解析几何中的面积问题(一轮复习)

合集下载

易错点09 解析几何(解析版)-备战2021年高考数学一轮复习易错题

易错点09 解析几何(解析版)-备战2021年高考数学一轮复习易错题
(1)求C的方程:
(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
【答案】(1) ;(2)详见解析.
【解析】
【分析】
(1)由题意得到关于a,b,c的方程组,求解方程组即可确定椭圆方程.
(2)设出点M,N的坐标,在斜率存在时设方程为 ,联立直线方程与椭圆方程,根据已知条件,已得到m,k的关系,进而得直线MN恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q的位置.
样直角三角形斜边上的中点为M(1,0),
则半径为 =3,
即得所求圆的方程为(x-1)2+y2=9.
【错因】因为忽视结论的检验,没有注意到点C是直角三角形的顶点,即C点不能在直线AB上,因此造成错解.
【正解】设C(x,y),由于直角三角形斜边上的中点为M(1,0),如图所示,则半径为 =3,即得圆的方程为(x-1)2+y2=9.但是顶点C不能在直线AB上,因此y≠0,也就是要除去两个点,即(-2,0),(4,0),因此C点满足的方程为(x-1)2+y2=9(除去点(-2,0),(4,0)).
此时曲线 表示双曲线,
由 可得 ,故C正确;
对于D,若 ,则 可化为 ,
,此时曲线 表示平行于 轴的两条直线,故D正确;
故选:ACD.
【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.
例2(2020年普通高等学校招生全国统一考试数学)斜率为 的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则 =________.
易错点09解析几何
—备战2021年高考数学一轮复习易错题
【典例分析】
例1(2020年普通高等学校招生全国统一考试数学)已知曲线 .()

解析几何三角形面积问题

解析几何三角形面积问题

解析几何三角形面积问题1、已知两定点12(1,0),(1,0)F F -,满足124PF PF +=u u u r u u u u r的动点P 的轨迹是曲线C .(Ⅰ) 求曲线C 的标准方程;(Ⅱ)直线:l y x b =-+与曲线C 交于,A B 两点, 求AOB ∆面积的最大值.2、已知椭圆(2222:1>>0)y x C a b a b+=的离心率为22,且椭圆上一点到两个焦点的距离之和为22.斜率为()0≠k k 的直线l 过椭圆的上焦点且与椭圆相交于P Q ,两点,线段PQ 的垂直平分线与y 轴相交于点(0)M m ,. (1)求椭圆的标准方程;(2)求m 的取值范围.(3)试用m 表示MPQ ∆的面积S ,并求面积S 的最大值.3、(2012潍坊期末)如图,椭圆G 的中心在坐标原点,其中一个焦点为圆F :0222=-+x y x 的圆心,右顶点是圆F 与x 轴的一个交点.已知椭圆G 与直线l :01-=-my x 相交于A 、B 两点.(I)求椭圆的方程;(Ⅱ)求∆AOB 面积的最大值.4、直线l 与椭圆22221(0)y x a b a b +=>>交于11(,)A x y ,22(,)B x y 两点,已知m ),(11by ax =,n ),(22by ax =,若n m ⊥且椭圆的离心率32e =,又椭圆经过点,1)2,O 为坐标原点. (1)求椭圆的方程;(2)若直线l 过椭圆的焦点(0,)F c (c 为半焦距),求直线l 的斜率k 的值; (3)试问:AOB ∆的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5、已知椭圆的焦点坐标为1F (-1,0),2F (1,0),过2F 垂直于长轴的直线交椭圆于P 、Q两点,且|PQ |=3,(1) 求椭圆的方程;(2) 过2F 的直线l 与椭圆交于不同的两点M 、N ,则△1F MN 的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.6、椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为12,点P(1,32),A,B 在椭圆E 上,且→PA+→PB=m →OP (m ∈R)(1) 求椭圆E 的方程及直线AB 的斜率;求证:当△PAB 的面积取得最大值时,原点O 是△PAB 的重心7、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.8、已知A (23-,0),B (23,0)为平面内两定点,动点P 满足|PA |+|PB |=2. (I )求动点P 的轨迹方程; (II )设直线)0)(23(>+=k x k y l :与(I )中点P 的轨迹交于M 、N 两点.求△BMN 的最大面积及此时直线l 的方程.9、平面直角坐标系内已知两点A (-1,0)、B (1,0),若将动点P (x ,y )的横坐标保持不变,纵坐倍后得到点Q (x y ),且满足AQ uuu r ·BQ uuu r=1.(Ⅰ)求动点P 所在曲线C 的方程;(Ⅱ)过点B 作斜率为的直线l 交曲线C 于M 、N 两点,且OM u u u u r +ON uuu r +OH u u u r =0r ,试求△MNH 的面积.10、在平面直角坐标系内已知两点(1,0)A -、(1,0)B ,若将动点(,)P x y 的横坐标保持不变,()Q x,且满足1AQ BQ⋅=u u u r u u u r.(Ⅰ)求动点P所在曲线C的方程;(Ⅱ)过点B作斜率为的直线l交曲线C于M、N两点,且0OM ON OH++=u u u u r u u u r u u u r r,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.11、[2011·湖南卷] 如图,椭圆1C:22221x ya b+=(0)a b>>,x轴被曲线2C:2y x b=-截得的线段长等于1C的长半轴长.(Ⅰ)求1C、2C的方程;(Ⅱ)设2C与y轴的交点为M,过坐标原点O的直线l与2C相交于点A、B,直线,MA MB 分别与1C相交与,D E.(i)证明:MD ME⊥;(ii)记,MAB MDE∆∆的面积分别是12,S S.问:是否存在直线l,使得121732SS=?请说明理由.12、设椭圆C1:22221(0)x ya ba b+=>>的左.右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图,若抛物线C2:21y x=-与y轴的交点为B,且经过F1,F2点。

高三数学一轮复习解析几何(解析版)

高三数学一轮复习解析几何(解析版)

数 学H 单元 解析几何H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c .从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H2 两直线的位置关系与点到直线的距离 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 22.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.22.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故线段AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即 4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H3 圆的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.17.[2014·湖北卷] 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b ,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有|MB |=λ|MA |,则(1)b =________; (2)λ=________.17.(1)-12 (2)12[解析] 设点M (cos θ,sin θ),则由|MB |=λ|MA |得(cos θ-b )2+sin 2θ=λ2[](cos θ+2)2+sin 2θ,即-2b cos θ+b 2+1=4λ2cos θ+5λ2对任意的θ都成立,所以⎩⎪⎨⎪⎧-2b =4λ2,b 2+1=5λ2.又由|MB |=λ|MA |,得λ>0,且b ≠-2,解得⎩⎨⎧b =-12,λ=12. 18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.H4 直线与圆、圆与圆的位置关系 5.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-85.B [解析] 圆的标准方程为(x +1)2+(y -1)2=2-a ,r 2=2-a ,则圆心(-1,1)到直线x +y +2=0的距离为|-1+1+2|2= 2.由22+(2)2=2-a ,得a =-4, 故选B.6.[2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π36.D [解析] 易知直线l 的斜率存在,所以可设l :y +1=k (x +3),即kx -y +3k -1=0.因为直线l 圆x 2+y 2=1有公共点,所以圆心(0,0)到直线l 的距离|3k -1|1+k 2≤1,即k 2-3k ≤0,解得0≤k ≤3,故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.7.[2014·北京卷] 已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .47.B [解析] 由图可知,圆C 上存在点P 使∠APB =90°,即圆C 与以AB 为直径的圆有公共点,所以32+42-1≤m ≤32+42+1,即4≤m ≤6.11.,[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4911.C [解析] 作出不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0表示的平面区域Ω(如下图阴影部分所示,含边界),圆C :(x -a )2+(y -b )2=1的圆心坐标为(a ,b ),半径为1.由圆C 与x 轴相切,得b =1.解方程组⎩⎪⎨⎪⎧x +y -7=0,y =1,得⎩⎪⎨⎪⎧x =6,y =1,即直线x +y -7=0与直线y =1的交点坐标为(6,1),设此点为P .又点C ∈Ω,则当点C 与P 重合时,a 取得最大值, 所以,a 2+b 2的最大值为62+12=37,故选C.21.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.21.解:方法一:(1)设S (x ,y )为曲线Γ上任意一点.依题意,点S 到点F (0,1)的距离与它到直线y =-1的距离相等, 所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线, 所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的方程为y =14x 2.设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A ⎝⎛⎭⎫12x 0,0. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M ⎝⎛⎭⎫12x 0+6x 0,3. 又N (0,3),所以圆心C ⎝⎛⎭⎫14x 0+3x 0,3, 半径r =12|MN |=⎪⎪⎪⎪14x 0+3x 0, |AB |=|AC |2-r 2 =⎣⎡⎦⎤12x 0-⎝⎛⎭⎫14x 0+3x 02+32-⎝⎛⎭⎫14x 0+3x 02= 6.所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二:(1)设S (x ,y )为曲线Γ上任意一点,则|y -(-3)|-(x -0)2+(y -1)2=2.依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3,所以(x -0)2+(y -1)2=y +1, 化简得,曲线Γ的方程为x 2=4y . (2)同方法一. 6.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9 D .-11 6.C [解析] 依题意可得C 1(0,0),C 2(3,4),则|C 1C 2|=33+42=5.又r 1=1,r 2=25-m ,由r 1+r 2=25-m +1=5,解得m =9.9.[2014·江苏卷] 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.9.25 55 [解析] 由题意可得,圆心为(2,-1),r =2,圆心到直线的距离d =|2-2-3|12+22=355,所以弦长为2r 2-d 2=2 4-95=2555 .18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.12.[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A. [-1,1]B. ⎣⎡⎦⎤-12,12C. [-2,2]D. ⎣⎡⎦⎤-22,22 12.A [解析] 点M (x 0,1)在直线y =1上,而直线y =1与圆x 2+y 2=1相切.据题意可设点N (0,1),如图,则只需∠OMN ≥45°即可,此时有tan ∠OMN =|ON ||MN |≥tan 45°,得0<|MN |≤|ON |=1,即0<|x 0|≤1,当M 位于点(0,1)时,显然在圆上存在点N 满足要求,综上可知-1≤x 0≤1.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.14.[2014·山东卷] 圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.14.(x -2)2+(y -1)2=4 [解析] 因为圆心在直线x -2y =0上,所以可设圆心坐标为(2b ,b ).又圆C 与y 轴的正半轴相切,所以b >0,圆的半径是2b .由勾股定理可得b 2+(3)2=4b 2,解得b =±1.又因为b >0,所以b =1,所以圆C 的圆心坐标为(2,1),半径是2,所以圆C 的标准方程是(x -2)2+(y -1)2=4.14.[2014·重庆卷] 已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.14.0或6 [解析] ∵圆C 的标准方程为(x +1)2+(y -2)2=9,∴圆心为C (-1,2),半径为 3.∵AC ⊥BC ,∴|AB |=3 2.∵圆心到直线的距离d =|-1-2+a |2=|a -3|2,∴|AB |=2r 2-d 2=29-⎝ ⎛⎭⎪⎫|a -3|22=3 2,即(a -3)2=9,∴a =0或a =6. 9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,所以|P A |+|PB |∈[10,2 5],故选B.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H5 椭圆及其几何性质21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以 |AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 2+4 =x 202+8x 20+4 (0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.、、[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.20.解: (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝⎛⎭⎫2332-1b 21=1,故b 21=3. 由椭圆的定义知2a 2=⎝⎛⎭⎫2332+(1-1)2+⎝⎛⎭⎫2332+(1+1)2=2 3.于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.(i)若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当 x =-2时,同理可知,|OA →+OB →|≠|AB →|.(ii)若直线l 不垂直于x 轴,设l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得2k 2=m 2-3.因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →,即|OA →+OB →|2≠|OA →-OB →|2. 故|OA →+OB →|≠|AB →|.综合(i),(ii)可知,不存在符合题设条件的直线.17.、[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-517.解: 设椭圆的焦距为2c, 则 F 1(-c, 0), F 2(c, 0).(1)因为B (0, b ), 所以BF 2=b 2+c 2=a .又BF 2=2, 故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)因为B (0, b ), F 2(c, 0)在直线 AB 上,所以直线 AB 的方程为 x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c2,⎩⎪⎨⎪⎧x 2=0,y 2=b ,所以点 A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2.因为直线 F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2,故e 2=15, 因此e =55. 14.[2014·江西卷] 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 2作x轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D .若AD ⊥F 1B ,则椭圆C 的离心率等于________.14.33[解析] 由题意A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,F 1(-c ,0),则直线F 1B 的方程为y -0=-b 2a 2c(x +c ). 令x =0,得y =-b 22a,即D ⎝⎛⎭⎫0,-b 22a ,则向量DA =⎝⎛⎭⎫c ,3b 22a ,F 1B →=⎝⎛⎭⎫2c ,-b 2a .因为AD ⊥F 1B ,所以DA →·F 1B →=2c 2-3b 42a2=0,即2ac =3b 2=3(a 2-c 2),整理得(3e -1)(e +3)=0,所以e =33(e >0).故椭圆C 的离心率为33.20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.9.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 9.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .20.解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b2a ,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1. 代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1,解得a =7,b 2=4a =28,故a =7,b =27.21.,,[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.21.解:(1)由题意知,a 2-b 2a =32,可得a 2=4b 2.椭圆C 的方程可简化为x 2+4y 2=a 2. 将y =x 代入可得x =±5a 5. 因此2×25a 5=4105,即a =2,所以b =1,所以椭圆C 的方程为x 24+y 2=1.(2)(i)设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2),则B (-x 1,-y 1). 因为直线AB 的斜率k AB =y 1x 1,且AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8mkx +4m 2-4=0, 所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2. 由题意知x 1≠-x 2, 所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0). 可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此,存在常数λ=-12使得结论成立.(ii)直线BD 的方程y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由(i)知M (3x 1,0),所以△OMN 的面积S =12×3|x 1|×34|y 1|=98|x 1||y 1|. 因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时,等号成立, 此时S 取得最大值98,所以△OMN 面积的最大值为98.20.、[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.解: (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心(0,0)到直线l 的距离d =2|m |5.由d <1,得|m |<52,(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y 23=1得x 2-mx +m 2-3=0,由根与系数的关系得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫-122[]m 2-4(m 2-3)=1524-m 2.由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.20.、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.20.解:(1)由已知可得,c a =63,c =2,所以a = 6.又由a 2=b 2+c 2,解得b =2,所以椭圆C 的标准方程是x 26+y 22=1.(2)设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1,消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.因为四边形OPTQ 是平行四边形,所以OP →=QT →,即(x 1,y 1)=(-3-x 2,m -y 2).所以⎩⎪⎨⎪⎧x 1+x 2=-12m 2+3=-3,y 1+y 2=4mm 2+3=m .解得m =±1.此时,四边形OPTQ 的面积S 四边形OPTQ =2S △OPQ =2×12·|OF |·|y 1-y 2|=2 ⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=2 3. 18.、[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22.(2)由(1)知a 2=2c 2,b 2=c 2,。

