• 在数据库中数据完整性是指保证数据正确的特性。
它包括两方面的内容:
– 与现实世界中应用需求的数据的相容性和正确性; – 数据库内数据之间的相容性和正确性。
部门表(R1)
部门编号 01 02 03 04 部门名称 经理办公室 人事部 公关部 技术部 …
02 03
外部关系键
主关系键
注意事项:
• 外部关键字和相应的主关键字可以不同名,只要 定义在相同值域即可。 • 两个关系(R和S)也可以是同一个关系模式,表 示了属性之间的联系。 • 外部关键字的值是否为空,应视具体问题而定。
第2章 关系数据库数学模型
关系——二维表(行列),实体及其联系 都用关系表示。在用户看来关系数据的逻辑模 型就是一张二维表。
关系数据模型概述(续I)
关系操作 查询: 1)选择Select; 4)除Divide; Intersection; 编辑: 1)增加Insert; Update;
2)投影Project; 3)连接Join; 5)并Union; 6)交 7)差Difference;
三元关系的转换 一般要引入分离关系 如公司、产品和国家之间的m:n:p的三元关系及销 售联系。
关系代数
关系代数概述 关系代数的运算符 集合运算符
并U 交∩ 差 专门的关系运算符
笛卡尔积 × 选择σ 投影π 连接 除 算术比较符
> ≥ < ≤ = ≠ 逻辑运算符
EER模型到关系模式的转换(续IV)
为此,本例中引入一个分离关系On_Load(借 出的书),可以避免空值的出现。 这样,存在以下三个关系模式: Borrower(B#,Name,Address,……) Book(ISBN,Title,……) On_Load(ISBN,B#,Date1,Date2) 只有借出的书才会出现在关系On_Load中, 避免空值 的出现,并把属性Date1和Date2加到 关系On_Load中。
D1 x D2 x…x Dn={(d1,d2,…,dn) | di∈Di, i=1,2,…,n} (d1,d2,…,dn) --------n元组(n-tuple) di--------元组的每一分量(Component) Di为有限集时,其基数为mi,则卡积的基 数为M=m1*m2*…*mn
关系数据库
《数据库基础知识》PPT课件
编写触发器与存储过程
根据业务需求编写触发器和存储过程 ,实现复杂业务逻辑。
监控与优化性能
监控数据库性能,定期进行优化和调 整,确保数据库高效运行。
维护数据安全
定期备份数据、修复损坏数据、防范 恶意攻击等,确保数据安全可靠。
05
索引与查询优化技术
索引基本概念及作用
索引定义
索引是数据库中用于快速查找和检索数据的数据结构。
如在线购物网站、拍卖网站等,需要处理 大量的用户信息和交易数据,数据库可以 提供安全、可靠的数据存储和检索功能。
金融系统
科研领域
如银行、证券、保险等金融机构的信息系 统,需要处理大量的金融数据,数据库可 以提供高效的数据处理和分析功能。
如生物信息学、天文学等科研领域,需要处 理大量的实验数据和观测数据,数据库可以 提供灵活的数据存储和管理功能。
关系完整性约束
完整性约束概念
完整性约束是用来保证数据库中数据的正确性和一致性的规则。在关系模型中,完整性约束包括实体 完整性、参照完整性和用户自定义完整性。
完整性约束类型
实体完整性约束要求关系中的主键属性不能取空值;参照完整性约束要求关系中的外键属性取值必须 对应于另一个关系中的主键取值;用户自定义完整性约束则是根据应用需求定义的其他规则。
03
SQL语言基础
SQL语言简介
01
SQL(Structured Query Language)是一种用于管理关系数 据库管理系统的语言。
02
它包括数据插入、查询、更新和删除,数据库模式创建和修改
,以及数据访问控制。
SQL语言简单易学,是开发和管理数据库系统的标准语言。
03
数据定义语言DDL
DDL(Data Defini对象,如表、 索引、触发器等。
关系数据模型
– 例如,上述的6个元组可表示成表2.1。
姓名
性别
李力
男
李力
女
王平
男
王平
女
刘伟
男
刘伟
女
表2.1 D1和D2的笛卡尔积
– 由上例可以看出,笛卡尔积实际是一个二维表,表的框架 由域构成,表的任意一行就是一个元组,表中的每一列来 自同一域,如第一个分量来自D1,第二个分量来自D2。
2.2 关系的定义
2.2.3 关系(Relation)
2.3 关系的性质
– 3. 关系中属性的顺序是无关紧要的,即列的顺 序可以任意交换。交换时,应连同属性名一起 交换,否则将得到不同的关系。
例如:关系T1作如下交换时,无任何影响,如下 表所示:
性别 男 女 男
姓名 李力 王平 刘伟
2.3 关系的性质
而作如下交换时,不交换属性名,只交换属性列中 的值,则得到不同的关系,如下表:
第2章 关系数据模型
2.1 关系模型的基本概念 2.2 关系的定义 2.3 关系的性质 2.4 关系的键 2.5 关系数据库模式与关系数据库 2.6 关系代数
Home
本章主要讲述: –关系模型的数据结构 –关系的定义和性质 –关系数据库的基本概念 –关系运算
2.1 关系模型
关系模型就是用二维表格结构来表示实体及实体之间 联系的模型。
2.4 关系的键
