人教版八年级下册数学《期末考试卷》(附答案)
人教版八年级数学下册期末测试卷(含答案)
人教版八年级数学下册期末测试卷(含答案)一、选择题(每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 选项1.下列数组中,不是勾股数的一组是A. 3,4,5B. 1,2,3C. 6、8、10D. 2、3、52. 如图,CD 是△ABC 的边AB 上的中线,且CD =12AB ,则下列结论错误的是 A. AD =BDB. ∠A =30°C. ∠ACB =90°D. △ADC 与△BCD 的面积相等3. 一个正多边形的内角和为540°,则这个正多边形的每一个外角都等于 A .108° B .90° C .72° D .60°4. 下列图形中是中心对称图形的是5. 如图,在□ABCD 中,AB=6cm ,BC=10cm ,AC=8cm ,BD=14cm ,则下列结论中:①△AOB 的周长是17cm ,② △ACD 是直角三角形,③AD=14cm ,④□ABCD 的面积是48cm 2,其中正确有 A. 1个 B. 2个 C . 3个 D. 4个6. 如点(,2)A a a --在第二象限,那么a 的值可能是A. 0B. 1C. 2D. 37. 若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是 A .(0,2-)B .(32,0)C .(8,20)D .(12,12) 8. 如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是 A .若AC ⊥BD ,则四边形ABCD 是菱形 B .若AC =BD ,则四边形ABCD 是矩形C. 若AB=DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO=OC ,BO=OD ,则四边形ABCD 是平行四边形9. 如图,在平面直角坐标系中,□ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 A .(3,7) B .(5,3) C .(7,3)D .(8,2)10. 已知直线24y x =-,则它与两坐标轴围成的三角形的面积是A .2B .3C .4D .5二、填空题(每小题4分,共24分)11. 已知点A (3-,a )与点B (3-,4-)关于x 轴对称,则a = .12. 一次函数112y x =-+的图像不经过第 象限.13. 如图,在菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF=2,则菱形ABCD 的周长是__.14. 某同学做掷硬币试验,正面朝上记为“正”,反面朝上记为“反”,结果统计如下: 次数 1 2 3 4 5 6 7 8 9 10 结果反正正反正正反正正反则“正面朝上”的频数是 ;“反面朝上”的频率是 . 15. 如图,一次函数y kx b =+的图象与坐标轴的交点坐标分别为A (0,2),B (-3,0),下列说法:①y 随x 的增大而减小;②3b =-;③关于x 的方程0kx b +=的解为2x =;④关于x 的不等式<0kx b +的解集<3x -.其中说法正确的有 .16. 如图,某校的生物园形状是一个直角三角形,90ACB ∠=︒, AC=40m ,BC=30m .现要修建一条水渠CD ,D 点在边AB 上,若水渠的造价为800元/m ,则修建水渠CD 最少要 元.三、解答题(本大题共86分)17.(8分) 已知正比例函数的图象经过点M (-1,5) (1)求这个函数的表达式;(2)若将这个函数的图象向上平移5个单位后,写出图象与y 轴的交点坐标。
人教版八年级下学期期末考试数学试卷及答案解析(共六套)
人教版八年级下学期期末考试数学试卷(一)一、选择题1、下列二次根式中,是最简二次根式的是()A、B、C、D、2、平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A、120°B、60°C、30°D、15°3、甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示A、甲B、乙C、丙D、丁4、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A、y1<y2B、y1=y2D、无法确定5、如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A、16B、24C、4D、86、下列命题中,正确的是()A、有一组邻边相等的四边形是菱形B、对角线互相平分且垂直的四边形是矩形C、两组邻角相等的四边形是平行四边形D、对角线互相垂直且相等的平行四边形是正方形7、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A、22.5°B、60°C、67.5°D、75°8、关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A、k≤1C、k=1D、k≥19、已知正比例函数y=kx的图象与反比例函数y= 的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A、x1=﹣1,x2=1B、x1=﹣1,x2=2C、x1=﹣2,x2=1D、x1=﹣2,x2=210、中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1, S2, S3,若S 1+S2+S3=18,则正方形EFGH的面积为()A、9B、6C、5D、二、填空题11、关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为________.12、如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为________.13、某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是________.14、将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=________15、反比例函数y= 在第一象限的图象如图,请写出一个满足条件的k值,k=________16、如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为________.17、如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为________ m.18、如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB 的长为________,线段BC的长为________.