自动控制原理实验报告
自动控制原理实验报告
自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
自动控制原理实验报告五个实验
自动控制原理实验专业班级姓名学号实验时间:2010.10—2010.11一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线 18根典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。
2、掌握用运算放大器构成各种常用的典型环节的方法。
3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。
4、学会时域法测量典型环节参数的方法。
(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理实验原理及实验设计:1.比例环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节: Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤2、测量输入和输出波形图。
自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)
自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2、学习在电子模拟机上建立典型环节系统模型的方法。
3、学习阶跃响应的测试方法。
二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。
2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。
三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。
记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。
2、PC机一台。
3、数字万用表一块。
4、导线若干。
五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。
2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。
3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。
自控原理实验报告答案
一、实验目的1. 理解自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其传递函数。
3. 熟悉控制系统时域性能指标的测量方法。
4. 通过实验验证理论知识,提高实际操作能力。
二、实验原理自动控制原理是研究如何利用自动控制装置对生产过程进行自动控制的一门学科。
本实验通过模拟典型环节的电路和数学模型,研究系统的动态特性和稳态特性。
三、实验内容1. 比例环节(P)的模拟实验。
2. 积分环节(I)的模拟实验。
3. 比例积分环节(PI)的模拟实验。
4. 比例微分环节(PD)的模拟实验。
5. 比例积分微分环节(PID)的模拟实验。
四、实验步骤1. 按照实验指导书的要求,搭建实验电路。
2. 调整实验参数,记录系统响应曲线。
3. 分析系统响应曲线,计算系统性能指标。
4. 根据实验结果,验证理论知识。
五、实验数据记录1. 比例环节(P)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差2. 积分环节(I)实验数据记录:- 系统阶跃响应曲线- 稳态误差3. 比例积分环节(PI)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差4. 比例微分环节(PD)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差5. 比例积分微分环节(PID)实验数据记录: - 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差六、实验结果与分析1. 比例环节(P)实验结果:- 系统响应速度快,但稳态误差较大。
- 调节时间短,超调量较小。
2. 积分环节(I)实验结果:- 系统稳态误差为零,但响应速度较慢。
3. 比例积分环节(PI)实验结果:- 系统稳态误差较小,调节时间适中,超调量适中。
4. 比例微分环节(PD)实验结果:- 系统响应速度快,稳态误差较小,超调量适中。
5. 比例积分微分环节(PID)实验结果:- 系统响应速度快,稳态误差较小,超调量适中。
七、实验结论1. 通过实验,验证了典型环节的数学模型及其传递函数。
自控原理实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理实验报告根轨迹分析法
相关根轨迹知识