2.4.2 主属性与非码属性 主属性(Prime Attribute):包含在主码中的的各属 性称为主属性。 非码属性(Non-Prime Attribute):不包含在任何候 选码中的属性称为非码属性。 在最简单的情况下,一个候选码只包含一个属性,如 学生关系中的“学号”,教师关系中的“教师号”。 在最极终端的情况下,所有属性的组合是关系的候选 码,这时称为全码(all-key)。
02 关系数据库的基本理论
2.2.4 关系系统
2.关系系统的分类 按照E.F.Codd的思想,可以把关系系统分 类如下: (1)最小关系系统 (2)关系上完备的系统 (3)全关系系统
2.2.4 关系系统
3.全关系系统的12条基本准则 【准则2-0】一个关系型的DBMS必须能完全通过 它的关系能力来管理数据库。 【准则2-1】信息准则。 【准则2-2】保证访问准则。 【准则2-3】空值的系统化处理。 【准则2-4】基于关系模型的动态的联机数据字典。 【准则2-5】统一的数据子语言准则。
第2章 关系数据库的基本理论
关系数据库系统具有独特的风格,概括起 来有以下五个特点。
(1)简单明了的数据模型。 (2)具有严谨的理论基础。 (3)实体表示方法和实体之间联系的表示 方法一致。 (4)处理多对多的联系方便。 (5)使用的关系数据语言功能强大。
2.1 关系模型概述
关系模型是关系数据库的基础。关系模型由数据 结构、关系操作集合和完整性约束三部分组成。 2.1.1 关系数据结构
其中,姓名、职称、X称为域名,姓名域和职称域各有4个值, X域有2个值,一般称它们的基数分别为4、4、2。
2.2.1 数学定义
【 定 义 2-2】 给 定 一 组 域 D1,D2,…,Dn , 则 D1×D2×…×Dn = { (d1,d2,…,dn) | d1∈Di , i = 1,2,…,n } 称 为 D1,D2,…,Dn 的 笛卡尔积。其中每个(d1,d2,…,dn)叫做一个n元组,元组中的 每个di是Di域中的一个值,称为一个分量。
表达(或描述)关系操作的关系数据语言 可以分为三类,具体分类情况如下:
2.1.2 关系操作
(1)关系代数 关系代数是用对关系的运算来表达查询要
求的方式。 (2)关系演算
数据库系统概论王珊最新版第2章-关系数据库PPT课件
-
9
1. 关系数据结构
单一的数据结构----关系
现实世界的实体以及实体间的各种联系均用 关系来表示
数据的逻辑结构----二维表
从用户角度,关系模型中数据的逻辑结构是 一张二维表
可以用:关系名(属性1,属性2,...,属性n)表示
-
10
2. 关系操作
常用的关系操作 关系操作的特点 关系数据语言的种类 关系数据语言的特点
{(张清玫,计算机专业,李勇),(张清玫,计算机专业,刘晨), (张清玫,计算机专业,王敏),(张清玫,信息专业,李勇), (张清玫,信息专业,刘晨),(张清玫,信息专业,王敏), (刘逸,计算机专业,李勇),(刘逸,计算机专业,刘晨), (刘逸,计算机专业,王敏),(刘逸,信息专业,李勇), (刘逸,信息专业,刘晨),(刘逸,信息专业,王敏) }
-
11
关系操作 (续)
常用的关系操作
查询
• 选择、投影、连接、除、并、交、差
数据更新
• 插入、删除、修改
查询的表达能力是其中最主要的部分
关系操作的特点
集合操作方式,即操作的对象和结果都是集合。
• 非关系数据模型的数据操作方式:一次一记录
-
12
关系操作(续)
关系数据语言的种类
关系代数语言
• 用对关系的运算来表达查询要求
典型商用系统
ORACLE SQL Server SYBASE INFORMIX DB2
-
4
关系数据库简介
-
5
关系数据库简介
目前关系数据库是数据库应用的主流,许多数据 库管理系统的数据模型都是基于关系数据模型开 发的。
1)关系数据库 :在一个给定的应用领域中,所 有实体及实体之间联系的集合构成一个关系数据 库。
《数据库整理》第2章 关系数据库
关系体
随数据更新不断变化
15
.
• 例如,在第1章的图1-22所示的教学数据库中,共有五个关 系,其关系模式可分别表示为:
– 学生(学号,姓名,性别,年龄,系别) – 教师(教师号,姓名,性别,年龄,职称,工资,岗位津贴,系
别)
– 课程(课程号,课程名,课时) – 选课(学号,课程号,成绩) – 授课(教师号,课程号)
• 给定一组域D1,D2,…,Dn(它们可以包含相同的元素, 即可以完全不同,也可以部分或全部相同)。D1,D2,… ,Dn的笛卡尔积为
D1×D2×……×Dn={(d1,d2,…,dn)|di∈Di,i=1,2,…,n}
每一个元素(d1,d2,…,dn)中的每一个值di叫做一个 分量(Component) ,di∈Di 每一个元素(d1,d2,…,dn)叫做一个n元组(n-Tuple ),简称元组(Tuple) (注意:元组是按序排列的)
5
.
笛卡尔积D1×D2×…×Dn的基数M(即元素(d1,d2, …,dn)的个数)为所有域的基数的累乘之
n
积,即M= m i 。 i1
例如,上述表示教师关系中姓名、性别两个域的笛卡尔 积为:
D1×D2={(李力,男),(李力,女),(王平,男),(王平 ,女),(刘伟,男),(刘伟,女)}
分量:李力、王平、刘伟、男、女 元组 :(李力,男),(李力,女) ,M=m1×m2=3×2=6
第2章 关系数据库
.