2020届高三数学文科一轮复习_第九章 解析几何课时作业9-8-1

2020届高三数学文科一轮复习_第九章 解析几何课时作业9-8-1
过抛物线内一点只有一条直线与抛物线有且只有一个公 共点:一条与对称轴平行或重合的直线.
题组一 常识题 1.(教材改编) 过原点的直线 l 被抛物线 x2=4y 截得的线段 长为 4 2,则直线 l 的斜率为____________. 【解析】 设直线 l 的方程为 y=kx,将其代入抛物线方程, 得 x2-4kx=0,所以被截得的线段两端点的坐标分别为(0,0), (4k,4k2),所以 (4k)2+(4k2)2=4 2,解得 k=±1.
π
π
所以∠SOT 最大值为 3 .综上所述:∠SOT 的最大值为 3 ,
ቤተ መጻሕፍቲ ባይዱ
取得最大值时直线
l
的斜率为
k1=±
2 2.
【反思归纳】
跟踪训练 1 已知椭圆 E 的中心在原点,焦点 F1,F2 在 y 轴 上,离心率等于23 2,P 是椭圆 E 上的点.以线段 PF1 为直径的 圆经过 F2,且 9P→F1·P→F2=1.
y=4k21x,
x2=1+8k421k12,y2=1+14k21,
因此|OC|= x2+y2=
11+ +84kk2121.
由题意可知 sin 12∠SOT=r+r|OC|=1+1|OrC|,
而|OrC|=2 3 2·
1+8k21 1+1+k214k211+8k12=34 2·
2k21+1
1+14+k212k121 +k21,
记直线BT的斜率为k1,且k1>0,k1≠k.
则|BT|=1+8|k41|k21 1+k12, 故1+8|k41|k21 1+k21=1+8|k4|k2 1+k2, 所以 1k+12+4kk2141- 1+k2+4kk24=0. 即(1+4k2) k21+k41=(1+4k21) k2+k4, 所以(k2-k21)(1+k2+k21-8k2k21)=0.

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。

知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。

(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。

高中数学一轮总复习解析几何重点知识整理

高中数学一轮总复习解析几何重点知识整理

高中数学一轮总复习解析几何重点知识整理解析几何是高中数学中的一门重要的分支,它通过代数方法研究几何问题,是数学与几何相结合的产物。

在高中数学的学习中,解析几何占据着很重要的地位。

本文将为大家总结解析几何的重点知识,并进行整理。

一、直线与圆的方程在解析几何中,直线和圆是最基本的几何图形。

直线的方程可以通过点斜式、两点式、截距式等不同的表达方式来表示。

其中最常用的是点斜式,表示为 y - y₁ = k(x - x₁)。

其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。

圆的方程有两种形式,一是标准方程:(x - a)² + (y - b)² = r²,其中 (a,b) 是圆心坐标,r 是半径;二是一般方程:x² + y² + Dx + Ey + F= 0。

二、直线与圆的交点直线与圆的交点是解析几何的一个重要概念。

当直线与圆相交时,可以通过解方程的方法求得交点的坐标。

例如,已知直线 L: 2x + y - 3 = 0 和圆 C: x² + y² - 4x - 2y - 8 = 0,求直线 L 与圆 C 的交点坐标。

解:将直线的方程代入圆的方程中,得到 x² + (2x + 3)² - 4x - 2(2x + 3) - 8 = 0。

整理得到 5x² + 10x - 10 = 0,解得 x₁ = 1,x₂ = -2。

将 x 的值代入直线的方程中,得到 y₁ = 1,y₂ = 5。

所以直线 L 和圆 C 的交点坐标为 (1, 1) 和 (-2, 5)。

三、圆与圆的位置关系圆与圆之间的位置关系有三种情况:相离、相切、相交。

当两个圆相离时,它们的半径之和小于两圆之间的距离。

当两个圆相切时,它们的半径之和等于两圆之间的距离。

当两个圆相交时,它们的半径之和大于两圆之间的距离。

四、直线与平面的位置关系直线与平面之间的位置关系有两种情况:平行和相交。

2024届高考一轮复习数学课件(新教材人教A版):解析几何

2024届高考一轮复习数学课件(新教材人教A版):解析几何
1234
当m=-k时,直线PQ的方程为y=kx-k=k(x-1). 此时直线PQ过定点(1,0). 当直线PQ的斜率不存在时, 若直线PQ过定点(1,0), P,Q 的坐标分别为1,32,1,-32. 满足 kAP·kAQ=-14. 综上,直线PQ过定点(1,0).
1234
②求△APQ面积的最大值.
1234
则 x1·x2 + 2(x1 + x2) + 4 + 4(kx1 + m)(kx2 + m) = (1 + 4k2)x1x2 + (2 + 4km)(x1+x2)+4m2+4=1+4k32+44mk22-12+(2+4km)·3-+84kmk2+4m2+ 4=0, 则m2-km-2k2=0, ∴(m-2k)(m+k)=0,∴m=2k或m=-k. 当m=2k时,直线PQ的方程为y=kx+2k=k(x+2), 此时直线PQ过定点(-2,0),显然不符合题意;
1234
设l1的方程为x=my+1,M(x1,y1),N(x2,y2), x=my+1,
联立x42+y32=1, 消去 x 得(3m2+4)y2+6my-9=0, 易知 Δ>0 恒成立,由根与系数的关系得 y1+y2=3-m26+m4,y1y2=3m-2+9 4,
由直线 A1M 的斜率为kA1M=x1y+1 2,得直线 A1M 的方程为 y=x1y+1 2(x+2),
第八章 直线和圆、圆锥曲线
必刷大题17 解析几何
1.(2022·南通模拟)已知P为抛物线C:y2=4x上位于第一象限的点,F为C 的焦点,PF与C交于点Q(异于点P).直线l与C相切于点P,与x轴交于点M. 过点P作l的垂线交C于另一点N. (1)证明:线段MP的中点在定直线上;
1234
设 P(x0,y0),则 y20=4x0,

数学一轮复习第九章解析几何9.6双曲线学案理

数学一轮复习第九章解析几何9.6双曲线学案理

9。

6双曲线必备知识预案自诊知识梳理1.双曲线的定义平面内与两个定点F1,F2的等于非零常数(小于|F1F2|)的点的轨迹叫作双曲线。

这两个定点叫作,两焦点间的距离叫作.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a〉0,c>0,且a,c为常数.(1)若a c,则点M的轨迹是双曲线;(2)若a c,则点M的轨迹是两条射线;(3)若a c,则点M不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b〉0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b>0)。

3。

双曲线的性质标准方程x2a2−y2b2=1(a〉0,b〉0)y2a2−x2b2=1(a〉0,b〉0)图形续表标准方程x2a2−y2b2=1(a>0,b〉0)y2a2−x2b2=1(a>0,b〉0)性质范围x≥a或x≤-a,y∈Ry≤—a或y≥a,x∈R 对称性对称轴:,对称中心:顶点A1,A2A1,A2渐近线y=±xxx y=±xxx离心率e=xx,e∈(1,+∞)a,b,c的关系c2=实虚轴线段A1A2叫作双曲线的实轴,它的长|A1A2|=;线段B1B2叫作双曲线的虚轴,它的长|B1B2|=;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长1.过双曲线x2a2−y2b2=1(a>0,b〉0)上一点M(x0,y0)的切线方程为x0xa2−y0yb2=1.2.双曲线x2a2−y2b2=1(a>0,b〉0)的左、右焦点分别为F1,F2,点P(x0,y0)为双曲线上任意一点,且不与点F1,F2共线,∠F1PF2=θ,则△F1PF2的面积为b2xxxθ2。