三、解答题19、计算:(1)﹣+(+1)(﹣1)(2)× ÷ .20、解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题21、如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22、为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24、如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25、在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y= 的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y= 的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y= (x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y= (x>0)交于点Q,与x轴交于点H,若QH= OP,求k的值.五、填空题26、如图,在数轴上点A表示的实数是________.27、我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v= (s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:________;并写出这两个变量之间的函数解析式:________.六、解答题28、已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1, x2(用含m的代数式表示);①求方程的两个实数根x1, x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29、四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)答案解析部分一、选择题1、【答案】A【考点】最简二次根式【解析】【解答】解:A、为最简二次根式,符合题意;B、=2 ,不合题意;C、= ,不合题意;D、=2,不合题意,故选A【分析】利用最简二次根式的定义判断即可.2、【答案】B【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A 可求出∠A的度数,进而可求出∠C的度数.3、【答案】D【考点】方差【解析】【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.4、【答案】C【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2= ,∵1>,∴y1>y2.故选C.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.5、【答案】C【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴BO=OD= AC=2,AO=OC= BD=3,AC⊥BD,∴AB= = ,∴菱形的周长为4 .故选:C.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.6、【答案】D【考点】命题与定理【解析】【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.7、【答案】C【考点】正方形的性质【解析】【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠D BC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.8、【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.9、【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.10、【答案】B【考点】勾股定理的证明【解析】【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1, S2, S3,S 1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1, S2, S3,得出答案即可.二、<b >填空题</b>11、【答案】8【考点】一元二次方程的解【解析】【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.12、【答案】5【考点】直角三角形斜边上的中线,三角形中位线定理【解析】【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD= AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF= ×10=5cm.故答案为:5.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.13、【答案】23【考点】折线统计图【解析】【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【分析】根据中位数的定义求解即可.14、【答案】5【考点】解一元二次方程-配方法【解析】【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.15、【答案】3【考点】反比例函数的性质【解析】【解答】解:∵反比例函数y= 的图象在第一象限,∴k>0,∴k=3,故答案为:3.【分析】根据反比例函数y= 的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.16、【答案】【考点】勾股定理,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x= ,∴DE的长为.故答案为:【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.17、【答案】500【考点】勾股定理的应用【解析】【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC= =500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.18、【答案】2;2【考点】勾股定理【解析】【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE= = = ,在Rt△BEC中,BC= = =2 .故答案分别为2,2 .【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE,Rt△BEC中利用勾股定理即可解决问题.三、<b >解答题</b>19、【答案】(1)解:原式=3 ﹣2 +3﹣1= +2(2)解:原式=2 × ×=8【考点】二次根式的混合运算【解析】【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.20、【答案】(1)解:x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x 1=5,x2=1(2)解:2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x= ,x 1= ,x2=【考点】解一元二次方程-公式法,解一元二次方程-因式分解法【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.