• 本章主要按数据模型的三个要素讲述关系数据库的一
些基本理论(关系模型的数据结构、关系的定义和性 质、关系的完整性、关系代数、关系数据库等 )
• 掌握关系的定义及性质、关系键、外部键等基本概念
以及关系演算语言的使用方法
02《数据库》第二章关系数据模型 #
• 记为 <条件F>(关系R)={t|t ∈R ∧F(t)=“真”}
• 结果关系的所有属性都是原关系的属性。 • 结果关系的所有元组都是原关系的元组。
• 例如:在学生表中将98管理班同学全部
学号 找出姓来名 。 出生年月 性别 班级
0001 • 李伟 <班19级80=.1‵2.0938管男理′>(学9生8管表理)
性、参照完整性和用户定义的完整性。 • 实体完整性:主码的任何属性值都不能为空。 • 参照完整性:若A是基本关系R1的外码。它与
基本关系R2的主码K相对应,则R1中每个元组 在A上的值必须为以下情况之一。 • 等于R2中某个元组的主码值。 • 取空值(A的每个属性值均为空值)。
• 例如:职工关系(职工号,姓名,…部门编号) 和部门关系(部门编号,部门名称,…)。
班级 98管理 98管理 98管理 98管理
学号 课程号 成绩
0001 01
85
0001 02
70
0003 01
80
0003 02
90
• 自然连接 • (学生表)(成绩表)
学号 姓名 0001 李伟 0001 李伟 0003 赵兰 0003 赵兰
出生年月 性别 1980.12.03 男 1980.12.03 男 1979.05.26 女 1979.05.26 女
《数据库技术原理与应用》
章、关系数据模型基础理论
TEL: Email:
本章教学内容
一、关系模型的基本概念 二、关系代数 三、关系演算 四、查询优化 五、关系系统
一、关系模型的基本概念
1、关系模型的数学定义: 关系模型是建立在数学理论基础上的。 定义(1)域:域(Domain)是值的集合
• 结果关系的所有属性都是原关系的属性。 • 结果关系的所有元组都是原关系的元组。
• 例如:在学生表中将98管理班同学全部
学号 找出姓来名 。 出生年月 性别 班级
0001 • 李伟 <班19级80=.1‵2.0938管男理′>(学9生8管表理)
性、参照完整性和用户定义的完整性。 • 实体完整性:主码的任何属性值都不能为空。 • 参照完整性:若A是基本关系R1的外码。它与
基本关系R2的主码K相对应,则R1中每个元组 在A上的值必须为以下情况之一。 • 等于R2中某个元组的主码值。 • 取空值(A的每个属性值均为空值)。
• 例如:职工关系(职工号,姓名,…部门编号) 和部门关系(部门编号,部门名称,…)。
班级 98管理 98管理 98管理 98管理
学号 课程号 成绩
0001 01
85
0001 02
70
0003 01
80
0003 02
90
• 自然连接 • (学生表)(成绩表)
学号 姓名 0001 李伟 0001 李伟 0003 赵兰 0003 赵兰
出生年月 性别 1980.12.03 男 1980.12.03 男 1979.05.26 女 1979.05.26 女
《数据库技术原理与应用》
章、关系数据模型基础理论
TEL: Email:
本章教学内容
一、关系模型的基本概念 二、关系代数 三、关系演算 四、查询优化 五、关系系统
一、关系模型的基本概念
1、关系模型的数学定义: 关系模型是建立在数学理论基础上的。 定义(1)域:域(Domain)是值的集合
《数据库原理及应用》教学课件 第二章关系数据库基础
01
列是同质的,即每一列中的分量必须来自同一个域且必须是同 一类型的数据。
02
不同的属性可来自同一个域,但不同的属性有不同的名字。
03
列的顺序可以任意交换,但交换时应连同属性名一起交换,否则 将得到不同的关系。
13
2.1 关系模型
04 05 06
2.1.3 关系的性质
元组的顺序可任意交换。在关系数据库中,可以按照各种排序 要求对元组的次序重新排列。
关系中不允许出现相同的元组。关系中的一个元组表示现实世界 中的一个实体或一个实体间的联系,如果元组重复则表示实体或 实体间的联系重复,这样不仅会造成数据库中数据的冗余,也可 能造成数据查询与统计的结果出现错误。
关系中的每一个分量必须是不可再分的数据项,即所有属性值都 是一个单独的值,而不是值的集合。
例如,在没有重名学生的情况下,学生关系中的属性“学号”与“姓名” 都是学生关系的候选码。如果选定属性“学号”作为数据操作的依据,则属 性“学号”为主码;如果选定属性“姓名”作为数据操作的依据,则属性 “姓名”为主码。
22
2.2 关系模型的完整性约束
2.2.1 关系的码
03 主属性与非主属性
包含在任一候选码中的属性称为主属性,不包含在任一候选码中的属性称为非主属性。 例如,在没有重名学生的情况下,学生关系的属性“学号”与“姓名”都是学生关系的候选码, 则它们都是学生关系的主属性。而属性“性别”与“系别”不包含在任一候选码中,则它们都是学 生关系的非主属性。 在最简单的情况下,关系的候选码只包含一个属性;在最极端的情况下,关系的候选码是所有 属性的组合,这时称为全码。 例如,设有关系演出(演奏者编号,乐器编号,演播室编号),其中的3个属性分别为演奏者 关系、乐器关系及演播室关系的主码,它们共同唯一标识了一个演出,则演出关系的主码为它们的 组合,即为全码。
关系数据库与应用(第02章关系模型与关系代数)
02
接条件。 连接操作可以基于一个或多个条件,用于将两个
03
关系的元组组合在一起。 连接操作可以产生新的关系,包含两个关系的所