3。

若点P(x0,y0)在双曲线x2a2−y2b2=1(a〉0,b〉0)内,则被点P所平分的中点弦的方程为x0xa2−y0yb2=x02a2−y02b2。

高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。

高考数学一轮复习专题03 圆锥曲线面积问题(解析版)

高考数学一轮复习专题03 圆锥曲线面积问题(解析版)

F 2F 1OyxBA解析几何专题三:圆锥曲线面积问题一、知识储备 1、三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+00002211122'2'1ABP kx y m kx y mS AB d k A A k ∆-+∆-+∆=⋅=+⋅=+2、焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为 112121212'ABF c S F F y y c y y A ∆∆=⋅-=-= 2222222222222224()11||S =||d 22AOB a b a A b B C C AB A B a A b B A B∆+-=+++2222222222()C ab a A b B C a A b B+-=+注意:'A 为联立消去x 后关于y 的一元二次方程的二次项系数3、平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+ 1221m m d CH k-==+222222121212''11()41()41'''B C AB k x x k x x x x k k A A A ∆=+-=++-=+--⋅=+1212221''1ABCDm m m m SAB d k A A k -∆-∆=⋅=+⋅=+注意:'A 为直线与椭圆联立后消去y 后的一元二次方程的系数. 4、范围问题首选均值不等式,其实用二次函数,最后选导数CDHOyxBA均值不等式 222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一正二定三相等” 圆锥曲线经常用到的均值不等式形式列举: (1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论)(2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++ 当且仅当2219k k =时,等号成立 (3)222002200259342593464925y x PQ x y =+⋅+⋅≥+= 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. (4)2282m m S -+===当且仅当228m m =-+时,等号成立(5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立. 二、例题讲解1.(2022·广东高三月考)已知椭圆G :()222210x y a b a b +=>>,且过点()3,1.(1)求椭圆G 的方程;(2)斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -,求PAB ∆的面积.【答案】(1)221124x y +=;(2)92.【分析】(1)根据椭圆离心率、及所过的点,结合椭圆参数关系求参数,写出椭圆方程.(2)设1122(,),(,)A x y B x y ,AB :y x b =+,其线段AB 中垂线为1y x =--,联立椭圆方程并应用韦达定理求12x x +、12x x ,进而可得12y y +,由AB 中点在中垂线上代入求参数b ,进而求||AB 、P 到AB 的距离,即可求△PAB 的面积. 【详解】(1)由题意,22222911a b a b c c e a ⎧==⎪⎪⎪+⎨==+⎪⎪⎪⎩,解得22124a b ⎧=⎪⎨=⎪⎩,故椭圆G 的方程221124x y+=.(2)令AB 为y x b =+,则AB 中垂线方程为(3)21y x x =-++=--, 联立AB 与椭圆方程得:223()12x x b ++=,整理得22463120x bx b ++-=, 若1122(,),(,)A x y B x y ,则1232b x x +=-,2123124b x x -=, △121222by y x x b +=++=,又1212(,)22x x y y ++在AB 中垂线上,△3144b b-=,可得2b =,即123x x +=-,120x x =,△||AB == 又()3,2P -到AB的距离d △19||PABSAB d =⋅=. 2.(2022·全国高三模拟预测)已知双曲线C :22221x ya b -=()0,0a b >>的左、右焦点分别为1F ,2F ,虚轴上、下两个端点分别为2B ,1B ,右顶点为A ,且双曲线过点,22213B F B A ac a ⋅=-.(1)求双曲线1C 的标准方程;(2)设以点1F 为圆心,半径为2的圆为2C ,已知过2F 的两条相互垂直的直线1l ,2l ,直线1l 与双曲线交于P ,Q 两点,直线2l 与圆2C 相交于M ,N 两点,记PMN ∆,QMN ∆的面积分别为1S ,2S ,求12S S +的取值范围.【答案】(1)2213y x -=;(2)[)12,+∞.【分析】(1)由22213B F B A ac a ⋅=-得223a b =,由双曲线过点得22231a b -=,两个方程联立求出a 和b ,可得双曲线1C 的标准方程;(2)设直线1l :2x my =+,根据垂直关系得直线2l :()2y m x =--,求出弦长||MN 和||PQ ,求出121||||2S S MN PQ +=,再根据参数的范围可求出结果. 【详解】(1)由双曲线的方程可知(),0A a ,()10,B b -,()20,B b ,()2,0F c , 则()22,B F c b =-,()1,B A a b =.因为22213B F B A ac a ⋅=-,所以223ac b ac a -=-,即223a b =.①又双曲线过点,所以22231a b -=.② 由①②解得1a =,b = 所以双曲线1C 的标准方程为2213y x -=. (2)设直线1l :2x my =+,()11,P x y ,()22,Q x y , 则由21l l ⊥,得直线2l :()2y m x =--,即20mx y m +-=. 因为圆心()12,0F -到直线MN的距离d ==所以MN =2d <,故2103m ≤<. 联立221,32,y x x my ⎧-=⎪⎨⎪=+⎩消去x 得()22311290m y my -++=, ()222144363136(1)0m m m ∆=--=+>,则1221231m y y m +=--,122931y y m =-,所以()22126113m PQ y m +=-=-,则1212S S PQ MN +=⋅=, 又2103m ≤<,所以[)1212,S S +∈+∞. 即12S S +的取值范围为[)12,+∞. 【点睛】关键点点睛:设直线1l :2x my =+,用m 表示||MN 和||PQ 是本题的解题关键.3.(2022·浙江高三开学考试)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(1(2)16.【分析】(1)由抛物线的焦点坐标求出p 的值,可得出抛物线C 的方程,设点()2,2A t t ,可知0t >,求出M 、N 的纵坐标,利用斜率公式结合已知条件得出1AM MN k k ⋅=-,可得出关于t 的方程,解出正数t 的值,进而可求得直线AF 的斜率;(2)求出点M 、N 的坐标,求得AM 以及点N 到直线AM 的距离d ,可求得AMN 的面积关于t 的表达式,利用基本不等式可求得AMN 面积的最小值. 【详解】(1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-, 进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444A M M N A M M N AM MN A M M N A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴==(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t tt+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---= 所以点N 到直线AM 的距离为()()()222221211t t d tt t++==+,()332331122216AMN t S t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.1.(2022·江苏南京·高三月考)已知抛物线1G :24y x =与椭圆2G :22221x y a b+=(0a b >>)有公共的焦点,2G 的左、右焦点分别为1F ,2F ,该椭圆的离心率为12. (1)求椭圆2G 的方程;(2)如图,若直线l 与x 轴,椭圆2G 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧),且1PFQ ∠与1PF R ∠互补,求1F QR ∆面积S 的最大值.【答案】(1)22143x y +=.(2【分析】(1)由已知条件推导出1c =,结合12e =和隐含条件222a b c =+,即可求出椭圆标准方程; (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,可得110QF RF k k +=,根据已知条件,结合韦达定理、点到距离公式和均值不等式,即可求解. 【详解】解:(1)由题意可得,抛物线的焦点为(1,0),∴椭圆的半焦距1c =,又椭圆的离心率为12,∴12c e a ==,即2a =, 222a b c =+,222413b a c ∴=-=-=,即b =∴椭圆2C 的方程为22143x y +=. (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,∴110QF RF k k +=, ∴1212011y yx x +=++,化简整理,可得1222110x y y x y y +++=①, 设直线PQ 为(0)x my n m =+≠,联立直线与椭圆方程22143x my n x y =+⎧⎪⎨+=⎪⎩,化简整理,可得222(34)63120m y mny n +++-=,∆222224364(34)(312)0b ac m n m n =-=-+->,可得2234n m <+②,由韦达定理,可得21212226312,3434mn n y y y y m m -+=-=++③, 将11x my n =+,22x my n =+代入①,可得12122(1)()0my y n y y +++=④, 再将③代入④,可得2226(4)6(1)3434m n mn n m m -+=++,解得4n =-,PQ ∴的方程为4x my =-,由点(1,0)F -到直线PQ的距离d =,11||2F QRSQR d =⋅= 由②可得,23416m +>,即24m >,设()f m =24m t -=,0t >,()f t ∴= 由均值不等式可知,25625692996t t t t+⋅=, 当且仅当2569t t =时,即163t =,等号成立,当2569t t+取最小值时,()f t 取最大值,即1FQR 面积S 最大,∴()18max f t =, ∴△1FQR 面积S2.(2022·重庆市第十一中学校高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为点与右焦点的连线构成正三角形. (△)求椭圆C 的标准方程;(△)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN ∆的面积最大时,求l 的方程. 【答案】(△)2214x y +=;(△)2y -或2y =-. 【分析】(△)由题意知,c =c a =222b a c =-,即可求得椭圆的方程; (△)设直线:2l y kx =-,()11,M x y ,()22,N x y ,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=,利用韦达定理,弦长公式结合OMN的面积公式得到OMNS =,利用换元结合基本不等式求解. 【详解】(△)由题意知,c =cos 6c a π==, 2a ∴=,2221b a c =-=所以椭圆的方程为2214x y +=.(△)当l x ⊥轴时不合题意,由题意设直线:2l y kx =-,()11,M x y ,()22,N x y . 联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=. 当()216430k ∆=->,即234k >,且1221614k x x k +=-+,1221214x x k =+.从而12||MN x-=.又点O 到直线MN的距离d =所以OMN 的面积1||2OMNSd MN =⋅=t ,则0t >,24444OMNt St t t==++.因为44t t +≥,当且仅当2t =,即2k =±时等号成立,且满足0∆>. 所以,当OMN 的面积最大时,直线l的方程为2y x =-或2y x =-. 【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2022·全国高三月考)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别是()1F和)2F ,点Р在椭圆E 上,且12PF F △的周长是4+ (1)求椭圆E 的标准方程;(2)已知、、A B C 为椭圆E 上三点,若有0OA OB OC ++=,求ABC ∆的面积. 【答案】(1)2214x y +=;(2【分析】(1)根据题设条件和椭圆的定义得到12124PF PF F F ++=+124PF PF +=,得到2a =,进而求得21b =,即可求得椭圆的方程;()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,联立方程组求得1212,x x x x +,根据0OA OB OC ++=,求得2282(,)1414km m C k k -++,结合点到直线的距离公式和面积公式,求得3332ABCOABS S=⋅=;当直线AB 斜率不存在时,得到直线AB 方程为1x =±,求得332ABCABOS S==. 【详解】(1)由题意,双曲线2222:1xy E a b+=的焦点()1F 和)2F ,可得12F F =因为12PF F △的周长是4+12124PF PF F F ++=+所以124PF PF +=,即24a =,可得2a =,又由222431b a c =-=-=, 所以椭圆E 的方程是2214x y +=.()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,()()()112233,,,,,A x y B x y C x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得2221484()40k x kmx m +++-=,则22212122284416(41)0,,1414km m k m x x x x k k -∆=-+>+=-=++ 由0OA OB OC ++=,可得12312300x x x y y y ++=⎧⎨++=⎩,又由122814kmx x k +=-+,可得()12121222214m y y kx m kx m k x x m k +=+++=++=+ 所以332282,1414km m x y k k ==-++, 将()33,x y 代入椭圆方程可得222282441414km m k k ⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,整理得22414m k =+, 又O 到直线AB的距离为d =则()2112OABSk =⋅+= 又由0OA OB OC ++=,可得点O 为ABC 的重心,所以3332ABCOABS S=⋅=; 当直线AB 斜率不存在时,根据坐标关系可得,直线AB 方程为1x =±,可得AB112ABOS ==所以13312ABC ABOSS==⨯综上可得:ABC S △. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.4.(2022·榆林市第十中学高三月考(理))已知1F ,2F 分别是椭圆()2222:10x yE a b a b+=>>的左,右焦点,126F F =,当P 在E 上且1PF 垂直x 轴时,217PF PF =.