四、<b >解答题</b>21、【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS)(2)证明:如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.22、【答案】(1)25(2)解:男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示(3)解:男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8(4)解:女生队表现更突出一些,理由:从众数看,女生好于男生(5)解:由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标【考点】统计表,扇形统计图,条形统计图,方差【解析】【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.23、【答案】解:∵∠B=90°,AB=BC=2,∴AC= =2 ,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【考点】勾股定理,勾股定理的逆定理【解析】【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.24、【答案】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF= AB,同理:NM∥CD,MN= DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO= AO,MO= CO,在矩形ABCD中,AO=CO= AC,BO=DO= BD,∴EM=EO+MO= AC,同理可证FN= BD,∴EM=FN,∴四边形EFMN是矩形(3)解:∵DM⊥AC于点M,由(2)MO= CO,∴DO=CD,在矩形ABCD中,AO=CO= AC,BO=DO= BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3 ,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6 ,∴矩形的面积为BC•CD=36【考点】矩形的判定与性质【解析】【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF= AB,NM∥CD,MN= DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.25、【答案】(1)解:∵反比例函数y= 的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=(2)解:∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(xE , yE),∵△ADE的面积=6,∴•AD•|xE|=6,∴xE=±3,∵点E在反比例函数y= 图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a= ,∴一次函数解析式为y= x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y= x﹣1(3)解:由(2)可知,直线OE解析式为y= x,设点P(xP , yP),取OP中点M,则OM= OP,∴M(xP ,xP),∴Q(xP + ,xP),∴H(,0),∵点P、Q在反比例函数y= 图象上,∴xP • xP=(xP+ )xP,∴xP= ,∴P(,),∴k= .【考点】反比例函数与一次函数的交点问题,矩形的性质,坐标与图形变化-平移【解析】【分析】(1)利用待定系数法即可解决.(2)设点E(xE , yE),由△ADE的面积=6,得•AD•|xE |=6,列出方程即可解决.(3)设点P(xP,y P ),取OP中点M,则OM= OP,则M(xP,xP),Q(xP+ ,xP),列出方程求出xP即可解决问题.五、<b >填空题</b>26、【答案】【考点】实数与数轴【解析】【解答】解:OB= = ,∵OB=OA,∴点A表示的实数是,故答案为:.【分析】首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.27、【答案】矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S 为常数,且S≠0)【考点】反比例函数的应用【解析】【解答】解:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数,这两个变量之间的函数解析式为:a= (S为常数,且S≠0).故答案为:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S为常数,且S≠0).【分析】根据矩形的面积公式S=ab,即可得知:当面积S固定时,矩形的长a 是矩形的宽b的反比例函数,由此即可得出结论.六、<b >解答题</b>28、【答案】(1)证明:∵mx2﹣3(m﹣1)x+2m﹣3=0(m>3)是关于x的一元二次方程,∴△=[(﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,∵m>3,∴(m﹣3)2>0,即△>0,∴方程总有两个不相等的实数根(2)①由求根公式得x= ,∴x=1,或x= ,∵m>3,∴>3,当x1<x2,∴x1=1,x2=2﹣;当x1>x2,这种情况不存在;∴x1=1,x2=2﹣;②∵mx1<8﹣4x2,∴m<8﹣4(2﹣),解得:3<m<2 .【考点】根的判别式,根与系数的关系【解析】【分析】(1)由于m>3,此方程为关于x的一元二次方程,再计算出判别式△=(m﹣3)2,然后根据判别式的意义即可得到结论;(2)②由求根公式得到x=1,或x= ,即可得到结论;②根据mx1<8﹣4x2,即可得到结果.29、【答案】(1)解:①补全图形如图1所示,②结论:AP=BN,AP⊥BN.理由:延长NB交AP于H,交OP于K.∵四边形ABCD是正方形,∴OA=OB,AO⊥BO,∴∠1+∠2=90°,∵四边形OPMN是正方形,∴OP=ON,∠PON=90°,∴∠2+∠3=90°,∴∠1=∠3,在△APO和△BNO中,,∴△APO≌△BNO,∴AP=BN,∴∠4=∠5,在△OKN中,∠5+∠6=90°,∵∠7=∠6,∴∠4+∠7=90°,∴∠PHK=90°,∴AP⊥BN.(2)解:解题思路如下:a.首先证明△APO≌△BNO,AP=BN,∠OPA=ONB.b.作OT⊥AB于T,MS⊥BC于S,由题意可知AT=TB=1,c.由∠APO=30°,可得PT= ,BN=AP= +1,可得∠POT=∠MNS=60°.d.由∠POT=∠MNS=60°,OP=MN,可证,△OTP≌△NSM,∴PT=MS= ,∴CN=BN﹣BC= ﹣1,∴SC=SN﹣CN=2﹣,在RT△MSC中,CM2=MS2+SC2,∴MC的长可求.【考点】正方形的性质【解析】【分析】(1)①根据题意作出图形即可.②结论:AP=BN,AP⊥BN,只要证明△APO≌△BNO即可.(2)在RT△CMS中,求出SM,SC即可解决问题.