04
有元组。
除法操作
除法操作是用来处理具有除 法语义的关系运算。
除法操作可以用于处理具有除法 语义的问题,例如找出在某些条 件下的共同元素。
ABCD
除法操作的表示方法是在两 个关系的名称之间放置一个 斜线(/)。
优化前
优化后
PA R T. 0 5
单击此处添加标题
关系代数与SQL的关系
SQL与关系代数的联系
数据操作语言
关系代数和SQL都用于对关系数据库中的数据进 行操作。
查询语言
关系代数和SQL都提供了查询数据的方法。
集合操作
关系代数和SQL都使用集合操作,如并、交、差 等。
SQL与关系代数的差异
语法
01
低系统的负载和成本。
提高用户体验
快速、高效的查询响应可 以提升用户的使用体验,
提高系统的满意度。
关系代数优化的方法
选择运算的优化
通过减少选择条件的数量、使用索引等方法, 减少选择运算的开销。
投影运算的优化
合理安排投影列的顺序,减少数据传输量,提 高投影运算的效率。
Байду номын сангаас
连接运算的优化
采用合适的连接策略,如嵌套循环连接、哈希 连接等,以降低连接运算的复杂度。
SQL的语法更直观,更接近自然语言,而关系代数的语法
更抽象。
功能
02
SQL除了数据操作外,还支持数据定义和数据控制等功能,
而关系代数主要关注数据操作。
应用领域
03
SQL广泛应用于实际的关系数据库管理系统,而关系代数
接条件。 连接操作可以基于一个或多个条件,用于将两个
03
关系的元组组合在一起。 连接操作可以产生新的关系,包含两个关系的所
04
有元组。
除法操作
除法操作是用来处理具有除 法语义的关系运算。
除法操作可以用于处理具有除法 语义的问题,例如找出在某些条 件下的共同元素。
ABCD
除法操作的表示方法是在两 个关系的名称之间放置一个 斜线(/)。
优化前
优化后
PA R T. 0 5
单击此处添加标题
关系代数与SQL的关系
SQL与关系代数的联系
数据操作语言
关系代数和SQL都用于对关系数据库中的数据进 行操作。
查询语言
关系代数和SQL都提供了查询数据的方法。
集合操作
关系代数和SQL都使用集合操作,如并、交、差 等。
SQL与关系代数的差异
语法
01
低系统的负载和成本。
提高用户体验
快速、高效的查询响应可 以提升用户的使用体验,
提高系统的满意度。
关系代数优化的方法
选择运算的优化
通过减少选择条件的数量、使用索引等方法, 减少选择运算的开销。
投影运算的优化
合理安排投影列的顺序,减少数据传输量,提 高投影运算的效率。
Байду номын сангаас
连接运算的优化
采用合适的连接策略,如嵌套循环连接、哈希 连接等,以降低连接运算的复杂度。
SQL的语法更直观,更接近自然语言,而关系代数的语法
更抽象。
功能
02
SQL除了数据操作外,还支持数据定义和数据控制等功能,
而关系代数主要关注数据操作。
应用领域
03
SQL广泛应用于实际的关系数据库管理系统,而关系代数
数据库基础-第二章 关系数据模型与关系运算
2.2 关系代数
数据查询基本运算
❖1.关系属性的指定——投影运算 这个操作是对一个关系进行垂直分割,消去某些列,并 重新安排列的顺序。
i1,i2,,in(R) {t | t ti1,ti2,,tin t1,t2,,tk R}
例子2-3
❖2.关系元组选定——选择运算 选择操作是根据某些条件对关系做水平分割,即选取符合 条件的元组。
R S {t | t R t S}
式中“-”为差运算符,t为元组变量,结果R-S为一个新的与R、S兼
容的关系,该关系是由属于R而且不属于S的元组构成的集合,即 在R中减去与S中相同的那些元组。
关系 R
A
B
C
a1
b1
c1
a1
b2
c2
a2
b2
c1
关系 R∪S
A
B
C
a1
b1
c1
a1
b2
c2
a2
b2 c2
a1
b2
c2
a2
b2
c1
图 2.9 关系 R 和关系 S 及其交运算
2.2 关系代数
2.除法运算
设关系R和S的元数分别为r和s(设r>s>0),那么R÷S是一个(r-s)元的 元组的集合。(R÷S)是满足下列条件的最大关系:其中每个元组t与S中 每个元组u组成的新元组<t,u>必在关系R中。
S# (S) S# (SC)
例2-7 在关系C中增加一门新课程(C13, ML, C3, null): 如果令这门新课程元组所构成的关系为R,则有: R=(C13,ML,C3,null),这时结果为:C∪R。
学生关系:S (S# ,Sn, Sex,Sa ,Sd) ; 课程关系:C (C# ,Cn ,P#,Tn) ; 选课关系:SC (S#, C# ,G),
数据库 第二章 关系数据库
(1)关系模式的定义:
关系的描述称为关系模式,在上图中二维表的表头那行
称为关系模式,又称表的框架。
(2)形式化定义 :
R(U,D,Dom,F)
其中:R表示关系名;
U表示组成该关系的属性集合;
D表示U中属性所来自的域;
Dom表示属性向域的映像的集合
F表示属性间数据的依赖关系集合
上一页 下一页 第一页 最末页
退出
第一节 关系数据结构及形式化定义
一、和”关系”相关的概念定义 二、“关系”相关的概念 三、关系数据库中关系的类型 四、数据库中基本关系的性质
上一页 下一页 第一页 最末页
退出
一、和”关系”相关的概念定义
1、域:P47 2、笛卡儿积:P48 3、关系:P48
上一页 下一页 第一页 最末页
退出
域的定义
专业号 001 002
专业名 计算机应用 信息管理
二、DBMS在维护完整性方面具备的功能