根轨迹的概念 根轨迹是开环系统某一参数从零变化到无穷大时, 闭环系 统特征根在 s 平面上变化的轨迹。 增设零、极点对根轨迹的影响 (1)增加开环零点对根轨迹的影响 第一,加入开环零点,改变渐近线的条数和渐近线的倾角; 第二,增加开环零点,相当于增加微分作用,使根轨迹向左 移动或弯曲,从而提高了系统的相对稳定性。系统阻尼增加,过 渡过程时间缩短; 第三,增加的开环零点越接近坐标原点,微分作用越强,系 统的相对稳定性越好。 (2)增加开环极点对根轨迹的影响 第一,加入开环极点,改变渐近线的条数和渐近线的倾角; 第二,增加开环极点,相当于增加积分作用,使根轨迹向右 移动或弯曲,从而降低了系统的相对稳定性。系统阻 尼减小,过渡过程时间加长;
-4-
五、实验过程
第一题 Gc=1:
Gc=s+5:
Gc=(s+2)(s+3):
-5-
Gc=1/(s+5):
第二题 第 一 步 : 在 MATLAB 的 命 令 窗 口 中 键 入 “ num=[1 3];den=[1 2 0];rlocus(num,den)” ,得图如下:
第二步: 第三步:
第三题 第一步:由已知条件 ts(△=2%)≤4s,超调量≤40%得
s ( s 2)
1 。作 s5
确定系统具有最大的超调量时的根轨迹增益,并作时域 仿真验证;(2)确定系统阶跃响应无超调时的根轨迹取值 范围,并作时域仿真验证 3、已知一单位反馈系统的开环传递函数为 ss 0.8试加入一 个串联超前校正控制(其中,|z|<|p|) ,使得闭环系统 的 ts(△=2%)≤4s,超调量≤40%。
-7-
本为图标的切线与 K 的横坐标的交点所得的纵坐标再减去延迟时间。 随后按图慢慢调整数值,一定要有耐心。 第二题中,Step 的属性不能忘改,否则横轴(0,1)处恒为 1。 分母出 S 前的系数必须小于 1(阻尼比小于 1) ,之后改改分子,调整 调整 S 前的系数并保持 S^2 前的系数不变 (因为分子分母都可约分) , 曲线即可得出。
自动控制原理实验报告
实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。
实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。
3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。
利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。
K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。
时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。
K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。
自控原理课程实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自动控制原理实验实训报告 .docx
自动控制原理实验实训报告 .docx【导言】自动控制原理实验实训是控制科学与工程专业的必修课程,是学生进行理论学习与实践操作结合的一个重要环节。
本次实训学习了控制系统的基本概念、控制器的类型以及控制系统的建模和分析方法,并通过实现传感器数据采集、信号控制和反馈调节等操作,掌握了控制系统的工作原理和实现方式。
本报告将对本次实训中的实验操作、实验结果和实验体会进行详细记录和总结。
【实验操作】1.传感器场景仿真实验本实验通过MATLAB仿真软件,实现了对不同场景下传感器采集数据的比较分析。
实验过程中需要设置不同的传感器样本数据和处理方式,并利用MATLAB的数据处理工具对数据进行处理分析,从而得出传感器对于不同场景下数据采集的适用性和准确性。
2.直流电动机速度调节实验本实验通过实现电动机的速度控制,实现对电动机的运行状态的控制调节。
实验需要完成对AC220V电源、TG-01速度控制器以及直流电动机的连接和调试,并通过电动机的运行状态和速度,实现对控制器的参数设置和调节操作。
4.磁悬浮控制实验本实验实现了对磁悬浮平台的控制和调节,并通过数据反馈实现了对磁悬浮平台的稳定运行。
通过对控制器的参数调节和磁悬浮平台的反馈数据分析,加深了对磁悬浮控制原理的理解和掌握程度。
本次实验操作中,通过对控制器的操作和数据反馈的分析,加深了对自动控制的认识和掌握程度,提高了对控制系统的工作原理和实现方式的理解。
同时,实验操作中也存在一些问题和不足,例如实验操作过程的不稳定性和实验数据分析的不准确性等问题。
需要在今后的学习和实践中,加强对理论知识和实验操作技能的学习和掌握,提高实验操作的准确性和稳定性,从而更好地掌握自动控制原理的知识和技能。
《自动控制原理》实验报告 典型环节的阶跃响应
成绩:____大连工业大学《自动控制原理》实验报告实验1 典型环节的阶跃响应专业名称:自动化班级学号:自动化10I-JK学生姓名:ABCD指导老师:EFGH实验日期:年月日一、实验目的1、熟悉各种典型环节的阶跃响应曲线;2、了解参数变化对典型环节动态特性的影响。
二、实验原理实验任务1、比例环节(K)从图0-2的图形库浏览器中拖曳Step(阶跃输入)、Gain(增益模块)、Scope(示波器)模块到图0-3仿真操作画面,连接成仿真框图。
改变增益模块的参数,从而改变比例环节的放大倍数K,观察它们的单位阶跃响应曲线变化情况。
可以同时显示三条响应曲线,仿真框图如图1-1所示。
2、积分环节(1Ts)将图1-1仿真框图中的Gain(增益模块)换成Transfer Fcn (传递函数)模块,设置Transfer Fcn(传递函数)模块的参数,使其传递函数变成1Ts型。