人教版八年级下学期期末考试数学试卷(二)一、选择题1、计算的结果是()A、1B、﹣1C、±1D、﹣22、下列二次根式中,能与合并的是()A、B、C、D、3、下列说法正确的是()A、已知a、b、c是三角形的三边长,则a2+b2=c2B、在直角三角形中,两边的平方和等于第三边的平方C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c24、已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当∠ABC=90°时,它是矩形B、当AC=BD时,它是正方形C、当AB=BC时,它是菱形D、当AC⊥BD时,它是菱形5、矩形的面积是48cm2,一边与一条对角线的比是4:5,则该矩形的对角线长是()A、6cmB、8cmC、10cmD、24cm6、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量7、一次函数y=﹣x+1的图象不经过的象限是()A、第一象限B、第二象限C、第三象限D、第四象限8、某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是()A、2B、3C、﹣2D、﹣3二、填空题9、计算:• =________.10、若一个三角形三边的长度之比为3:4:5,且周长为60cm,则它的面积是________ cm2.11、如图,菱形ABCD中,∠A=60°,BD=3,则菱形ABCD的周长是________.12、若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1________y2(选择“>”、“<”、=”填空).13、中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:14、一组数据的方差s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据的平均数是________.三、解答题15、计算:(+ )(﹣1)16、如图,台风过后,一所学校的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部12米处,已知旗杆原长24米,求旗杆在离底部多少米的位置断裂?17、已知:在平面直角坐标系xOy中,一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB.(1)直接写出点A、点B的坐标;(2)在所给平面直角坐标系内画一次函数的图象.18、如果三角形的三边长a,b,c满足+|12﹣b|+(a﹣13)2=0,你能确定这个三角形的形状吗?请说明理由.19、小丽上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小丽离家的距离y(米)和所经过的时间x(分)之间的函数关系图象如图所示.请根据图象回答下列问题:(1)小丽去超市途中的速度是________米/分;在超市逗留了________分;(2)求小丽从超市返回家中所需要的时间?20、已知:如图,在▱ABCD中,E、F是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形.四、解答题21、某校八年级(1)班组织了一次朗读比赛,A队10人的比赛成绩(10分制)分别是:10、8、7、9、8、10、10、9、10、9.(1)计算A队的平均成绩和方差;(2)已知B队成绩的方差是1.4,问哪一队成绩较为整齐?22、已知:y= + + ,求﹣的值.23、已知:如图1,图2,在平面直角坐标系xOy中,A(0,4),B(0,2),点C在x轴的正半轴上,点D为OC的中点.(1)求证:BD∥AC;(2)如果OE⊥AC于点E,OE=2时,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.答案解析部分一、选择题1、【答案】A【考点】二次根式的性质与化简【解析】【解答】解:原式= =|﹣1|=1.故选A.【分析】直接把二次根式进行化简即可.2、【答案】D【考点】同类二次根式【解析】【解答】解:=3 ,A、=2 ,不能合并;B、=4 ,不能合并;C、与不能合并;D、=4 ,能合并,故选D【分析】原式各项化为最简二次根式,利用同类二次根式定义判断即可.3、【答案】C【考点】勾股定理【解析】【解答】解:A、若该三角形不是直接三角形,则等式a2+b2=c2不成立,故本选项错误;B、在直角三角形中,两直角边的平方和等于斜边的平方,故本选项错误;C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2,故本选项正确;D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则c2+a2=b2,故本选项错误;故选:C.【分析】根据勾股定理进行判断即可.4、【答案】B【考点】平行四边形的性质,菱形的判定,矩形的判定,正方形的判定【解析】【解答】解:A、当∠ABC=90°时,它是矩形,说法正确;B、当AC=BD时,它是正方形,说法错误;C、当AB=BC时,它是菱形,说法正确;D、当AC⊥BD时,它是菱形,说法正确;故选:B.【分析】根据有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形进行分析即可.5、【答案】C【考点】矩形的性质【解析】【解答】解:如图:设AB=4x,则AC=5x,由勾股定理得:BC=3x,矩形的面积=AB×BC=4x×3x=48,解得:x=:±2(舍去负值),∴x=2.∴矩形的对角线长是5×2=10(cm).故选:C.【分析】设AB=4x,则AC=5x,由勾股定理可知BC=3x,由勾股定理求出BC=3x,根据面积得出方程,即可得出对角线的长.6、【答案】B【考点】常量与变量【解析】【解答】解:由题意得:10=ab,则10是常量,a和b是变量;故选B.【分析】根据长方形面积公式得:10=ab,10不发生变化是常量,a、b发生变化是变量.7、【答案】C【考点】一次函数的图象【解析】【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象经过的象限,进而可得出结论.8、【答案】A【考点】算术平均数【解析】【解答】解:求15个数的平均数时,错将其中一个数据15输入为45,即使总和增加了30;那么由此求出的这组数据的平均数与实际平均数的差是30÷15=2.故选:A.【分析】利用平均数的定义可得.将其中一个数据15输入为45,也就是数据的和多了30,其平均数就少了30除以15.二、<b >填空题</b>9、【答案】4x【考点】二次根式的乘除法【解析】【解答】解:原式==4x .故答案为:4x .【分析】先进行二次根式的乘法计算,再进行二次根式的化简求解即可.10、【答案】150【考点】勾股定理的逆定理【解析】【解答】解:∵一个三角形三边的长度之比为3:4:5,且周长为60cm,∴三角形三边为15cm,20cm,25cm,且三角形为直角三角形,∴三角形的面积为:×15cm×20cm=150cm2,故答案为:150.【分析】根据已知求出三角形的三边长,根据定勾股理的逆定理得出三角形是直角三角形,根据面积公式求出即可.11、【答案】12【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴△ABD是等边三角形,即AD=AB=BD=3,∴菱形ABCD的周长为:3×4=12.故答案为:12.【分析】由四边形ABCD是菱形,可得AD=AB=BC=CD,又由∠A=60°,则可证得△ABD是等边三角形,继而求得答案.12、【答案】>【考点】一次函数的图象【解析】【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.13、【答案】1.70m【考点】中位数、众数【解析】【解答】解:由表可知,跳高成绩为1.70m的运动员人数最多,故这些运动员跳高成绩的众数为:1.70m.