1、提供定义完整性约束条件的机制 2、提供完整性检查的方法 3、违约处理
1、实体完整性
(1)定义:Primary key ->主键 (2)检查:
①对基本表插入一条记录 ②对基本表的主码进行更新 (3)违约处理 ① 若主码不唯一则拒绝插入或修改 ②若主码的各个属性有一个为空则拒绝插入或修改
3、参照完整性(Referential Integrity)
(1)外码 (2)参照完整性规则
外码(Foreign Key)
• 外码的定义:设F是基本关系R的一个或一组属性,但 不是R的码,如果F与基本关系S的主码相对应,则 称F为基本关系R的外码。并称R为参照关系,S为被 参照关系。
• 外码举例: 学生(学号,姓名,性别,专业号,年龄) 专业(专业号,专业名)
关系的描述称为关系模式,在上图中二维表的表头那行
称为关系模式,又称表的框架。
(2)形式化定义 :
R(U,D,Dom,F)
其中:R表示关系名;
U表示组成该关系的属性集合;
D表示U中属性所来自的域;
Dom表示属性向域的映像的集合
F表示属性间数据的依赖关系集合
上一页 下一页 第一页 最末页
退出
第一节 关系数据结构及形式化定义
一、和”关系”相关的概念定义 二、“关系”相关的概念 三、关系数据库中关系的类型 四、数据库中基本关系的性质
上一页 下一页 第一页 最末页
退出
一、和”关系”相关的概念定义
1、域:P47 2、笛卡儿积:P48 3、关系:P48
上一页 下一页 第一页 最末页
退出
域的定义
专业号 001 002
专业名 计算机应用 信息管理
二、DBMS在维护完整性方面具备的功能
1、提供定义完整性约束条件的机制 2、提供完整性检查的方法 3、违约处理
1、实体完整性
(1)定义:Primary key ->主键 (2)检查:
①对基本表插入一条记录 ②对基本表的主码进行更新 (3)违约处理 ① 若主码不唯一则拒绝插入或修改 ②若主码的各个属性有一个为空则拒绝插入或修改
3、参照完整性(Referential Integrity)
(1)外码 (2)参照完整性规则
外码(Foreign Key)
• 外码的定义:设F是基本关系R的一个或一组属性,但 不是R的码,如果F与基本关系S的主码相对应,则 称F为基本关系R的外码。并称R为参照关系,S为被 参照关系。
• 外码举例: 学生(学号,姓名,性别,专业号,年龄) 专业(专业号,专业名)
第2章关系数据库
(1)关系必须规范化:规范化指关系模型中的每一个关系 模式都必须满足一定的要求。
(2)模型概念单一。 (3)集合操作:操作对象和结果都是元组的集合,即关系。
LOGO
2.1 关系模型的基本概念
2.1.3 关系模型、关系子模式、关系内模式
美国国家标准学会(ANSI)所属标准计划和要求委员 会在1975年公布的研究报告中,把数据库分为三级:模式、 外模式和内模式。对用户而言可以对应分为概念级模式、 一般用户级模式和物理级模式(其体系结构如图2-1)。 关系模型中,概念模式是关系模式的集合,外模式是关系 子模式的集合,内模式是存储模式的集合。
2,…,n}
其中每一个元素(d 1 ,d 2 ,…,d n)称为一个n元组(nTuple),或简称为元组(Tuple)通常元素中的每一个值d i
称为一个分量。
LOGO
2.1 关系模型的基本概念来自❖ 两个集合R和S的笛卡尔积(或只是乘积)是元素对的集合, 该元素对是通过选择R的任何元素作为第一个元素,S的元 素作为第二个元素构成的。该乘积用RS表示。当R和S是 关系时,乘积本质上相同。
LOGO
2.1 关系模型的基本概念
1. 关系模式
关系实质上是一张二维表,表的每一行为一个元组, 每一列为一个属性。一个元组就是该关系所涉及的属性集 的笛卡尔积的一个元素。关系是元组的集合,也就是笛卡 尔积的一个子集。因此关系模式必须指出这个元组集合的 结构,即它由哪些属性构成,这些属性来自哪些域,以及 属性与域之间的映象关系。
•计算机专业
•李喆
•刘德成
•通信专业
•吕景刚
•刘德成
•通信专业
•王弶
•刘德成
•通信专业
•李喆
LOGO
(2)模型概念单一。 (3)集合操作:操作对象和结果都是元组的集合,即关系。
LOGO
2.1 关系模型的基本概念
2.1.3 关系模型、关系子模式、关系内模式
美国国家标准学会(ANSI)所属标准计划和要求委员 会在1975年公布的研究报告中,把数据库分为三级:模式、 外模式和内模式。对用户而言可以对应分为概念级模式、 一般用户级模式和物理级模式(其体系结构如图2-1)。 关系模型中,概念模式是关系模式的集合,外模式是关系 子模式的集合,内模式是存储模式的集合。
2,…,n}
其中每一个元素(d 1 ,d 2 ,…,d n)称为一个n元组(nTuple),或简称为元组(Tuple)通常元素中的每一个值d i
称为一个分量。
LOGO
2.1 关系模型的基本概念来自❖ 两个集合R和S的笛卡尔积(或只是乘积)是元素对的集合, 该元素对是通过选择R的任何元素作为第一个元素,S的元 素作为第二个元素构成的。该乘积用RS表示。当R和S是 关系时,乘积本质上相同。
LOGO
2.1 关系模型的基本概念
1. 关系模式
关系实质上是一张二维表,表的每一行为一个元组, 每一列为一个属性。一个元组就是该关系所涉及的属性集 的笛卡尔积的一个元素。关系是元组的集合,也就是笛卡 尔积的一个子集。因此关系模式必须指出这个元组集合的 结构,即它由哪些属性构成,这些属性来自哪些域,以及 属性与域之间的映象关系。
•计算机专业
•李喆
•刘德成
•通信专业
•吕景刚