改变Transfer Fcn(传递函数)模块的参数,从而改变积分环节的T,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-2所示。
3、一阶惯性环节(11 Ts+)将图1-2中Transfer Fcn(传递函数)模块的参数重新设置,使其传递函数变成11Ts+型,改变惯性环节的时间常数T,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-3所示。
4、实际微分环节(1KsTs +) 将图1-2中Transfer Fcn (传递函数)模块的参数重新设置,使其传递函数变成1KsTs +型,(参数设置时应注意1T )。
令K 不变,改变Transfer Fcn (传递函数)模块的参数,从而改变T ,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-4所示。
5、二阶振荡环节(2222nn ns s ωξωω++) 将图1-2中Transfer Fcn (传递函数)模块的参数重新设置,使其传递函数变成2222nn ns s ωξωω++型(参数设置时应注意01ξ<<),仿真框图如图1-5所示。
自动控制原理实验教程及实验报告
实验三 典型环节(或系统)的频率特性测量一、实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据实验所得频率特性曲线求取传递函数的方法。
二、实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.根据测得的频率特性曲线求取各自的传递函数。
4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
三、实验步骤1.利用实验设备完成一阶惯性环节的频率特性曲线测试。
在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。
为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。
仍以一阶惯性环节为例,此时将Ui 连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo 连到实验箱 U3单元的I1(A/D 通道的输入端),并连好U3单元至上位机的并口通信线。
接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。
界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X ”选择“通道I1#”,“采样通道Y ”选择“不采集”。
②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。
③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“Bode”。
④完成实验设置,先选择“实验类别”(在主界面右上角)为“频域”,然后点击“实验参数设置”,在弹出的“频率特性测试频率点设置”框内,确定实验要测试的频率点。
注意设置必须满足ω<30Rad/sec 。
⑤以上设置完成后,按“实验启动”启动实验。
界面中下方的动态提示框将显示实验测试的进展情况,从开始测试直至结束的过程大约需要2分钟。
自动控制原理实验报告,DOC
自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。
2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
PC三.1.2.3.4.5.6.一12二PC机一台,TD-ACC+(或TD-ACS)教学实验系统一套。
三、原理简述所谓校正就是指在使系统特性发生变化接方式,可分为:串馈回路之内采用的校测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3校正前:校正后:校正前:校正后:12PC(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。
2.线性系统的频率特性系统的正弦稳态响应具有和正弦输入信号的幅值比Φ(jω)和相位差∠Φ(jω)随角频率(ω由0变到∞)变化的特性。
而幅值比Φ(jω)和相位差∠Φ(jω)恰好是函数Φ(jω)的模和幅角。
所以只要把系统的传递函数Φ(s),令s=jω,即可得到Φ(jω)。
我们把Φ(jω)称为系统的频率特性或频率传递函数。
当ω由0到∞变化时,Φ(jω)随频率ω的变化特性成为幅频特性,∠Φ(jω)随频率ω的变化特性称为相频特性。
幅频特性和相频特性结合在一起时称为频率特性。
3.频率特性的表达式(1)(2)(3)幅值不易测量,可将其构成闭环负反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。
自动控制原理实验报告
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
自动控制实验报告
自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。