故答案为:1.70m.【分析】根据众数的概念找出该组数据中出现次数最多的数据即可.14、【答案】3【考点】算术平均数,方差【解析】【解答】解:∵S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],为平均数,∴s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组数据的平均数是3;故答案为:3.【分析】由方差的公式:S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],可得平均数为,从而得出答案.三、<b >解答题</b>15、【答案】解:(+ )(﹣1)== .【考点】二次根式的混合运算【解析】【分析】根据多项式乘以多项式进行计算即可解答本题.16、【答案】解:由题意得:BC=12米,设AC=x米,则AB=(24﹣x)米,x2+122=(24﹣x)2,解得:x=9,答:旗杆在离底部9米的位置断裂.【考点】勾股定理的应用【解析】【分析】首先设AC=x米,则AB=(24﹣x)米,根据勾股定理可得方程x2+122=(24﹣x)2,再解方程即可.17、【答案】(1)解:点A的坐标为(0,2),点B的坐标为(1,0)(2)解:过点A(0,2)、B(1,0)作如图所示的直线,则该直线为y=kx+2的图象.【考点】一次函数的图象【解析】【分析】(1)根据一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB,直接写出点A、B的坐标即可;(2)过点A(0,2)、B(1,0),作图即可.18、【答案】解:这个三角形的形是直角三角形,。
人教版数学八年级下册期末考试试题带答案
人教版数学八年级下册期末考试试卷一、选择题(本大题10小题,每小题3分,共30分),每小题只有一个正确答案。
1.下列各式是最简二次根式的是( )A.B.C.D.2.要使式子有意义,则x的取值范围是( )A.x>0B.x≥﹣3C.x≥3D.x≤33.数据2,4,3,4,5,3,4的众数是( )A.5B.4C.3D.24.一次函数y=﹣2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定成立的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12D.167.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为( )A.2B.3C.4D.28.由线段a,b,c组成的三角形不是直角三角形的是( )A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17D.a=13,b=14,c=159.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( )A.4B.16C.D.4或10.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能比较二、填空题(本大题6小题,每小题4分,共24分)。
11.求值:= .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 分.13.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 .14.如图,字母A所代表的正方形面积为 .15.函数y=kx与y=6﹣x的图象如图所示,则k= .16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:÷+×﹣.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.19.如图,在▱ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:﹣,其中x=1+2,y=1﹣2.21.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.22.国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?24.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC 沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.25.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑1.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.【分析】根据众数的定义:一组数据中出现次数最多的数据求解即可.【解答】解:这组数据的众数为:4.故选:B.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是掌握一组数据中出现次数最多的数据叫做众数.4.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.【分析】直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.【解答】解:∵四边形ABCD是菱形,∴AB∥DC,故选项A正确,不合题意;无法得出AC=BD,故选项B错误,符合题意;AC⊥BD,故选项C正确,不合题意;OA=OC,故选项D正确,不合题意;故选:B.【点评】此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.6.【分析】由折叠可得AE=A'E=2,∠EFB=∠EFB'=60°,根据平行线性质可得∠A'EF=120°,∠B'EF=60°,解直角三角形A'E'B'可得A'B'的长度,则可求矩形ABCD面积.【解答】解:∵折叠∴∠BFE=∠EFB'=60°,AB=A'B'∠A=∠A'=90°,AE=A'E=2∵ABCD是矩形∴AD∥BC∴∠DEF=∠EFB=60°∵A'E∥B'F∴∠A'EF+∠EFB'=180°∴∠A'EF=120°∴∠A'EB'=60°且∠A'=90°∴∠A'B'E=30°,且A'E=2∴B'E=4,A'B'=2=AB∵AE=2,DE=6∴AD=8∴S矩形ABCD=AB×AD=2×8=16故选:D.【点评】本题考查了折叠问题,等边三角形的性质,矩形的性质,关键灵活运用折叠的性质解决问题.7.【分析】先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:A.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.8.【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【解答】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题正确答案填写在答题卷相应的位置上11.【分析】根据二次根式的性质,求出算术平方根即可.【解答】解:原式=.故答案为:.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.13.