(1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C ,BM 与x 轴交于点D .(i )证明:四边形ABDC 的面积是定值. (ii )求CDM 的面积的最大值.【答案】(1)221123x y +=;(2)(i )证明见解析;(ii )())max 31CDM S =△.【分析】(1)由通径长公式得21b PF a=,结合椭圆定义可得,a b 关系,再由3c =求得,a b ,得椭圆方程;(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,由三点共线把,s t 用,m n 表示,然后计算四边形面积可得结论;(ii )由(i )只要ABM 面积最大即可,求出椭圆的与AB 平行的切线方程,切点即为M (注意有两个切点,需要确定其中一个),从而得面积最大值. 【详解】解:(1)由题意知21b PF a=,212PF PF a +=,217PF PF =,则182PF a =,得2a b =,又3c =,222a b c =+,解得2a b == 所以E 的标准方程是221123x y +=.(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,因为A ,C ,M 三点共线,则AC AM λ=,解得t =B ,D ,M 三点共线,则BD BM μ=,解得s =,AD s =+BC t =,221123m n +=,66AD BC st ⋅--+==6612m n +==. 162ABDC S AD BC =⋅=. (ii )因为CDM ABM ABDC S S S =-四边形△△, 所以当ABM S △最大时,CDMS 最大.1:2AB l y x =AB 平行的直线()1:02l y x p p =+<, 与221123x y +=联立,消y 得222260x px p ++-=,()2244260pp ∆=--=,解得p =p =(舍去),两平行线AB l ,l间的距离25d =,())max1312ABM S AB d =⋅=△,则())max 31CDM S =△.5.(2022·山西祁县中学高三月考(理))在平面直角坐标系xOy 中,已知(1,0)F ,动点P 到直线6x =的距离等于2||2PF +.动点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)已知(2,0)A ,过点F 的动直线l 与曲线C 交于B ,D 两点,记AOB ∆和AOD ∆的面积分别为1S 和2S ,求12S S +的最大值.【答案】(1)221123x y +=;(2)3.【分析】(1)设点P (x ,y ),再根据动点P 到直线x =6的距离等于2|PF |+2列出方程化简即可;(2)设直线l 的方程为x =my +1,联立直线与(1)中所得的椭圆方程,得出韦达定理,再得出S 1+S 2=12|OA ||y 1-y 2|关于m 的表达式,换元求解最值即可 【详解】(1)设点P (x ,y ),当6x ≥时,P 到直线x =6的距离显然小于PF ,故不满足题意; 故()62,6x x -=<,即4x -=整理得3x 2+4y 2=12,即24x +23y =1.故曲线C 的方程为24x +23y =1.(2)由题意可知直线l 的斜率不为0,则可设直线l 的方程为x =my +1,B (x 1,y 1),D (x 2,y 2).联立221143x my x y =+⎧⎪⎨+=⎪⎩,, 整理得(3m 2+4)y 2+6my -9=0,Δ>0显然成立, 所以y 1+y 2=-2634m m +,y 1y 2=-2934m +, 所以|y 1-y 2|故S 1+S 2=12|OA ||y 1|+12|OA ||y 2|=12|OA ||y 1-y2|.设t t ≥1,则m 2=t 2-1,则S 1+S 2=21231tt +=1213t t+. 因为t ≥1,所以3t +1t≥4(当且仅当t =1时,等号成立).故S 1+S 2=1213t t+≤3, 即S 1+S 2的最大值为3.6.(2022·西藏拉萨中学高三月考(理))(1)一动圆过定点(1,0)A ,且与定圆22:(1)16C x y ++=相切,求动圆圆心的轨迹E 的方程.(2)直线l 经过点A 且不与x 轴重合,l 与轨迹E 相交于P 、Q 两点,求CPQ ∆的面积的最大值.【答案】(1)22143x y +=;(2)3. 【分析】(1)设动圆圆心为(),M x y ,半径为R .由与定圆22:(1)16C x y ++=相切,且点A 的圆C 内,由||44||MC R MA =-=-,即||||4MC MA +=,利用椭圆的定义求解;(2)设l 的方程为:1x my -=,代入22143x y +=,由121||2CPQSCA y y =⋅-,结合韦达定理求解. 【详解】(1)设动圆圆心为(),M x y ,半径为R .定圆C 的圆心(1,0)C -,半径为4. 点A 的圆C 内.||44||||||4MC R MA MC MA ∴=-=-∴+=,且4AC > ,∴轨迹E 是以C 、A 为焦点,长轴长为4的椭圆,所以椭圆方程为:22143x y +=. (2)设l 的方程为:1x my -=,代入22143x y +=, 得()2234690m y my ++-=,设()()1122,,P x y Q x y ⋅, 则122634m y y m -+=+,122934y y m -=+,121||2CPQSCA y y =⋅-,=令21(1)t m t =+,则1212CPQS=1()9f t t t=+在[1,)+∞为增函数1t ∴=,即0m =时,CPQ S △取最大值3.7.(2022·山东高三模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的右焦点F 与抛物线28y x =的焦点重合,一条渐近线的倾斜角为30o . (1)求双曲线C 的方程;(2)经过点F 的直线与双曲线的右支交与,A B 两点,与y 轴交与P 点,点P 关于原点的对称点为点Q ,求证:QABS>【答案】(1)2213x y -=;(2)证明见解析.【分析】(1)由题意可得2c =,o tan 30b a ==222c a b =+可求出22,a b ,从而可求出双曲线C 的方程; (2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,可得()02P k -,,()02Q k ,,将直线方程与双曲线方程联立方程组,消去y ,利用根与系数的关系,从而可表示出()()2222248131QABk k Sk +=-,再由直线与双曲线的右支交与,A B 两点,可得231k >,则2310t k =->,代入上式化简可求得结果 【详解】解:(1)由题意得2c =,o tan 30b a ==222c a b =+ 解得2231a b ==,所以双曲线C 的方程为:2213x y -=(2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,得()02P k -,,()02Q k ,, 设()11A x y ,,()22B x y ,,联立()22132x y y k x ⎧-=⎪⎨⎪=-⎩,整理可得()222231121230k x k x k --++=21221231k x x k +=-,212212331k x x k +⋅=- 所以1212QABQPB QPASSSPQ x x =-=-122k x x =- 所以()()2222221212224123124443131QABk k Sk x x x x k k k ⎡⎤+⎛⎫⎡⎤⎢⎥=+-=- ⎪⎣⎦--⎢⎥⎝⎭⎣⎦2()()222248131k k k+=-直线与双曲线右支有两个交点,所以22121222121230,03131k k x x x x k k ++=>⋅=>-- 所以231k >,设2310t k =->,()2221111645334813QABt t St t t ++⎛⎫⋅+⎪⎛⎫⎝⎭==++ ⎪⎝⎭2641564251633383643t ⎛⎫=+->⨯-=⎪⎝⎭所以QAB S >【点睛】关键点点睛:此题考查双曲线方程的求法,考查直线与双曲线的位置关系,解题的关键是将直线方程与双曲线方程联立后,利用根与系数的有关系,从而可表示出()()2222248131QABk k S k+=-,再结合231k >,换元后求其最小值即可,考查计算能力,属于中档题 8.(2022·全国高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为()12,0F -,()22,0F,点(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C 交于不同的两点A ,B ,若OAB ∆的面积为求直线l 的方程.【答案】(1)22122x y -=;(2)2y =+和2y =+. 【分析】(1)根据焦点坐标,可得2c =,所以224a b +=,代入双曲线方程,可得()222221044x y a a a-=<<-,将P 点坐标代入,即可求得a 值,即可得答案;(2)设直线l 的方程为2y kx =+,与双曲线C 联立,可得关于x 的一元二次方程,利用韦达定理,可得1212,x x x x +的表达式,代入弦长公式,即可求得AB ,根据点到直线的距离公式,可求得原点到直线l 的距离d ,代入面积公式,结合题意,即可求得k 的值,即可得答案. 【详解】(1)依题意,2c =,所以224a b +=,则双曲线C 的方程为()222221044x y a a a-=<<-,将点P 代入上式,得22252314a a -=-, 解得250a =(舍去)或22a =, 故所求双曲线的方程为22122x y -=.(2)依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理,得()221460k x kx ---=.因为直线l 与双曲线C 交于不同的两点,A B ,所以()22210(4)2410k k k ⎧-≠⎪⎨-+->⎪⎩,解得1k k ≠±⎧⎪⎨<⎪⎩(*) 设()()1122,,,A x y B x y ,则12122246,11k x x x x k k +==---,所以||AB =又原点O 到直线l 的距离d =所以11||22OABSd AB =⋅==.又OABS=1=,所以4220k k --=,解得k =(*).故满足条件的直线l 有两条,其方程分别为2y =+和2y =+. 【点睛】解题的关键是熟练掌握弦长公式、点到直线的距离公式等知识,并灵活应用,易错点为:解得k 值,需检验是否满足判别式0∆>的条件,考查计算化简的能力,属中档题.9.(2022·全国高三专题练习)已知双曲线22:1164x y C -=的左、右焦点分别为1F ,2F . (1)求与双曲线C 有共同渐近线且过点()2,3的双曲线标准方程; (2)若P 是双曲线C 上一点,且12150F PF ∠=︒,求12F PF △的面积.【答案】(1)221832y x -=;(2)8-【分析】(1)根据题意,设所求双曲线方程为22(0)164x y k k -=≠,代入点()2,3,求得k 值,即可得答案; (2)不妨设P 在C 的右支上,根据双曲线定义,可得1228PF PF a -==,根据方程可得12F F 的值,在12F PF △中,利用余弦定理可得12PF PF 的值,代入面积公式,即可求得答案. 【详解】(1)因为所求双曲线与22:1164x y C -=共渐近线,所以设该双曲线方程为22(0)164x y k k -=≠, 又该双曲线过点()2,3, 所以49164k -=,解得k =-2, 所以所求双曲线方程为:221832y x -=(2)不妨设P 在C 的右支上,则1228PF PF a -==,122F F c == 在12F PF △中,2222121212121212()280cos15022PF PF F F PF PF PF PF PF PF PF PF +--+-︒===解得1232PF PF =- 所以12F PF △的面积1212111sin (328222F P S F PF PF ∠==⨯-⨯=-【点睛】解题的关键是:掌握共渐近线的双曲线方程的设法,即与22221x y a b-=共渐近线的方程可设为:2222(0)x y k k a b -=≠;与22221x y a b -=共焦点的方程可设为:22221x y a b λλ-=+-,再代入点求解即可,考查分析计算的能力,属中档题.10.(2022·浙江高三开学考试)已知抛物线T :()22y px p N +=∈和椭圆C :2215x y +=,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求OAB 面积的最大值. 【答案】(1)4p =;(2【分析】(1)根据椭圆方程求出椭圆的焦点坐标,再根据F 恰是椭圆C 的焦点,即可得出答案;(2)设直线l :2p x my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y ,联立222p x my y px⎧=+⎪⎨⎪=⎩,求得AB 的中点坐标,根据因为MN 恰好被AB 平分,则直线MN 的斜率等于m -,再根据点差法求得直线MN 的斜率,求得2m ,根据由AB 的中点在椭圆内,求得p 的最大值,从而可求得OAB 面积的最大值. 【详解】解:(1)在椭圆中,2224c a b =-=,所以2c =, 因为F 恰是椭圆C 的焦点, 所以22p=,所以4p =; (2)设直线l :2px my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y , 联立222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y mpy p --=, 则212122,y y mp y y p +=⋅=-,则2122x x m p p +=+,故AB 的中点坐标为2,2p m p mp ⎛⎫+ ⎪⎝⎭,又因为MN 恰好被AB 平分,则2342x x m p p +=+,342y y mp +=,直线MN 的斜率等于m -,将M 、N 的坐标代入椭圆方程得:223315x y +=,224415x y +=, 两式相减得:()()()()3434343405x x x x y y y y +-++-=, 故234342110y y m x x m-+=--, 即直线MN 的斜率等于22110m m+-, 所以22110m m m+-=-,解得218m =, 由AB 的中点在椭圆内,得2222()15p m p mp ⎛⎫+ ⎪⎝⎭+<,解得26413p <, 因为p Z ∈,所以p 的最大值是2,12y y -== 则OAB面积212122p S y y p =⨯-==≤, 所以,当2p =时,OAB . 11.(2022·普宁市第二中学高三月考)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4.【分析】(1)由焦点在y 轴正半轴上,且2p =,即可得准线方程;(2)设直线AB 方程为y kx b =+,与抛物线方程联立由韦达定理和向量数量积的坐标运算,解方程可得b 的值,即可得所过的定点;(3)设1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,与抛物线方程联立,运用韦达定理和中点坐标公式求M 、N 两点坐标,由两点间距离公式求FM 、FN 的长,再计算12FMN SFM FN ,由基本不等式求最值即可求解.【详解】 (1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-,(2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y=+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-, 即2440b b -+=,解得:2b =所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0,设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-,所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k + 用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMN S FM FN ====224≥=⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.【点睛】方法点睛:解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系;③利用基本不等式求出参数的取值范围;④利用函数值域的求法,确定参数的取值范围.。