二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。
2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。
5×100%=0.28%E2=|3.318—3。
3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。
自动控制原理实验报告样本一
自动控制原理实验报告样本一【实验名称】:自动控制原理实验报告样本一【实验目的】:本实验旨在通过对自动控制原理的实验研究,掌握自动控制系统的基本原理和方法,以及对控制系统的性能进行评估和优化。
【实验装置和仪器】:1. 控制器:采用PID控制器,型号为XYZ-123。
2. 传感器:采用温度传感器,型号为ABC-456。
3. 执行器:采用电动阀门,型号为DEF-789。
4. 数据采集系统:采用LabVIEW软件进行数据采集和处理。
【实验原理】:自动控制原理实验中,我们采用了PID控制器来实现对温度的控制。
PID控制器是一种经典的控制算法,由比例(P)、积分(I)和微分(D)三个部分组成。
具体原理如下:1. 比例控制(P):根据反馈信号与设定值之间的差异,按比例调节输出信号。
比例系数Kp决定了输出信号的变化速度。
2. 积分控制(I):根据反馈信号与设定值之间的积分,按比例调节输出信号。
积分时间常数Ti决定了输出信号的稳定性。
3. 微分控制(D):根据反馈信号的变化速率,按比例调节输出信号。
微分时间常数Td决定了输出信号的响应速度。
通过调整PID控制器的参数,我们可以实现对温度的精确控制。
【实验步骤】:1. 将温度传感器连接到被控对象上,并将输出信号接入PID控制器的输入端口。
2. 将PID控制器的输出信号接入电动阀门,实现对温度的调节。
3. 打开实验软件LabVIEW,建立数据采集系统,设置采样频率和采样时长。
4. 设定所需的目标温度值,并将其输入PID控制器。
5. 启动数据采集系统,并记录下实验开始时间。
6. 观察温度的变化情况,并记录下每次采样的温度数值。
7. 根据实验数据,计算出温度的偏差值,并将其输入PID控制器进行调整。
8. 持续观察和记录实验数据,直至温度稳定在设定值附近。
9. 停止数据采集系统,并记录下实验结束时间。
【实验结果】:根据实验数据,我们得到了如下结果:1. 实验开始时间:2022年1月1日 10:00:002. 实验结束时间:2022年1月1日 11:00:003. 设定目标温度:40℃4. 实际温度波动范围:39.8℃ - 40.2℃5. 温度稳定时间:30分钟【实验分析】:根据实验结果,我们可以得出以下分析:1. 实际温度波动范围在设定目标温度的可接受范围内,说明PID控制器对温度的控制较为准确。
自动控制原理实验报告 典型环节及其阶跃响应 二阶系统阶跃响应 连续系统串联校正
自动控制原理实验报告班级:自动化0906班学生: 伍振希(09213052)张小维(合作)任课教师:苗宇老师目录实验一典型环节及其阶跃响应 (1)一、实验目的 (1)二、实验仪器 (1)三、实验原理 (1)四、实验内容 (1)五、实验步骤 (2)六、实验结果 (3)实验二二阶系统阶跃响应 (6)一、实验目的 (6)二、实验仪器 (6)三、实验原理 (6)四、实验内容 (6)五、实验步骤 (7)六、实验结果 (7)实验三连续系统串联校正 (13)一、实验目的 (13)二、实验仪器 (13)三、实验内容 (13)四、实验步骤 (15)五、实验结果 (15)实验一典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。
2. 掌握控制系统时域性能指标的测量方法。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。
G(S)= R2/R12.惯性环节的模拟电路及其传递函数如图1-2。
G(S)= - K/TS+1K=R2/R1,T=R2C3.积分环节的模拟电路及传递函数如图1-3。
G(S)=1/TST=RC4.微分环节的模拟电路及传递函数如图1-4。
G(S)= - RCS5.比例微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf)。
G(S)= -K(TS+1)K=R2/R1,T=R1C五、实验步骤1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
自控原理实验报告1
自动控制原理实验——第一次实验姓名:乔佳楠班级:06110901学号:20091419一、实验目的了解MATLAB在自动控制原理课程中的应用,学习MATLAB的基本使用方法。
通过上机实验操作学习线性系统的分析与设计,学习传递函数的描述方法,自控系统结构框图的模型表示以及线性系统的时域分析。
其中本节重点掌握结构框图中的串联,并联和反馈结构的模型表示方法,并能正确分析不同结构模型之间的关系。
二、实验要求运用MATLAB软件解决下列三个问题,并绘制出每个函数的单位阶跃响应图像,标出其上升时间,过渡过程时间,计算出超调量。
三、实验内容1.给出下列两个函数,分别求出在串联,并联和反馈结构中的系统传递函数,并画出阶跃响应曲线,标出上升时间,过渡过程时间以及超调量。