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案为:64.【点评】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.15.【分析】首先根据一次函数y=6﹣x与y=kx图象的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=6﹣x与y=kx图象的交点横坐标为2,∴4=6﹣2,解得:y=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得k=2.故答案为:2【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.16.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BNBD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为10.【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:原式=+﹣2=4+﹣2=4﹣.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【分析】根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.【解答】解:在Rt△ABC中,∠ACB=90°根据勾股定理,得AB2=AC2+BC2=16,∴AB=4,又CD⊥AB∴AB•CD=AC•BC∴4CD=2×2即CD=【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.19.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】根据分式的减法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:﹣===x+y,当x=1+2,y=1﹣2时,原式=1+2+1﹣2=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(3,5)和(﹣4,﹣9)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,2)代入一次函数的解析式,求出m的值即可.【解答】解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.【点评】本题考查的是用待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.24.【分析】(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【解答】解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.25.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形【点评】本题考查了矩形的性质判定,等腰三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
人教版八年级下册数学期末试卷(附答案)
人教版八年级下册数学期末试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( ) A .﹣3 B .3 C .-13 D .132.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④ 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D10.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.计算1273-=___________. 3.若关于x 的分式方程2222x m m x x +=--有增根,则m 的值为_______. 4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩(2)410211x y x y -=⎧⎨+=⎩2.先化简,再求值:2211(1)m m m m+--÷,其中3.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、A5、B6、A7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、7或-123、14、x=25、36、13 2三、解答题(本大题共6小题,共72分)1、(1)42xy=⎧⎨=⎩;(2)61xy=⎧⎨=-⎩.2、33、(1)略(2)1或24、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)略;(2)8.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
新人教版八年级数学下册期末考试卷【加答案】
新人教版八年级数学下册期末考试卷【加答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形715 )A.点P B.点Q C.点M D.点N8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b+的结果是________.21273=___________.3.若m+1m =3,则m 2+21m=________. 4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、A6、B7、C8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、8333、74、x >3.5、706、20 三、解答题(本大题共6小题,共72分) 1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、11a -,1.3、8k ≥-且0k ≠.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是 A .12 B .8 C .23D . 2.0 2.以下列各组数为边长,不能构成直角三角形的是A .5,12,13B .1,2,5C .1,3,2D .4,5,6 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 4.如图,两把完全一样的直尺叠放在一起,重合的部分 构成一个四边形,这个四边形一定是A .矩形B .菱形C .正方形D .无法判断5.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是 A .y x =- B .1y x =+ C .21y x =-+ D .1y x =-6.下表是两名运动员10次比赛的成绩,21s ,22s 分别表示甲、乙两名运动员测试成绩的方差,则有8分9分 10分 甲(频数) 4 2 4 乙(频数) 343A .2212s s >B .2212s s =C .2212s s <D .无法确定7.若a ,b ,c 满足0,0,a b c a b c ++=⎧⎨-+=⎩则关于x 的方程20(0)ax bx c a ++=≠的解是A .1,0B .