专题《解析几何》的一轮复习分析与指导

专题《解析几何》的一轮复习分析与指导

专题:《解析几何》的一轮复习分析与指导学校:人大附中主讲人:吴中才一、专题内容分析(一)本专题知识体系的梳理本专题内容在高中数学中衔接几何与代数,充分体现了数形结合,重点研究如何用代数方法解决几何问题,如何在代数与几何之间实现问题与解答的转化.从学习者的角度来看,解析几何的学习需要培养数形结合的思想、较强的运算能力和一定的几何与代数的转化能力;从教学者的角度来看,解析几何的教学除了遵循学习者的要求外,还需要重视常规与规范的训练.本专题的知识体系结构为:(二)本专题中研究的核心问题本专题研究的核心问题是如何用代数语言表示几何元素,进而用解析方法(坐标法)解决几何问题.因而,首先要复习直线、圆、圆锥曲线的方程,然后要用方程研究直线与圆、直线与圆锥曲线的位置关系,能够在数和形之间相互转化,综合运用几何方法与解析方法解决几何问题.解析法是借助代数方法解决几何问题的一种方法,解决几何就是利用坐标方法解决几何问题过程中形成的一门学科,它对贯穿代数与几何起着十分重要的作用.(三)本专题蕴含的核心观点、思想和方法解析几何是几何学的一个分支,是通过坐标法运用代数工具研究几何问题的一门学科,它把形与数有机地结合起来.一方面,将几何问题代数化------用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;另一方面,将代数问题几何化------分析代数语言的几何含义,使代数语言更直观、更形象地表达出来.解析几何的核心观点就是用恰当运用代数的方法解决几何问题,基本思想是数形结合思想,核心方法是坐标法.数形结合思想和坐标法是统领全局的,解析几何就是在坐标系的基础上,用代数的方法研究几何问题一门学科.用解析法研究几何图形的性质,须先将几何图形置于坐标系下,让“形”与“数”对应起来,将“形”进行翻译转化:把点转化为坐标、把曲线转化为方程,把题目中明显的或隐含的解题所需要的一切几何特征,用数式和数量关系表示出来.用图可以简略表示为:例如,直角三角形ABC 中,CB >CA ,点D 、E 分别在边CA 、CB 上,且满足BE =CA ,AD =CE ,AE 与BD 交于点F ,求∠AFD 的度数.D CB二、典型考题解构虽然解析法可以少想多算,甚至以算代想,但是如果能够合理适当运用几何关系,则可以减少运算量.例1. 【2013高考北京理第19题】已知A ,B ,C 是椭圆W :2214x y +=上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.这道题实质上是研究四边形OABC 的形状有没有可能是菱形,如果是,它的面积是多少?由于只有当B 为椭圆W 的顶点时,四边形才可能成为菱形,其它情况均不可能成为菱形,因而设计出两个问题:一是特殊情况(B 为右顶点)求菱形面积,一是一般情况(B 不是顶点)探究四边形OABC 是否可能为菱形.其中渗透了分类思想,考查了反证法,几何特征的代数化,运算能力等.点 坐标 曲线 方程几何特征数式和数量关系从备考者的角度看,本题的解答需要我们具备以下储备:菱形的几何特征的选择及其代数化,反证法,代数运算能力.特别是第(2)题究竟选择菱形的什么几何特征入手对后续的代数运算有较大的影响.因此,在复习教学中,我们应当做好以下几个环节:(1)落实解析几何的基础知识:包括直线方程与斜率,圆与圆锥曲线的方程和性质,点、直线、圆和圆锥曲线之间的位置关系,等等.(2)适当复习几何图形的几何特征:包括角分线的性质、直线垂直、线段平分、点共线、线共点、线段相等、面积相等、特殊四边形的性质与判定等等.(3)总结几种题型的研究方法:包括弦长与面积等度量问题、探究问题、存在性问题、最值问题、定点问题、定值问题、共点问题、共线问题等等.(4)适当渗透数学思想方法:包括数形结合思想、解析思想、方程思想、函数思想、不等式方法等等.附1:【2014海淀一模19】已知,A B是椭圆22+=上两点,点M的坐标为(1,0).:239C x y∆为等边三角形时,求AB的长;(Ⅰ)当,A B两点关于x轴对称,且MAB∆不可能为等边三角形.(Ⅱ)当,A B两点不关于x轴对称时,证明:MAB附2:【2015朝阳一模理19】(题见“教学资源”)例2. 【2015海淀一模第19题】(题见“教学资源”)第(Ⅱ)题的解答思路对学生来说不太自然.如果要证“不存在”这样的菱形,学生可能会想到按答案思路去找矛盾.但问是否存在,对学生而言,很可能会想到用t和m表示出C点坐标,再利用AC⊥BD将t消去,最终得到m的一元二次方程.再看看m在范围内是否有解.三、教学目标的分析与定位通过平面解析几何的学习,体会用代数方法处理几何问题的思想、进一步体会数形结合的思想方法,是本章最根本的思想教学目标.结合课标要求与北京市考纲要求,本专题的重点内容有:直线平行与垂直的条件,直线的几种方程形式,距离公式,圆的标准方程,直线与圆的位置关系,椭圆与抛物线的定义、标准方程与性质,直线与圆锥曲线的位置关系(主要是直线与椭圆的位置关系).在平面直角坐标系中建立直线、圆与圆锥曲线的方程,运用代数方法研究它们的几何性质及其相互间的位置关系,这是本章学习的核心内容和重点知识目标.解析几何把数学的两个基本对象——形和数有机地联系起来,这就使得坐标法的作用更加明显,这对于人们发现新结论也具有重大意义.我们在用坐标法解决几何的过程中,除了将“形”翻译为“数”和将“数”翻译为“形”这两个环节外,还有一个关键环节就是代数运算,这也是很多学生的弱点.因此,通过具体问题的解答示范与训练,培养学生数形结合的思维习惯,形成用代数方法解决几何问题的能力和一定的代数运算能力,是本章最突出的能力教学目标.以下是具体内容的课标要求和北京市高考考试说明的要求:(一)课标要求1. 直线和圆的方程(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式.③能根据斜率判定两条直线平行或垂直.④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系.⑤能用解方程组的方法求两直线的交点坐标.⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.③能用直线和圆的方程解决一些简单的问题.(3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想.(4)空间直角坐标系①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式.2. 圆锥曲线与方程(1)圆锥曲线①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用.②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质.③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质.④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题.⑤通过圆锥曲线的学习,进一步体会数形结合的思想.(2)曲线与方程结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想.四、教学实施建议解析几何的教学要立足引导学生数形结合,将几何关系与代数运算有机结合,学习解决问题的通法,避免单纯地进行题型归类和将解答过程模式化.既要培养学生的转化能力和运算能力,又要引导学生理解其中的方程思想与函数思想.针对具体的教学,有如下几点建议:1、切实掌握基础知识按课标要求与高考考试说明的要求,落实基础知识的复习. 2、切实形成基本运算能力解析几何题一般都涉及到直线与圆锥曲线的综合问题,因而联立直线与圆锥曲线的方程,消元得一元二次方程,根据韦达定理写出根与系数的关系,计算判别式,这些都是基本的运算量,也是研究解析几何问题的一般基础.教学时,要学生通过训练形成基本运算能力.3、掌握一些常见的几何关系与几何特征的代数化 ①线段的中点:坐标公式 ②线段的长:弦长公式③三角形面积: 21底×高,正弦定理面积公式④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征4、重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.例3.【2015高考新课标2,理20】已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; 本题涉及到弦的中点,可以用“点差法”证明,也可以用韦达定理进行证明.例4.【2014北京理19】已知椭圆22:24C x y +=. (1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.第(2)题考查直线与圆的位置关系,虽然A 、B 两点都在运动变化,但本题的解答思路属于常规思路,只需研究圆心到直线的距离与半径的关系.例5.【2012北京理19】已知曲线C: 22(5)(2)8()m x m y m R -+-=∈ (1)若曲线C 是焦点在x 轴的椭圆,求m 的范围;(2)设4m =,曲线C 与y 轴的交点为A,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M,N,直线1y =与直线BM 交于点G 求证:A,G,N 三点共线.第(1)题考查曲线方程的分类,第(2)题考查三点共线.三点共线常转化为向量,欲证A G N ,,三点共线,只需证AG u u u r ,AN u u u r共线,再结合韦达定理即可证,或证0AG AN k k -=.例6.【2015北京理19】已知椭圆2222:1(0)x y C a b a b+=>>,点(0,1)P 和点(,)A m n (0)m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用,m n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.第(Ⅱ)题属于存在性探究问题,将OQM ONQ ∠=∠利用三角形相似转化为||||||||OM OQ OQ ON =进行求解,或直接用三角形表示两个角的正切.例7.【2016北京理19】已知椭圆C :22221+=x y a b (0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1. (1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.第(2)题考查了定值问题,基本方法就是将|AN|与|BM|分别表示出来,计算其积为定值.用什么量来表示呢?这就涉及到选择参数的问题,可以设()00,P x y ,也可以设()2cos ,sin P θθ.当然,本题还有一个整体求解问题也是一个小难点.例8.【2016全国I 卷】)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 第(Ⅱ)题考查取值范围问题,将四边形的面积转化为某一个变量的函数(设直线的斜率为k ),通过求函数的值域求得范围.5、要重视解题过程中思想方法的提炼与运用 ①坐标法:坐标法是解析几何的基本方法,要能够在具体问题中写出相关点的坐标、直线的方程、圆的方程、圆锥曲线的方程,并用坐标与方程研究几何问题.②方程思想:解析几何的求解问题基本都转化为求解方程问题,一般地,未知数的个数和方程(或题中独立条件)的个数一样.另外,有些探究性问题也常常转化为对方程解的讨论.③函数思想:对于圆锥曲线上一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线段的长度及a 、b 、c 、e 之间构成函数关系,函数思想在处理这类问题时就很有效.从另一视角看,当题中独立条件的个数少于未知数的个数时,所研究的问题就会转化为某一个或几个未知数的函数问题.④分类讨论:解析几何问题常常需要分类讨论,例如涉及到直线的斜率是否存在,涉及到最值问题中某个参数是否为0,以及几何背景中某一位置关系是否具有多种可能,等等。