①G1=tf(10,[1,2,3]) ②G2=tf(1,[1,2])Step1:串联结构,即G=G1*G2>> G1=tf(10,[1,2,3]);>> G2=tf(1,[1,2]);>> G=series(G1,G2)Transfer function:10---------------------s^3 + 4 s^2 + 7 s + 6>> step(G)起调量:(1.77-1.66)/1.66*100%=6.63% 上升时间: 2.97 sec过渡过程时间:5.89 secStep2:并联结构,即G=G1+G2>> G1=tf(10,[1,2,3]);>> G2=tf(1,[1,2]);>> G=parallel(G1,G2)Transfer function:s^2 + 12 s + 23---------------------s^3 + 4 s^2 + 7 s + 6>> step(G)起调量:(4.19-3.83)/3.83*100%=9.40% 上升时间: 2.23 sec过渡过程时间:5.78 secStep3:反馈结构,即G=G1/(1+G1G2)>> G1=tf(10,[1,2,3]);>> G2=tf(1,[1,2]);>> G=feedback(G1,G2,-1)Transfer function:10 s + 20----------------------s^3 + 4 s^2 + 7 s + 16 >> step(G)起调量:(2.25-1.25)/1.25*100%=80.0%上升时间: 1.29 sec过渡过程时间:16.7 sec2.根据系统的结构框图,求出系统总的传递函数。
自动控制原理_实验报告
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制原理实验报告
自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。
二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。
2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。
3. 将编写好的代码上传至Arduino UNO开发板。
4.将电源适配器连接至系统,确保实验装置正常供电。
5.启动实验系统并观察电机的转动情况。
6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。
五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。
通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。
2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。
这也是导致实际转动角度与目标角度存在差异的一个重要原因。
3.电源适配器的稳定性对电机的转动精度也有一定的影响。
六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。
同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。
为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。
实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理实验报告实验一一、二阶系统的电子模拟及时域响应的动态测试实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2.学习在电子模拟机上建立典型环节系统模型的方法。
3.学习阶跃响应的测试方法。
二、实验内容1.立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。
2.立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。
三、实验原理1.一阶系统:系统传递函数为:错误!未找到引用源。
模拟运算电路如图1-1所示:图1-1由图得:在实验当中始终取错误!未找到引用源。
, 则错误!未找到引用源。
,错误!未找到引用源。
取不同的时间常数T分别为: 0.25、 0.5、1。
记录不同时间常数下阶跃响应曲线,测量纪录其过渡过程时 ts。
(取错误!未找到引用源。
误差带)2.二阶系统:其传递函数为:错误!未找到引用源。
令错误!未找到引用源。
,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
及错误!未找到引用源。
错误!未找到引用源。
取不同的值错误!未找到引用源。
, 错误!未找到引用源。
, ,观察并记录阶跃响应曲线,测量超调量σ%(取错误!未找到引用源。
误差带),计算过渡过程时间Ts。
四、实验设备1.HHMN-1型电子模拟机一台。
2.PC 机一台。
3.数字式万用表一块。
4.导线若干。
五、实验步骤1.熟悉HHMN-1型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。
2.断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。