•刘德成
•通信专业
•王弶
•刘德成
•通信专业
•李喆
LOGO
关系数据模型与关系运算
3 应用
4 优势
广泛应用于数据库系统中,便于数据管理和查询。
关系数据模型具有简单、灵活、易于理解和扩展 的优势。
关系运算基本概念
关系
关系是由元组组成的二维表格, 代表了数据集合。
属性
属性是关系中的列,代表了数据 的特征。
元组
元组是关系中的行,代表了实体 或记录。
关系运算的分类
1 一元运算
仅对一个关系进行操作,包括选择、投影、消除重复。
关系数据模型与关系运算
关系数据模型和关系运算是数据管理的核心,通过关系数据模型,我们可以 以表格形式表示数据,并使用关系运算对表格进行操作和查询。
关系数据模型
1 介绍
2 特点
关系数据模型是一种基于集合论和谓词逻辑的数 据模型,用于描述和操作数据的结构和约束。
以二维表格(关系)的形式组织数据,具有清晰 和规范的数据表示方式。
关系数据模型与关系运算的关 系
关系数据模型和关系运算相互依存关系,关系数据模型提供了操作数据的基 础,关系运算则用于操作和查询数据。
1 源关系
2 连接条件
3 结果关系
我们希望进行连接运算的两 个关系。
指定连接运算的条件,比较 源关系中的元组。
包含了满足连接条件的元组 组合。
除运算
除运算是一种特殊的连接运算,用于找出在一个关系中存在的、在另一个关系中不存在的元组。
1
源关系
进行除运算的被除关系。
2
除关系
进行除运算的除去关系。
3
结果关系
包含了在被除关系中存在但在除去关系中不存在的元组。
笛卡尔积运算
笛卡尔积运算是将两个关系的所有元组组合在一起,生成一个新的关系。
源关系
数据库系统ppt课件(完整版)pptx
20世纪60年代后期出现了一种新 型的数据管理技术——数据库技 术,它解决了数据的组织、存储 和管理问题,实现了数据的共享
和高效处理。
数据库系统组成与结构
数据库系统组成
数据库系统由数据库、数据库管理系统 (DBMS)、应用系统和用户构成。
VS
数据库系统结构
数据库系统的结构可以分为三级模式结构 ,包括外模式、模式和内模式。其中,模 式是数据库中全体数据的逻辑结构和特征 的描述,是所有用户的公共数据视图;外 模式是模式的子集,是用户与数据库的接 口;内模式是数据物理结构和存储方式的 描述,是数据在数据库内部的表示方式。
用户自定义完整性
根据业务需求,设置自定义的约束条件,如 字段值范围、格式等。
级联操作
在更新或删除记录时,自动更新或删除相关 联的数据,保持数据一致性。
并发操作带来问题及解决方法
丢失更新
两个事务同时更新同一数据,后提交的事务会覆盖先提交 的事务的更新结果。解决方法包括使用锁机制、时间戳等 。
脏读
一个事务读取了另一个未提交事务的修改数据,可能导致 数据不一致。解决方法包括使用隔离级别、锁机制等。
考虑系统的性能、稳定性 、可扩展性和易用性
确保系统具有良好的技术 支持和社区资源
05
数据库安全、完整性与并发控制
数据库安全性保护措施
用户身份鉴别
通过用户名/密码、数字证书等方式 验证用户身份,防止非法用户访问。
访问控制
根据用户角色和权限,限制对数据库 对象的访问和操作,确保数据不被越 权访问。
数据加密
未来发展趋势预测和挑战应对
多模数据管理
未来数据库将支持多种数据模型的管理 和访问,以满足不同应用的需求。
文档存储数据库
和高效处理。
数据库系统组成与结构
数据库系统组成
数据库系统由数据库、数据库管理系统 (DBMS)、应用系统和用户构成。
VS
数据库系统结构
数据库系统的结构可以分为三级模式结构 ,包括外模式、模式和内模式。其中,模 式是数据库中全体数据的逻辑结构和特征 的描述,是所有用户的公共数据视图;外 模式是模式的子集,是用户与数据库的接 口;内模式是数据物理结构和存储方式的 描述,是数据在数据库内部的表示方式。
用户自定义完整性
根据业务需求,设置自定义的约束条件,如 字段值范围、格式等。
级联操作
在更新或删除记录时,自动更新或删除相关 联的数据,保持数据一致性。
并发操作带来问题及解决方法
丢失更新
两个事务同时更新同一数据,后提交的事务会覆盖先提交 的事务的更新结果。解决方法包括使用锁机制、时间戳等 。
脏读
一个事务读取了另一个未提交事务的修改数据,可能导致 数据不一致。解决方法包括使用隔离级别、锁机制等。
考虑系统的性能、稳定性 、可扩展性和易用性
确保系统具有良好的技术 支持和社区资源
05
数据库安全、完整性与并发控制
数据库安全性保护措施
用户身份鉴别
通过用户名/密码、数字证书等方式 验证用户身份,防止非法用户访问。
访问控制
根据用户角色和权限,限制对数据库 对象的访问和操作,确保数据不被越 权访问。
数据加密
未来发展趋势预测和挑战应对
多模数据管理
未来数据库将支持多种数据模型的管理 和访问,以满足不同应用的需求。
文档存储数据库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中每一个元素(d1,d2,…,dn)称为一个元组(Tuple), 通常用t表示;元组中每一个值称为一个分量(Component)。
例子:总分登记表中的四个域
2.1 关系数据模型
❖一个关系(relation)是一个笛卡尔乘积的子集。
例1:总分登记表 Domain(学号) Domain(姓名) Domain(性别) Domain(总分)
任何含有null的算术运算,其结果都是null. 在集合运算中,null被忽略. 在重复删除和分组操作中,两个null被认为是相同的. Isnull(null)的值为true.