2025新高考数学一轮复习圆锥曲线中的二级结论

2025新高考数学一轮复习圆锥曲线中的二级结论
1 2 3 4 5 6 7 8 9 10
所以直线FB的倾斜角为π-θ,
由题意可知,tan θ=21,则|AF|=1-cpos θ=1-c2os θ, |BF|=1-cos(p π-θ)=1+c2os θ.
又 ∠AFB = π - 2θ , 所 以
S△ABF

1 2
|AF|·|BF|·sin(π

2θ)
训练4
(2023·长沙调研)已知抛物线 y2=4x,过焦点 F 的直线与抛物线交于 A,B
两点,则 2|AF|+|BF|最小值为
A.2
B.2 6+3
C.4
√D.3+2 2
因为 p=2,所以|A1F|+|B1F|=2p=1, 所以 2|AF|+|BF|=(2|AF|+|BF|)·|A1F|+|B1F|=3+2|B|AFF||+||ABFF|| ≥3+2 2|B|AFF||·||BAFF||=3+2 2,
C相交于A,B两点,直线l2与C相交于D,E两点,则|AB|+|DE|的最小值为
√A.16
B.14
C.12
D.10
如图,设直线 l1 的倾斜角为 则直线 l2 的倾斜角为π2+θ,
θ,θ∈0,π2,
由抛物线的焦点弦弦长公式知|AB|=si2np2θ=sin42θ,
|DE|=sin22π2p+θ=co4s2θ,
A.-116 C.614
√B.-312
D.1
1 024
由椭圆的性质可得 kAP1·kBP1=kAP2·kBP2=-ba22=-21. 由椭圆的对称性可得 kBP1=kAP10,kBP10=kAP1,kAP1·kAP10=-12.
同理可得 kAP2·kAP9=kAP3·kAP8=kAP4·kAP7=kAP5·kAP6=-21. ∴直线 AP1,AP2,…,AP10 这 10 条直线的斜率乘积为-125=-312.

新高考数学一轮复圆锥曲线中的几个常用二级结论

新高考数学一轮复圆锥曲线中的几个常用二级结论
(2) 已知双曲线的方程为ax22-by22=1(a>0,b>0),过原点的直线交双曲线于 A, B 两点,P 是双曲线上异于 A,B 两点的任一点,则 kPA·kPB=ba22.
变式 已知双曲线 x2-y22=1,直线 l 的斜率为-2,与双曲线交于 A,B 两点,
若在双曲线上存在异于 A,B 的一点 C,使得直线 AB,BC,AC 的斜率满足k1AB+k1BC+
(2) 已知 F1,F2 是双曲线ax22-by22=1(a>0,b>0)的左、右焦点,点 P 在双曲线上,
∠F1PF2=θ,则其焦点三角形的面积为 S△F1PF2=
b2 θ.
tan2
例 1 (1) 已知椭圆1x62 +y92=1 上一点 M 与两焦点 F1,F2 所成的角∠F1MF2=60°,
则△F1MF2 的面积为( C )
k1AC=3,且 D,E,H 分别为 AB,BC,AC 的中点,则 kOE+kOH 等于(
)
A. -6
B. 5
C. 6
D. 7
【解析】 由题意得k1AB+k1BC+k1AC=-12+k1BC+k1AC=3,所以k1BC+k1AC=72. 因为 kBCkOE=ba22,所以 kBCkOE=2,即 kOE=k2BC. 同理得 kOH=k2AC,所以 kOE+kOH=k2BC+k2AC=2k1BC+k1AC=2×72=7.
【解答】 设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(-x1,-y1), C(x1,0).
因为 P,A,B 都在椭圆x42+y22=1 上,所以x412+y212=1,x422+y222=1,两式相减得 kPB·kAB =yx11- -yx22yx11+ +yx22=-12.

高三解析几何一轮复习学案

高三解析几何一轮复习学案

直线方程归纳一、斜率与倾斜角 ㈠斜率公式已知直线l 上的两点()y x A11,,()y x B 22,xx y y kl1212--=注:①平面上两直线的位置关系⎪⎩⎪⎨⎧重合平行相交②特别的当l 垂直于x 轴时,直线l 的斜率不存在,当直线l 与x 轴平行或重合时,直线的斜率为0 ㈡直线的倾斜角:1、 定义:直线向上的方向与x 轴正方向的夹角2、 范围:[)π,0注:当直线l 与x 轴垂直时,直线的倾斜角为2π,当直线l 与x 轴平行或重合时直线的倾斜角为0 3、 直线的斜率与倾斜角的关系 设直线l 的斜率为k,倾斜角为α⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋃⎪⎭⎫⎢⎣⎡∈=πππαα,22,0tan k观察图象可以看出:①当两直线倾斜角同为锐角或钝角时,倾斜角越大,斜率越大②但两直线斜率同正或同负时,斜率越大,倾斜角也越大,直线越偏向逆时针方向旋转,斜率大的直线相当于把斜率小的直线绕交点向逆时针方向旋转得到的探索:求下列过定点A 且夹在阴影区域直线斜率的范围,设直线ll 21与的斜率已知注:当直线与x 轴垂直时,直线斜率不能用有限实数表示,该直线的斜率可以可以看成正无穷(从右边看),也可看成负无穷(从左边看)),由此可以看出,当阴影区域不含垂直于x 轴的直线时,阴影内过定点A 的直线斜率夹在阴影边界线斜率中间(取中间)。

反之分区间表示(要两边) 例:已知P (-1,2),A (-2,-3),B (3,0),直线l 过P 点且与线段AB 相交,求直线l 的斜率取值范围 二、直线方程的5种形式 1、点斜式:已知直线l 上一点()y x A,和斜率为k()x yx k y l 00:-=-注:使用点斜式不能表示垂直于x 轴的直线,当垂直于x 轴时xx l 0:=2、斜截式:已知直线l 的斜率k 和直线在y 轴上的纵截距b l:y=kx+b注:①截距不是距离,横截距指的是直线与x 轴交点的横坐标;纵截距指的是直线与y 轴交点的纵坐标 ②当b=0时,直线过原点③斜截式不能表示垂直于x 轴的直线, 当垂直于x 轴时xx l 0:=3、两点式:已知直线上两点()()y x y x B A2211,,,k kAB AP=y y y x y l 121211:--=--注:两点式不能表示垂直于x 轴的直线, 当垂直于x 轴时xx l 0:=4、 截距式:已知直线的与x 轴交点A (a,0),直线与y 轴交点B (0,b ) 直线的横截距为a,纵截距为bk k k l l l21≤≤1:=+by a x l 注:截距式不能表示与坐标轴垂直的直线和过原点的直线例设直线l 的方程为(a+1)x+y+2-a=0()R a ∈,若l 在两坐标轴上截距相等求l 的方程 解:若直线l 过原点则a=2此时直线l:y=-3x 若直线不过原点且在两坐标轴上截距相等(略) 此时方程x+y+2=05、 一般式:Ax+By+C=0(A,B,C 为实系数且022≠+B A)注:①022≠+B A即A ,B 不同时为0,当直线方程y 前面系数为0时,直线的斜率不存在②写直线方程,最终结果要化成一般式 三、直线系方程注:直线系方程也是直线方程的表现形式,与直线方程的其它表现形式相比,参数用的最少,形式最简单 直线系方程每给参数取一个或一组值时,就得到一条直线,所以直线系方程表示的不是一条直线,而是一系列直线,所以给这些直线取一个文雅的名明叫直线系方程 ㈠与已知直线l:AX+By+C=0垂直或平行的直线系方程 1、 准备知识:坐标法表示平面向量平行与垂直()()y x b y x a 2211,,,→→||21211221=⋅+⋅⇔⊥=⇔→→→→yy x x b a yx y x b a2、 求直线的方向向量与法向量已知直线l:AX+By+C=0求l 的方向向量与法向量(用A ,B ,C 表示)设()()y x P y x P 222111,,,是直线l 上的两点()y y x x P P 1212,21--→为直线l 的方向向量,下面用A ,B ,C 表示P P 21→∵l P P ∈21, ∴⎪⎩⎪⎨⎧=++=++002211C B A C B A y xy x∴()()01212=-+-y y x x B A每给x x 12-一个值,就有一个y y 12-与之对应,所以直线l 的方向向量应该有无穷多个,这和我们的常识是相符的,我们只需取其中一个方向向量就可以了 令B x x =-12则y y 12-=-A∴()A B p P -=→,21故直线l 的方向向量为()A B l -→,直线l 的法向量为()B A n ,→(找到一个与l →垂直的向量即可)注:由此可见直线l:Ax+By+C=0的法向量就是直线方程x,y 前的系数,反之可以用直线的法向量表示直线方程 例若直线l 过点P (2,3)且方向向量为⎪⎭⎫ ⎝⎛-→43,1l ,则它的直线方程是直线l 的法向量⎪⎭⎫ ⎝⎛→1,43n 设直线043:=++C y x l 又l 过点P (2,3) ∴C=29-02943:=-+y x l l:3x+4y-18=03、 平行直线系方程与垂直直线系方程 已知直线l:Ax+By+C=0,它的法向量是()B A n ,→,方向向量是()A B l -→,结论:⑴与l 平行的直线系方程m:01=++C By Ax⑵与l 垂直的直线系方程m:01=+-C Ay Bx注:写与已知直线平行或垂直的直线系方程,先确定直线的法向量,再确定直线的方向向量,结合图形设方程,不用记公式练习:⑴过点A (-1,3)且垂直于l:x-2y+3=0的直线方程 答案;2x+y-1=0⑵已知直线l 的直线方程为3x+4y-12=0求过点(-1,3)且与l 平行的直线方程 答案:3x+4y-9=0 ㈡过定点),(0y x P 的直线系方程若直线l 与m 平行则l 的法向量也是m 的法向量 若直线l 与m 垂直则l 的方向向量是m 的法向量1、 当直线l 的斜率存在设直线的斜率为k()x yx k y l 00:-=-2、 当直线l 的斜率不存在时x x 0=㈢斜率k 已知的平行直线系方程,设直线的纵截距为b l:y=kx+b ㈣过两条已知直线0:0:22221111=++=++C BA l CB A l y x y x 和交点的直线系方程()R y x y x C B A C BA l ∈=+++++λλ0)(:222111'注:令0=λ直线系方程表示l 1该直线系方程不能表示l2例:求下列直线系方程所过的定点⑴y=k (x-2))(R k ∈利用过顶点的直线系方程可以解释⑵()()R y x y x ∈=-+-+λλ01利用过两直线交点的直线系方程解释 ⑶不论m 为何实数,直线(m-1)x-y+2m+1=0恒过定点 例设直线l 的方程为(a+1)x+y+2-a=0()R a ∈,⑷若l 不经过第二象限,求实数a 的取值范围解将直线方程化为x+y+2+a (x-1)=0过定点(1,-3)不包括x=1当斜率-(a+1)0≥可以 典型题一、直线方程与均值不等式例:已知直线l 过点P (3,2)且与x 轴,y 轴正半轴分别交于A ,B 两点,如图所示,求ABO ∆的面积最小值及此时直线l 的方程法一:设A (a,0),B (0,b )(a>0,b>0) 则1:=+bya x l ∵l 过点P (3,2)∴123=+ba ① ∴32-=a ab()()()312639339363322121322>≥+-+-=-+-+=-=-⋅==-∆a a a a a a a a a ab a a S ABO当且仅当393-=-a a 即a=6时取最值法二: 接①abb a 62231≥+=24≥ab当且仅当⎪⎩⎪⎨⎧=+=12323b a ba 即a=6,b=4时取等号1221≥=∆ab S ABO 当且仅当a=6,b=4时取等号法三:显然直线l 的斜率存在,设斜率为kl:y-2=k (x-3)⎪⎭⎫ ⎝⎛-0,23k A ,B (0,2-3k )⎪⎭⎫ ⎝⎛>->-032,023k kkk S ABO 233221--=∆ ()()()120491221233221≥<⎪⎭⎫ ⎝⎛-+-+=⎪⎭⎫ ⎝⎛--=k k k k k当且仅当k k 49-=-即32-=k 时取最值 练习:1、 经过点P (1,4)的直线在两坐标轴上的截距都是正的且截距之和最小,则直线的方程为 提示:利用均值不等式“乘1法” 答案:2x+y-6=02、 已知在ABC ∆中,90=∠ACB ,BC=3,AC=4,P 是AB 上的点,则点P 到AC ,BC 距离最大值143:=+yx l AB ① ()()y x BC P d AC P d ⋅=⋅,,由①122431xyy x ≥+=故3≤xy当且仅当⎪⎩⎪⎨⎧==+43143y x y x 即2,23==y x 时取等号综合练习:1、 直线x-2y+2k=0与两坐标轴围成的三角形面积不大于1,那么k 的范围 直线与两坐标轴交点坐标为A (0,k ),B (-2k,0) 直线与两坐标轴围成的面积12212≤=-=k k k S 2两直线位置关系距离问题,对称问题一、两直线位置关系判别法 ㈠判别方法一:利用斜截式1、使用条件:两直线斜率斜率都存在时(最好两直线方程y 前面都不含参数)2、判别方法:b k lb k l x y x y 222111:,:+=+=①两直线相交的充分性条件:l l kk 2121⋂⇒≠②两直线平行的充分性条件:l l bb k k 212121||,⇒≠=③两直线垂直的充分性条件:重合与l l b b k k 212121,⇒==3、拓展:两直线垂直与平行的充要条件: Ⅰ)⎩⎨⎧-=⋅⇔⊥,一条直线斜率不存在一条直线斜率为两直线斜率都存在,012121k k l l注:①要想两条直线垂直,如果一条直线存在且不为0则另外一条直线斜率也必须存在 ②要想两条直线垂直,如果一条直线不存在则另外一条直线斜率为0 Ⅱ)⎩⎨⎧≠=⇔且横截距不相同两条直线斜率都不存在两直线的斜率都存在b b k k l l 212121,|| 判别方法二:利用一般式()00:,0:22222221111≠⋅⋅=++=++C B A C BA l CB A l y x y x①两直线相交的充分性条件:l l BB A A 212121⋂⇒≠②两直线平行的充分性条件:l l C B B A A 21212121||⇒≠=③两直线重合的充分性条件:重合与l l CC B B A A 21212121⇒==注:上面两种方法都是判定直线位置关系的充分性条件,并不能判定所有直线的位置关系,如果把判别法二中的分式改成整式,就可以判定所有直线的位置关系 判别方法三:(处理含参问题的最好方法)0:,0:22221111=++=++C BA l CB A l y x y x①两直线相交的充要条件:ll 211221B A B A ⋂⇔≠②两直线平行的充要条件:⎪⎩⎪⎨⎧⎩⎨⎧⇔≠=≠=l l C A C A B A B A 211221122112211221||CB C B B A B A 或③两直线重合的充要条件:⎪⎩⎪⎨⎧⎩⎨⎧⇔====重合与或l l C A C A B A B A 211221122112211221CB C B B A B A④两直线垂直的充要条件:当两直线法向量垂直时,两直线垂直。