-1,0C .1,-1D .无实数根8.如图,在ABC △中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,第10题图NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM =x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题9.函数1y x =-x 的取值范围是 . 10.如图,在平面直角坐标系xOy 中,点A (0,2),B (4,0), 点N 为线段AB 的中点,则点N 的坐标为 . 11.如图,在数轴上点A 表示的实数是 .12.如图,在平面直角坐标系xOy 中,直线1l ,2l 分别是函数11y k x b =+和22y k x b =+的图象,则可以估计关于x 的不等式1122k x b k x b +>+的解集为 .第11题图 第12题图 第13题图13.如图,点A ,B ,E 在同一条直线上,正方形ABCD ,BEFG 的边长分别为3,4,H 为线段DF 的中点,则BH = .14.命题“全等三角形的对应角相等”的逆命题是 .这个逆命题是 (填“真”或“假”)命题.ED CA15.若函数2 2 (2),2 (2)x x y x x ⎧+≤=⎨>⎩的函数值y =8,则自变量x 的值为 .16.阅读下面材料:小明想探究函数21y x =-的性质,他借助计算器求出了y 与x 的几组对应值,并在平面直角坐标系中画出了函数图象:x … -3 -2 -1 1 2 3 … y…2.831.731.732.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是 . 请写出函数21y x =-的一条性质: .三、解答题17.已知51a =+,求代数式227a a -+的值.18.解一元二次方程:23220x x +-=.19.如图,在□ABCD 中,AC ,BD 相交于点O ,点E 在AB 上,点F 在CD 上,EF 经过点O .求证:四边形BEDF 是平行四边形.20.如图,在平面直角坐标系xOy 中,直线l 的表达式为26y x =-,点A ,B 的坐标分别为(1,0),(0,2),直线AB 与直线l 相交于点P . (1)求直线AB 的表达式; (2)求点P 的坐标;(3)若直线l 上存在一点C ,使得△APC 的面积是△APO 的面积的2倍,直接写出点C 的坐标.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.如图,在□ABCD 中,∠ABC ,∠BCD 的平分线分别交AD 于点E ,F ,BE ,CF 相交于点G . (1)求证:BE ⊥CF ;(2)若AB =a ,CF =b ,写出求BE 的长的思路.23.甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 8789 79 54 88 92 90 87 68 76 94 84 76 69 83 92乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 9273 76 92 84 57 87 89 88 94 83 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由;甲校:.乙校:.(4)综合来看,可以推断出校学生的数学学业水平更好一些,理由为.24.如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.25.在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-2,0),B(0,2),C(-2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k 的取值范围.参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)三、解答题(本题共52分,17-22题每小题5分,23-24题每小题7分,25题8分)17.解:227a a -+2(1)6a =-+. ……………………………………………3分当1a =时,原式11=. ……………………………………………5分18.解:3a =,2b =,2c =-.224243(2)28b ac -=-⨯⨯-=.………………………………………3分∴212233b x a --±-===⨯. ……………………4分∴原方程的解为113x -+=,213x --=. ………5分19.证明:∵在□ABCD 中,AC ,BD 相交于点O , ∴DC ∥AB ,OD =OB .………………………………………2分∴∠FDO =∠EBO ,∠DFO =∠BEO . ∴△ODF ≌△OBE . ………………………………3分∴OF =OE .………………………………………………4分∴四边形BEDF 是平行四边形. ……………………5分20.解:(1)设直线AB 的表达式为y =kx +b .由点A ,B 的坐标分别为(1,0),(0,2),可知0,2.k b b +=⎧⎨=⎩解得2,2.k b =-⎧⎨=⎩所以直线AB 的表达式为y =-2x +2. …………………2分(2)由题意,得22,2 6.y x y x =-+⎧⎨=-⎩解得2,2.x y =⎧⎨=-⎩所以点P 的坐标为(2,-2). …………………3分(3)(3,0),(1,-4). ……………………………5分21.解:(1)由题意,得22(2)4(1)0m m ∆=--->. 解得12m >. ……………………………3分(2)答案不唯一.如: 取m =1,此时方程为220x x -=.解得 120,2x x ==. ……………………………5分22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD .…………………………………1分∴∠ABC +∠BCD =180°.∵BE ,CF 分别是∠ABC ,∠BCD 的平分线, ∴∠EBC =12∠ABC ,∠FCB =12∠BCD . ………………2分∴∠EBC +∠FCB =90°. ∴∠BGC =90°. 即BE ⊥CF .…………………………………3分(2)求解思路如下:a .如图,作EH ∥AB 交BC 于点H ,连接AH 交BE 于点P .b .由BE 平分∠ABC ,可证AB =AE ,进而可证四边形ABHE 是菱形,可知AH ,BE 互相垂直平分;c .由BE ⊥CF ,可证AH ∥CF ,进而可证四边形AHCF 是平行四边形,可求AP =2b; d .在Rt △ABP 中,由勾股定理可求BP ,进而可求BE 的长. …5分23.解:(1)补全条形统计图,如下图.……………2分(2)86;92. ………………4分 (3)答案不唯一,理由需包含数据提供的信息. ……6分 (4)答案不唯一,理由需支撑推断结论……………………7分 24.(1)补全的图形,如图所示.………………………………1分 (2)AG =DH .………………………2分证明:∵四边形ABCD 是菱形,∴AD CD CB ==,AB ∥DC ,ADC ABC ∠=∠.…………………3分 ∵点F 为点B 关于CE 的对称点, ∴CE 垂直平分BF .∴CB CF =,CBF CFB ∠=∠.…………………………………4分 ∴CD CF =. 又∵FH CG =, ∴DG CH =.