2.2 关系数据操作
❖ 如何处理空值(null)
三值逻辑中使用真值 unknown:
与空值的比较运算返回真值 unknown. 如果用 false 来取代 unknown,那么 not (A < 5) 并不总
例2 设工厂数据库中有两个关系模式: DEPT(D#,DNAME) EMP(E#,ENAME,SALARY,D# )
车间模式DEPT的属性为车间编号、车间名,职工模式 EMP的属性为工号、姓名、工资、所在车间的编号。每 个模式的主键与外键已标出。在EMP中,由于D# 不在 主键中,因此D# 值允许空。
等于 A >= 5(当A是一个空值时). 选择时仅使条件表达式的结果为True的元组选取出来
2.2 关系数据操作
❖ 完整性约束
(1)实体完整性约束
❖实体完整性约束(Entity Integrity)要求组成主键的属性 不能为空值,
(2)参照完整性约束
❖参照完整性规则:如果X是关系R的外键,它与关系S的主键 KS相对应,则对于R中每个元组在X上的值必须为:
关系模式和关系实例
❖关系模式
关系模式(Relation Schema)。它是一个5元组: R (U, D, dom, F)
❖关系实例
❖ 关系的性质
在关系模型中,对关系作了下列规范性限制:
(1)关系中每一个属性值都是不可分解的;
(2)关系中不允许出现重复元组(即不允许出现相同 的元组);
(3)由于关系是一个集合,因此不考虑元组间的顺序, 即没有行序;
域演算语言QBE
2.2 关系数据操作
❖ 如何处理空值(null)
null是一个常量,仅在数值和字符串类型的列中有意义,代表 的是没有意义或者是不确定的值。例如,学生选了课程,当 成绩没有出来时grade字段的值应该为空;或者工资表中一个 行政人员在课时补贴一栏的值为null,因为它不可能有课时补 贴的收入.
或者为空值(X包含的所有属性都为空值) 或者等于S中某个元组的主键值
(3)用户定义完整性约束
❖例如:订货数不得小于0;订货数不得小于存货量
例1 下面各种情况说明了参照完整性规则在关系中如何实现的。 ① 在关系数据库中有下列两个关系模式:
S(S#,SNAME,AGE,SEX) SC(S#,C#,GRADE) 这里带下划线者为主键,SC关系中的S属性为外键。据规则 要求关系SC中的S# 值应该在关系S中出现。如果关系SC中有一 个元组(S7,C4,80),而学号S7却在关系S中找不到,那么我 们就认为在关系SC中引用了一个不存在的学生实体,这就违反 了参照完整性规则。 另外,在关系SC中S# 不仅是外键,也是主键的一部分,因 此这里S# 值不允许空。
(4)元组中的属性在理论上也是无序的,但使用时按 习惯考虑列的顺序。
2.2 关系数据操作
❖ 关系数据操作
数据查询
数据更新
关系代数
❖ 关系数据操作过程分类
❖ 关系数据语言
关系数据语言
关系运算
关系演算
元组演算
域演算
关系代数语言 ISBL
关系演算语言
具关系代数与关系演 算双重特点的语言 SQL
元组演算语言 ALPHA
基数、度数
2.1 关系数据模型
❖键
超键、候选键、主键、外键 ❖ 设X是关系R的一个或一组属性,但不是关系R的键。如果X与 关系S的主键KS相对应,则称X是关系R的外键(Foreign key)。 关系R为参照关系(Referencing Relation)。关系S为被参照关 系(Referenced Relation)或目标关系(Target Relation)。
数据库基础
第二章 关系数据模型与关系运算
fanzhf@ 声明:本课件在汤娜老师的课件基础上改编
2.1 关系数据模型
❖ 关系数据结构描述
关系的笛卡尔积乘积定义
❖Domain(域):具有相同数据类型的值的集合称为域。 ❖Cartesian Product (笛卡尔积)
定义 :设有一组域D1,D2,…,Dn,域D1,D2,…,Dn的笛 卡尔乘积(Cartesian Products)定义为如下集合: D1×D2×…×Dn = {(d1,d2,…,dn)| diDi,i=1,2,…, n}
例2(例1的抽象):如果一个关系T有四个属性, A1 , A2 , A3 和 A4, 则 T Domain(A1 ) x Domain(A2 ) x Domain(A3 ) x Domain(A4 )
关系的二维表格描述
❖关系是满足特定规范性要求的二维表格 ❖关系的规范化限定 ❖关系的其他一些概念:数据库、关系(表)、属性、元组、
S兼容的关系,该关系是由属于R而且不属于S的元组构成的集 合,即在R中减去与S中相同的那系代数运算
并运算;差运算;投影运算;选择运算;广义笛卡尔 乘积
数据更新基本运算(对应于传统集合运算)
❖更新操作:插入;删除;修改 ❖(两张表相兼容)两张表被称为是兼容的,当且仅当它们具
有相同的模式. ❖Example:
2.3 关系代数
❖1.插入---集合的并运算
设有兼容关系R、S(即R、S具有相同的关系模式),则二者的
并运算定义为:
R S{t|t Rt S}
式中“∪”为并运算符,t为元组变量,结果R∪S为一个新的与R、
S兼容的关系,该关系是由属于R或属于S的元组构成的集合。
❖2.删除---集合的差运算
设有兼容关系R、S,则二者的差运算定义为:
R S { t|t R t S }
式中“-”为差运算符,t为元组变量,结果R-S为一个新的与R、
例子:总分登记表中的四个域
2.1 关系数据模型
❖一个关系(relation)是一个笛卡尔乘积的子集。
例1:总分登记表 Domain(学号) Domain(姓名) Domain(性别) Domain(总分)
任何含有null的算术运算,其结果都是null. 在集合运算中,null被忽略. 在重复删除和分组操作中,两个null被认为是相同的. Isnull(null)的值为true.