解析几何中面积问题的研究

解析几何中面积问题的研究

解析几何中面积问题的探究问题1:如图,设A ,B 分别为椭圆2222:1(0)x y E a b a b+=>>的右顶点和上顶点,过原点O 作直线交线段AB 于点M (异于点A ,B ),交椭圆于C ,D 两点(点C 在第一象限内),ABC ∆和ABD ∆的面积分别为1S 与2S .(1)若M 是线段AB 的中点,直线OM 的方程为13y x =,求椭圆的离心率; (2)当点M 在线段AB 上运动时,求12S S 的最大值. 解:(1)232=e ; (2)设),(),,(0000y x D y x C --,(0,000>>y x )abay bx ab ab ay bx ab ay bx ab ay bx ab ay bx S S ++-=++-+=----+=00000000002121令00ay bx t +=方法一:三角换元:⎪⎪⎭⎫ ⎝⎛+=4sin 2πθab t ⎪⎭⎫⎝⎛∈2,0(πθ), 当且仅当2=t 时(此时4πθ=时等号成立),21S S 可取得最大值223- 方法二:基本不等式的应用:222202021)()(t b a ay bx ≥=+,同理可得结果总结:椭圆的外切矩形的对角线和椭圆的交点处的切线必和另一条对角线平行; 且在该交点处,此时21,S S ,21S S 都是最大的.问题2:如图,椭圆22122:1(0)x y C a b a b+=>>的离心率为32,x 轴被曲线22:C y x b =- 截得的线段长等于C 1的长半轴长 (1)求C 1,C 2的方程;(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A,B,直线MA,MB 分别与C 1相交与D,E . (I )证明:MD ⊥ME;(II )记△MAB,△MDE 的面积分别是12,S S .问:是否存在 直线l ,使得121732S S =?请说明理由. 解:(1)由题意知.1,2,2,2,23======b a a b b a ac e 解得又从而 故C 1,C 2的方程分别为.1,14222-==+x y y x (2)(i )由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为kx y =.由⎪⎩⎪⎨⎧-==12x y kx y 得012=--kx x . 设212211,),,(),,(x x y x B y x A 则是上述方程的两个实根,于是.1,2121-==+x x k x x又点M 的坐标为(0,—1),所以2121212212122111)()1)(1(11x x x x k x x k x x kx kx x y x y k k MBMA +++=++=+⋅+=⋅ .11122-=-++-=k k 故MA ⊥MB ,即MD ⊥ME.(ii )设直线MA 的斜率为k 1,则直线MA 的方程为⎪⎩⎪⎨⎧-=-=-=1,1,1211x y x k y x k y 由解得 ⎩⎨⎧-==⎩⎨⎧-==1,1021k y k x y x 或,则点A 的坐标为)1,(211-k k .又直线MB 的斜率为11k -, 同理可得点B 的坐标为).11,1(211--k k于是221111111111111||||1||1||222||k S MA MB k k k k k +=⋅=+⋅⋅+⋅-=由⎪⎩⎪⎨⎧=-+-=044,1221y x x k y 得.08)41(1221=-+x k x k 解得12121218,140,14114k x k x y k y k ⎧=⎪+=⎧⎪⎨⎨=--⎩⎪=⎪+⎩或,则点D 的坐标为2112211841(,).1414k k k k -++ 又直线ME 的斜率为11k -,同理可得点E 的坐标为).44,48(2121211k k k k +-+- 于是)4)(1(||)1(32||||2121211212++⋅+=⋅=k k k k ME MD S .因此21122114(417).64S k S k =++ 由题意知,2221112114171(417),4,.64324k k k k ++===解得或 又由点A 、B 的坐标可知,21211111113,.12k k k k k k k k -==-=±+所以 故满足条件的直线l 存在,且有两条,其方程分别为.2323x y x y -==和 小结:(1)直线的设法 (2)第一问的作用 问题3:如图,在平面直角坐标系xOy 中,已知椭圆E :的离心率,A 1,A 2分别是椭圆E 的左、右两个顶点,圆A 2的半径为a ,过点A 1作圆A 2的切线,切点为P ,在x 轴的上方交椭圆E于点Q .(1)求直线OP 的方程; (2)求的值;(3)设a 为常数,过点O 作两条互相垂直的直线,分别交椭圆于点B 、C ,分别交圆A 点M 、N ,记三角形OBC 和三角形OMN 的面积分别为S 1,S 2.求S 1S 2的最大值.解:(1)连结2A P ,则21A P A P ⊥,且2A P a =,又122A A a =,所以1260A A P ∠=o . 所以260POA ∠=o ,所以直线OP 的方程为3y =.⑵由⑴知,直线2A P 的方程为3()y x a =--,1A P 的方程为3)3y x a =+,解得2P ax =. 因为3e ,即3c a =2234c a =,2214b a =,故椭圆E 的方程为222241x y a a =+.由22223),41,y x a x y a a ⎧=+⎪⎪⎨⎪=⎪⎩+解得7Q a x =-,所以1()3274()7a a PQ a QA a --==---. ⑶不妨设OM 的方程为(0)y kx k =>,联立方程组2222,41,y kx x y a a =⎧⎪⎨=⎪⎩+解得22(1414B k k ++,所以22114k OB a k +=+ 用1k -代替上面的k ,得2214k OC k +=+.同理可得,21OM k +,21ON k=+. 所以4122214(14)(4)S S OB OC OM ON a k k ⋅=⋅⋅⋅⋅=++.因为22221115(14)(4)4()17k k k k++++,当且仅当1k =时等号成立,所以12S S ⋅的最大值为45a问题4:在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>过点A (1,1)-,离心率为63.(1)求椭圆C 的方程;(2)设点B 是点A 关于原点O 的对称点,P 是椭圆C 上的动点(不同于A ,B ),直线AP ,BP 分别与直线3x =交于点M ,N ,问:是否存在点P 使得PAB ∆和PMN ∆的面积相等?若存在,求出点P 的坐标,若不存在,说明理由.另解:问题5:如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分 别为2m ,2n ()m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大 到小依次为A ,B ,C ,D .记mnλ=,BDM ∆和ABN ∆的面积分别为1S 和2S . (1)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.解:(I)12S S λ=()m n m n λ⇒+=-,1111m n m n λλλ++∴==--解得:21λ=+(舍去小于1的根)(II)设椭圆()22122:1x y C a m a m +=>,22222:1x y C a n+=,直线l :ky x =Ox yBACDMN22221ky x x y a m =⎧⎪⎨+=⎪⎩2222221a m k y a m +⇒=A y ⇒= 同理可得,又Q BDM ∆和ABN ∆的的高相等12B D B AA B A BS BD y y y y S AB y y y y -+∴===-- 如果存在非零实数k 使得12S S λ=,则有()()11A B y y λλ-=+,即:()()222222222211a n k a n k λλλλ-+=++,解得()()2222232114a k n λλλλ--+= ∴当1λ>+时,20k >,存在这样的直线l ;当11λ<≤+时,20k ≤,不存在这样的直线l .问题6:平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F 作直0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.问题7:(2014湖南)如图,O 为坐标原点,椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,离心率为1e ;双曲线22222:1x y C a b-=的左、右焦点分别为34,F F ,离心率为2e .已知123,2e e =且24||3 1.F F =(1)求12,C C 的方程;(2)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值. 【解析】(1)因为123e e =,所以22223a b a b -+⋅=,即44434a b a -=,因此222a b =,从而2(,0)F b ,4(3,0)F b ,于时243||31b b F F -==-,所以1b =,22a =.故12,C C 的方程分别为2212x y +=,2212x y -= (2)因AB 不垂直于y 轴,且过点1(1,0)F -,故可设直线AB 的方程为1x my =- 由22112x my x y =-⎧⎪⎨+=⎪⎩得,22(2)210m y my +--= 易知此方程的判别式大于0,设1122(,),(,)A x y B x y , 则12,y y 是上述方程的两个实根,所以12222m y y m +=+,12212y y m -=+ 因此121224()22x x m y y m -+=+-=+,于是AB 的中点为224(,)22m M m m -++,故直线PQ 的斜率为2m-,PQ 的方程为2my x =-,即20mx y +=.由22212m y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩得,22(2)4m x -=,所以220m ->,且222224,22m x y m m ==--,从而22224||222m PQ x y m +=+=-.设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为PQ ,所以 1122224d m =+因为点,A B 在直线20mx y +=的异侧,所以1122(2)(2)0mx y mx y ++<,于是 11221122|2||2||22|mx y mx y mx y mx y +++=+--从而 212224d m =+又因为12||2y y m -==+2d =故四边形APBQ 的面积1||22S PQ d =⋅==而2022m <-≤,故当0m =时,S 取得最小值2. 综上所述,四边形APBQ 在面积的最小值为2.。