3.将D/A1与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。
线路接好后,经教师检查后再通电。
4.在Windows XP桌面用鼠标双击MATLAB图标后进入,在命令行处键入autolab 进入实验软件系统。
5.在系统菜单中选择实验项目,选择实验一,在窗口左侧选择实验模型,其它步骤察看概述3.2节内容。
6.观测实验结果,记录实验数据,绘制实验结果图形,填写实验数据表格,完成实验报告。
7.研究性实验方法。
实验者可自行确定典型环节传递函数,并建立系统的SIMULINK模型,验证自动控制理论相关的理论知识。
实现步骤可察看概述3.3节内容。
实验结果1.一阶系统实验仿真结果图如下:T = 0.25:T = 0.5:T = 1.0:2.二阶系统实验仿真结果图如下:T = 0.25T = 0.707T = 1七、实验结论实验图线与理论图线基本符合,理论分析结果得到验证。
实验数据结果和与理论数据有一定的误差,原因主要在于选择电阻,特别是二阶=0.707时没有合适的阻值,就直接用700千欧电阻代替707千欧;另外储能元件放电不够充分也有可能引起误差。
不管是从一阶系统还是二阶系统,越小,系统越快达到稳定,系统的快速性越好;二阶系统中,越大,系统的超调量越小,特别是当=1时,系统没有超调量。
实验二频率响应测试一、实验目的a)1.掌握频率特性的测试原理及方法。
b)2.学习根据所测定出的系统的频率特性,确定系统传递函数的方法。
二、实验内容c)1.测定给定环节的频率特性。
d)2.系统模拟电路图及系统结构图分别如图2-1及图2-2e)图2-1图2-23.系统传递函数为:取 R = R1,则错误!未找到引用源。
取 R = 5R1,则错误!未找到引用源。
若正弦输入信号为错误!未找到引用源。
, 则当输出达到稳态时,其输出信号为错误!未找到引用源。
改变输入信号频率错误!未找到引用源。
, 便可测得二组错误!未找到引用源。
和错误!未找到引用源。
随f(或ω)变化的数值,这个变化规律就是系统的幅频特性和相频特性。
三、实验原理1. 幅频特性即测量输入与输出信号幅值错误!未找到引用源。
及错误!未找到引用源。
,然后计算其比错误!未找到引用源。
2. 实验采用“李沙育图形”法进行相频特性的测试。
3.相位差角Ψ的求法:对于错误!未找到引用源。
及错误!未找到引用源。
当错误!未找到引用源。
时,有错误!未找到引用源。
;错误!未找到引用源。
即错误!未找到引用源。
, 显然,仅当错误!未找到引用源。
时,上式才成立。
四、实验设备1.HHMN-1型电子模拟机一台。
2.PC 机一台。
3.数字式万用表一块。
4.导线若干。
五、实验步骤1. 熟悉 HHMN-1 型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。
2. 断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。
先选择R = R1错误!未找到引用源。
3. 将错误!未找到引用源。
与系统输入端错误!未找到引用源。
连接,将错误!未找到引用源。
与系统输出端错误!未找到引用源。
连接。
线路接好后,经教师检查后再通电。
4.运行软件,分别获得理论和实际仿真的曲线,并采用“XY Graph”观测“李沙育图形”。
调整信号源频率,连续获得十组曲线,并保证其中有一组的为“李沙育图形”为正椭圆。
5.将R 改为5R1,再进行2~4步。
6. 观察实验结果,记录实验数据,绘制实验结果图形,填写实验数据表格,完成实验报告。
六、数据记录1.R = R1=1MΩ时的频率响应(设置输入的幅值为1)ω=10rad/s错误!未找到引用源。
时的曲线和李沙育图形2. R = 5R1=1MΩ错误!未找到引用源。
时,K=5时的频率响应ω=10rad/s时的曲线和李沙育图形七、数据处理1. 错误!未找到引用源。
R = R1时的系统传递函数计算 由错误!未找到引用源。
时相角错误!未找到引用源。
,所以有 错误!未找到引用源。
又 错误!未找到引用源。
1.14439.0=ξ故,系统传递函数为:1000s 1*439.0*21002)s (2222++=++=s w w s w G n n n ξ10078.8100)(2++=s s s G2. 错误!未找到引用源。
时的系统传递函数计算由错误!未找到引用源。
ω=20rad/s 时相角错误!未找到引用源。
,所以有s rad w w /20n ==错误!未找到引用源。
又错误!未找到引用源。
1.747 286.0=ξ故,系统传递函数为:1000s 2*286.0*21002)s (2222++=++=s w w s w G nn n ξ400s 44.11400)s (2++=s G八、误差分析和实验结论由于有系统的噪声和传输上的问题,还有就是采样频率域采样点数的问题,而且人为的从李沙育图形中去获得Y(0),Y(m)的值存在很大的偶然误差,故导致求出的系统传递函数和预期的传递函数有较大的误差。
由实验可知,根据系统的幅相特性可以推出系统的阶次,以及可以计算出阻尼大小和固有频率,从而求出系统的传递函数,但是由于本实验中采样率不高,而且取样粗糙存在比较大的偶然误差,故求出的系统函数与实际传递函数有比较大的出入。
实验三控制系统串联校正一、实验目的1. 了解和掌握串联校正的分析和设计方法。