2.2 关系数据操作
❖ 如何处理空值(null)
三值逻辑中使用真值 unknown:
与空值的比较运算返回真值 unknown. 如果用 false 来取代 unknown,那么 not (A < 5) 并不总
例2 设工厂数据库中有两个关系模式: DEPT(D#,DNAME) EMP(E#,ENAME,SALARY,D# )
车间模式DEPT的属性为车间编号、车间名,职工模式 EMP的属性为工号、姓名、工资、所在车间的编号。每 个模式的主键与外键已标出。在EMP中,由于D# 不在 主键中,因此D# 值允许空。
等于 A >= 5(当A是一个空值时). 选择时仅使条件表达式的结果为True的元组选取出来
2.2 关系数据操作
❖ 完整性约束
(1)实体完整性约束
❖实体完整性约束(Entity Integrity)要求组成主键的属性 不能为空值,
(2)参照完整性约束
❖参照完整性规则:如果X是关系R的外键,它与关系S的主键 KS相对应,则对于R中每个元组在X上的值必须为:
关系模式和关系实例
❖关系模式
关系模式(Relation Schema)。它是一个5元组: R (U, D, dom, F)
❖关系实例
❖ 关系的性质
在关系模型中,对关系作了下列规范性限制:
(1)关系中每一个属性值都是不可分解的;
(2)关系中不允许出现重复元组(即不允许出现相同 的元组);
(3)由于关系是一个集合,因此不考虑元组间的顺序, 即没有行序;
域演算语言QBE
2.2 关系数据操作
❖ 如何处理空值(null)
null是一个常量,仅在数值和字符串类型的列中有意义,代表 的是没有意义或者是不确定的值。例如,学生选了课程,当 成绩没有出来时grade字段的值应该为空;或者工资表中一个 行政人员在课时补贴一栏的值为null,因为它不可能有课时补 贴的收入.
或者为空值(X包含的所有属性都为空值) 或者等于S中某个元组的主键值
(3)用户定义完整性约束
❖例如:订货数不得小于0;订货数不得小于存货量
例1 下面各种情况说明了参照完整性规则在关系中如何实现的。 ① 在关系数据库中有下列两个关系模式:
S(S#,SNAME,AGE,SEX) SC(S#,C#,GRADE) 这里带下划线者为主键,SC关系中的S属性为外键。据规则 要求关系SC中的S# 值应该在关系S中出现。如果关系SC中有一 个元组(S7,C4,80),而学号S7却在关系S中找不到,那么我 们就认为在关系SC中引用了一个不存在的学生实体,这就违反 了参照完整性规则。 另外,在关系SC中S# 不仅是外键,也是主键的一部分,因 此这里S# 值不允许空。
(4)元组中的属性在理论上也是无序的,但使用时按 习惯考虑列的顺序。
2.2 关系数据操作
❖ 关系数据操作
数据查询
数据更新
关系代数
❖ 关系数据操作过程分类
❖ 关系数据语言
关系数据语言
关系运算
关系演算
元组演算
域演算
关系代数语言 ISBL
关系演算语言
具关系代数与关系演 算双重特点的语言 SQL
元组演算语言 ALPHA
基数、度数
2.1 关系数据模型
❖键
超键、候选键、主键、外键 ❖ 设X是关系R的一个或一组属性,但不是关系R的键。如果X与 关系S的主键KS相对应,则称X是关系R的外键(Foreign key)。 关系R为参照关系(Referencing Relation)。关系S为被参照关 系(Referenced Relation)或目标关系(Target Relation)。
数据库基础
第二章 关系数据模型与关系运算
fanzhf@ 声明:本课件在汤娜老师的课件基础上改编
2.1 关系数据模型
❖ 关系数据结构描述
关系的笛卡尔积乘积定义
❖Domain(域):具有相同数据类型的值的集合称为域。 ❖Cartesian Product (笛卡尔积)
定义 :设有一组域D1,D2,…,Dn,域D1,D2,…,Dn的笛 卡尔乘积(Cartesian Products)定义为如下集合: D1×D2×…×Dn = {(d1,d2,…,dn)| diDi,i=1,2,…, n}
例2(例1的抽象):如果一个关系T有四个属性, A1 , A2 , A3 和 A4, 则 T Domain(A1 ) x Domain(A2 ) x Domain(A3 ) x Domain(A4 )
关系的二维表格描述
❖关系是满足特定规范性要求的二维表格 ❖关系的规范化限定 ❖关系的其他一些概念:数据库、关系(表)、属性、元组、
S兼容的关系,该关系是由属于R而且不属于S的元组构成的集 合,即在R中减去与S中相同的那系代数运算
并运算;差运算;投影运算;选择运算;广义笛卡尔 乘积
数据更新基本运算(对应于传统集合运算)
❖更新操作:插入;删除;修改 ❖(两张表相兼容)两张表被称为是兼容的,当且仅当它们具
有相同的模式. ❖Example:
2.3 关系代数
❖1.插入---集合的并运算
设有兼容关系R、S(即R、S具有相同的关系模式),则二者的
并运算定义为:
R S{t|t Rt S}
式中“∪”为并运算符,t为元组变量,结果R∪S为一个新的与R、
S兼容的关系,该关系是由属于R或属于S的元组构成的集合。
❖2.删除---集合的差运算
设有兼容关系R、S,则二者的差运算定义为:
R S { t|t R t S }
式中“-”为差运算符,t为元组变量,结果R-S为一个新的与R、