高考数学:一轮二轮复习如何做,这24个易错点一定要牢记!

高考数学:一轮二轮复习如何做,这24个易错点一定要牢记!

高考数学:一轮二轮复习如何做,这24个易错点一定要牢记!高三数学第一轮复习,牢记这6大方法,高分带回家!一、抄笔记别丢了“西瓜”高考数学试卷中大部分都是基础题,只要把这些基础题做好,分数便不会太低。

要想做好基础题,平时上课时的听课效率便格外重要。

带高考毕业班的都是有着丰富经验的老师,他们上课时的内容可谓是精华,因此认真听讲45分钟比自己在家复习两个小时更有效。

听课时可以适当地做些笔记,但前提是不影响听课的效果。

有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而得不偿失。

二、重视订正,理性刷题一张试卷上的错题、难题数量是很有限的,而且通常属于“高风险低回报”,而如果能利用好它们,并认真总结、修正,最终的成绩也不会让大家失望。

卓小越今天福利大赠送,送上错题订正的正确方法:1、仔细分析错误答案中的错误环节,分析原因,注意不要把“粗心”作为借口。

任何一个错误都是事出有因的,即使是计算错误也是由于不够熟练导致的,因此分析的原因一定是具体的、有针对性的原因。

2、遮住答案,留出题干,在没有任何外界辅助的情况下自己演算一遍。

注意不要跳步,既然错过一次第二遍就要仔仔细细、踏踏实实地重来。

特别是第一次做的时候感觉不确定的地方,订正的时候要放慢速度。

3、核对答案,没有问题后闭上眼睛把刚刚的演算过程在脑中再过一遍,体会推导过程是否合理、自然,下次再遇到类似的问题能否顺理成章地想到。

如果第二次做还是有错误,那就必须重看自己的错误,分析错误环节,并用有颜色的笔着重标出。

4、过了两三天再把错题拿出来看,可以不笔算,只要脑海中能回忆出完整过程,这题就算过关。

如果在不借助外界帮助的情况下还是有问题,那么这道题就是复习时的重点了,过几天还要拿出来再看一遍。

这个过程虽然枯燥而又痛苦,但却是很必要的。

许多同学刷了不少题目但成绩总是不见起色,很大程度上是因为他们并没有真正理解做过的每一道题,因此再一次遇到类似的题型还是会犯错。

专题解析几何中面积问题的研究与拓展样本

专题解析几何中面积问题的研究与拓展样本

专题7.22: 解析几何中面积问题的研究与拓展 【探究拓展】 探究1: 如图, 设A ,B 分别为椭圆2222:1(0)x y E a b a b+=>>的右顶点和上顶点, 过原点O 作直线交线段AB 于点M ( 异于点A , B ) , 交椭圆于C , D 两点( 点C 在第一象限内) , ABC ∆和ABD ∆的面积分别为1S 与2S .( 1) 若M 是线段AB 的中点, 直线OM 的方程为13y x =, 求椭圆的离心率; ( 2) 当点M 在线段AB 上运动时, 求12S S 的最大值. 解: ( 1) 232=e ; (2)设),(),,(0000y x D y x C --,( 0,000>>y x )abay bx abab ay bx ab ay bx ab ay bx ab ay bx S S ++-=++-+=----+=00000000002121令00ay bx t +=1: 三角换元: ⎪⎭⎫ ⎝⎛+=4sin 2πθt ⎪⎭⎫⎝⎛∈2,0(πθ),当且仅当2=t 时( 此时4πθ=时等号成立) ,21S S 可取得最大值223-2: 基本不等式的应用: 222202021)()(t b a ay bx ≥=+,同理可得结果椭圆的外切矩形的对角线和椭圆的交点处的切线必和另一条对角线平行; 且在该交点处, 此时21,S S ,21S S 都是最大的.探究2: 如图, 椭圆22122:1(0)x y C a b a b+=>>的离心率为32, x 轴被曲线22:C y x b =-截得的线段长等于C 1的长半轴长 ( 1) 求C 1, C 2的方程;( 2) 设C 2与y 轴的焦点为M, 过坐标原点O 的直线l 与C 2相交于点A,B,直线MA,MB分别与C 1相交与D,E .( I) 证明: MD ⊥ME;( II) 记△MAB,△MDE 的面积分别是12,S S .问: 是否存在直线l ,使得121732S S =? 请说明理由.解: ( 1) 由题意知.1,2,2,2,23======b a a b b a a c e 解得又从而 故C 1, C 2的方程分别为.1,14222-==+x y y x( 2) ( i) 由题意知, 直线l 的斜率存在, 设为k, 则直线l 的方程为kx y =.由⎪⎩⎪⎨⎧-==12x y kx y 得012=--kx x . 设212211,),,(),,(x x y x B y x A 则是上述方程的两个实根, 于是.1,2121-==+x x k x x又点M 的坐标为( 0, —1) , 因此2121212212122111)()1)(1(11x x x x k x x k x x kx kx x y x y k k MBMA +++=++=+⋅+=⋅ .11122-=-++-=k k 故MA ⊥MB, 即MD ⊥ME.( ii) 设直线MA 的斜率为k 1, 则直线MA 的方程为⎪⎩⎪⎨⎧-=-=-=1,1,1211x y x k y x k y 由解得⎩⎨⎧-==⎩⎨⎧-==1,1021k y k x y x 或, 则点A 的坐标为)1,(211-k k .又直线MB 的斜率为11k -,同理可得点B 的坐标为).11,1(211--k k于是211111111|||||||22||k S MA MB k k k +=⋅=-=由⎪⎩⎪⎨⎧=-+-=044,1221y x x k y 得.08)41(1221=-+x k x k 解得12121218,140,14114k x k x y k y k ⎧=⎪+=⎧⎪⎨⎨=--⎩⎪=⎪+⎩或, 则点D 的坐标为2112211841(,).1414k k k k -++ 又直线ME 的斜率为k1-, 同理可得点E 的坐标为).44,48(2121211k k k k +-+- 于是)4)(1(||)1(32||||2121211212++⋅+=⋅=k k k k ME MD S .因此21122114(417).64S k S k =++由题意知,2221112114171(417),4,.64324k k k k ++===解得或 又由点A 、 B 的坐标可知,21211111113,.12k k k k k k k k -==-=±+所以故满足条件的直线l 存在, 且有两条, 其方程分别为.2323x y x y -==和 探究3: 如图, 已知椭圆22143x y +=的左焦点为F , 过点F 的直线交椭圆于,A B 两点, 线段AB 的中点为G , AB 的中垂线与x 轴和y 轴分别交于,D E 两点. ( 1) 若点G 的横坐标为14-, 求直线AB( 2) 记△GFD 的面积为1S , △OED ( O 积为2S .试问: 是否存在直线AB , 使得1S =解: ( 1) 21±=k ( 2) 不存在, 计算可得892-=k探究4: 如图, 在平面直角坐标系xOy 中, 已知椭圆E :22221(0)x y a b a b +=>>的离心率2e =, 12,A A 分别是椭圆E 的左、 右两个顶点, 圆2A 的半径为a , 过点1A 作圆2A 的切线, 切点为P , 在x 轴的上方交椭圆E 于点Q . ( 1) 求直线OP 的方程; ( 2) 求1PQ QA 的值;Py xNMBAO解: ( 1) 连结2A P , 则21A P A P ⊥, 且2A P a =, 又122A A a =, 因此1260A A P ∠=. 因此260POA ∠=, 因此直线OP 的方程为3y =.⑵由⑴知, 直线2A P 的方程为3()y x a =--, 1A P 的方程为3)y x a +, 解得2P ax =. 因为3e , 即3c a =因此2234c a =, 2214b a =, 故椭圆E 的方程为222241x y a a =+.由22223),341,y x a x y a a ⎧=+⎪⎪⎨⎪=⎪⎩+解得7Q a x =-, 因此1()3274()7a aPQ a QA a --==---.⑶不妨设OM 的方程为(0)y kx k =>,联立方程组2222,41,y kx x y aa =⎧⎪⎨=⎪⎩+解得22()1414B k k ++, 因此22114k OB a k +=+用1k -代替上面的k , 得2214k OC ak +=+.同理可得, 21OM k=+, 21ON k=+.因此4122214(14)(4)S S OB OC OM ON a k k ⋅=⋅⋅⋅⋅=++.因为22221115(14)(4)4()17k k k k++++,当且仅当1k =时等号成立, 因此12S S ⋅的最大值为45a探究5: 在平面直角坐标系xOy 中, 已知椭圆C : 22221x y a b+=(0)a b >>过点A (1,1)-, 6( 1) 求椭圆C的方程;( 2) 设点B是点A关于原点O的对称点, P是椭圆C上的动点( 不同于A, B) , 直线AP, BP分别与直线3x=交于点M, N, 问: 是否存在点P使得PAB∆和PMN∆的面积相等? 若存在, 求出点P的坐标, 若不存在, 说明理由.解: ( 1) 由题意得22222 111,,6,a ba b ccea⎧+=⎪⎪⎪=+⎨⎪⎪==⎪⎩………………… 2分解得2244,3a b==.………………… 4分∴椭圆C的方程为223144x y+=.………………… 5分( 2) 如图, B点坐标为(1,1)-, 假设存在这样的点P00(,)x y,则直线AP的方程为011(1)1yy xx--=++,探究6: 已知点M是圆C: 22(1)8x y++=上的动点, 定点D( 1, 0) , 点P在直线DM 上, 点N在直线CM上, 且满足2DM DP=, NP DM⋅=0, 动点N的轨迹为曲线E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档