2. 研究串联校正环节对系统稳定性及过渡过程的影响。
二、实验内容1. 设计串联超前校正,并验证。
2. 设计串联滞后校正,并验证。
三、实验原理1. 系统结构如图3-1图3-1其中错误!未找到引用源。
为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机来实现。
2. 系统模拟电路如图3-23. 未加校正时错误!未找到引用源。
4. 加串联超前校正时错误!未找到引用源。
给定 a = 2.44 , T = 0.26 , 则错误!未找到引用源。
5. 加串联滞后校正时错误!未找到引用源。
给定b = 0.12 , T = 83.33, 则错误!未找到引用源。
四、实验设备1.HHMN-1型电子模拟机一台。
2.PC 机一台。
3.数字式万用表一块。
1. 熟悉 HHMN-1 型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。
2. 断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。
3. 将错误!未找到引用源。
与系统输入端错误!未找到引用源。
连接,将错误!未找到引用源。
与系统输出端错误!未找到引用源。
连接。
线路接好后,经教师检查后再通电。
4.运行软件,先不加入错误!未找到引用源。
分别获得理论和实际仿真的曲线。
5.接入错误!未找到引用源。
,获得滞后校正的理论和实际仿真的曲线,之后换成错误!未找到引用源。
获得超前校正的理论和实际仿真的曲线。
6. 观察实验结果,记录实验数据,绘制实验结果图形,填写实验数据表格,完成实验报告。
数据记录实验过程中,电阻电容取值:R1=1M,C1=1u;R2=250K,R3=1M,C2=1u.1. 不同校正环节的动态特性对比2. 系统阶跃响应曲线2.1 未加校正()2.2 超前校正()2.3 滞后校正()3. 系统Bode图(绘图指令为bode(num,den))3.1 未加校正环节系统开环传递函数3.2 串联超前校正系统开环传递函数错误!未找到引用源。
3.3 串联滞后校正系统开环传递函数错误!未找到引用源。
七、数据分析无论是串入何种校正环节,或者是否串入校正环节,系统最终都会进入稳态,并且,稳态误差基本不变。
但是,串入校正环节后对系统的动态性能有调节作用。
超前校正:系统错误!未找到引用源。
、错误!未找到引用源。
明显减小,相角裕度、穿越频率变大。
为系统引入了一个超前的相角。
增大系统带宽;会使系统增益减小,但高频段增益有所增大。
滞后校正:系统相角裕度增大,穿越频率减小,错误!未找到引用源。
明显减小,错误!未找到引用源。
显著增大。
为系统一如一个滞后的相角。
减小系统带宽;高频段增益减小,有效抑制高频噪声;减小系统误差,改善平稳性;对快速性有较大影响。
通过实验,比较直观的看到了引入超前和滞后环节对系统的影响,对学习和理解很有帮助。
四、控制系统数字仿真实验目的6. 掌握利用四阶龙格-库塔(Runge-Kutta )法进行控制系统数字仿真的方法。
7. 学习分析高阶系统动态性能的方法。
8. 学习系统参数改变对系统性能的影响。
二、实验内容 已知系统结构如下图若输入为单位阶跃函数,计算当超调量分别为5%,25%,和50%时K 的取 值(用主导极点方法估算),并根据确定的K 值在计算机上进行数字仿真。
三、实验过程计算K 值二阶系统单位阶跃响应的超调量%100%(1)e σ-=当σ%=5%时解得 ζ=0.690设主导极点=ζa+a=0.69a+j0.72a 代入D (s )= 321025ss s K +++=0中,32(0.690.72)10(0.690.72)25(0.690.72)0a j a a j a a j a K ++++++=解得K=31.3,a=-2.10 即1,21.45 1.52s j =-±当σ%=25%时解得 ζ=0.403设主导极点=ζa+a=0.403a+j0.915a 代入D (s )= 321025ss s K +++=0中,32(0.4030.915)10(0.4030.915)25(0.4030.915)0a j a a j a a j a K ++++++=解得K=59.5,a=-2.75 即1,21.112.53s j =-±当σ%=50%时解得 ζ=0.215设主导极点=ζa+a=0.215a+j0.977a 代入D (s )= 321025ss s K +++=0中,32(0.2150.977)10(0.2150.977)25(0.2150.977)0a j a a j a a j a K ++++++=解得K=103,a=-3.48 即1,20.75 3.4s j =-±2、用MATLAB 绘制2()(5)KG S S S =+的根轨迹图如下 -25-20-15-10-50510-15-10-551015Root LocusReal AxisI m a g i n a r y A x i s绘制降阶系统跃响应曲线对原系统进行降阶处理,所得闭环传递函数为2()()1025C S KR S S S K=++, 利用四阶龙格-库塔法绘制阶跃响应曲线如下: 14. K=31.315.K=59.5iii. K=1034、验证精确K值四、实验结论1.将系统传递函数化成时域形式,可以得到一组微分方程,利用四阶龙格-库塔法,就可以计算得到系统的响应。