∵180ABC CBF ∠+∠=︒,180DCF CFB ∠+∠=︒, ∴ADC DCF ∠=∠.∴△ADG ≌△DCH . ………………………5分 ∴AG DH =. (3)不存在.……………6分理由如下:由(2)可知,∠DAG =∠CDH ,∠G =∠GAB , ∴∠DPA =∠PDG +∠G =∠DAG +∠GAB =70°>60°.…………7分∴△ADP 不可能是等边三角形. 25.(1)①A ,B ;……………………………2分②当PM +PN =4时,可知点P 在直线l 1:2y x =+,直线l 2:2y x =-上. 所以直线l 的近距点为在这两条平行线上和在这两条平行线间的所有点. 如图1,EF 在OA 上方,当点E 在直线l 1上时,n 的值最大,为22-+. ……3分如图2,EF 在OA 下方,当点F 在直线l 2上时,n 的值最小,为2-. …4分当0n =时,EF 与AO 重合,矩形不存在.综上所述,n 的取值范围是222n -≤≤-+,且0n ≠.…………6分 (2)1212k --≤≤-.……………8分人教版八年级下学期期末考试数学试卷(二)说明:1.考试用时100分钟,满分为120分;图1图22.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B C .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cm B .220cm C .240cm D .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是. 12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:20---++.(2)(51)3(36)18.已知,如图在ΔABC中,AB=BC=AC=2cm,AD是边BC上的高.求AD的长.19.如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、解答题(二)(本大题3小题,每小题7分,共21分).20.一次函数y=2x-4的图像与x轴的交点为A,与y轴的交点为B.(1)A,B两点的坐标分别为A(,),B(,);(2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序; (2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?五、解答题(三)(本大题3小题,每小题9分,共27分).23.观察下列各式:312311=+;413412=+;514513=+;…… 请你猜想: (1=,=; (2)计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来.12kmCAB5km24.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①求证:四边形BFDG是菱形;②若AB=3,AD=4,求FG的长.25.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A 点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.人教版八年级下学期期末考试数学试卷(三)总分:120分考试时间:100分钟一、选择题(每题3分,共10题,30分)1. x的取值范围是A.3x2≥ B.3x2> C.2x3≥ D.2x3>2.下列二次根式中,最简二次根式是3.公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.在本学期数学期中考中,某小组8名同学的成绩如下: 90、103、105、105、105、115、140、140,则这组数据的众数为( ). A .105 B .90 C .140 D .50 5.下列几组数中,不能作为直角三角形三边长度的是A .1.5,2,2.5B . 3,4,5,C .5,12,13D .20,30,406.已知一组数据123n x x x x ,,,…,的方差是7,那么数据12x x -5,-5,3x 5-,…, n x 5-的方差为A.2 B.5 C.7 D.97. 如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<B.x<3C.x>D.x>38.名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:175设两队队员身高的平均数依次为x甲,x乙,身高的方差依次为2S甲,2S乙,则下列关系中完全正确的是A.x x=甲乙,22S S>乙甲B.x x=甲乙,22S S<乙甲C.x x>甲乙,22S S>乙甲D.x x<甲乙,22S S<乙甲9. 如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE 垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是A.2 B.2.2C.2.4 D.2.510、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30 从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示.根据图象得到下列结论,其中错误..的是A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.如图,Rt △ABC 中,∠BAC=90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF=3,则AE= .12.若点1(1,)A y 和点2(2,)B y 都在一次函数2+-=x y 的图象上,则y 1 y 2(选择“>”、“<”、“=”填空)13.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________ 14. 如图,菱形ABCD 周长为16,∠ADC =120°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是15.如图,在矩形ABCD,AB=3,BC=4,E 是BC 边上一点,连接AE ,把∠B 沿AE 折 叠,使B 点落在B ’处,当△CEB ’为直角三角形时,BE 的长为____________。
人教版八年级下册数学期末考试试卷及答案
人教版八年级下册数学期末考试试题一、单选题1.下列式子中,属于最简二次根式的是()AB C D 2.在以下列数值为边长的三角形中,不是直角三角形的是()A .5,12,13B .6,8,10C .4,7,9D .9,40,413.下列计算正确的是()AB =C 1=D 24.下列各式中,y 随x 的变化关系式是正比例函数的是()A .y =2x B .y =2x C .y =x ﹣1D .y =x 2﹣15.一次函数2021y x =-+的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限6.新冠疫情期间,某地有五家医院的医生踊跃报名驰援武汉,人数分别为17,17,18,19,21,以上数据的中位数为()A .17B .18C .18.5D .197.如图,直线y kx b =+()0b>经过点(2,0),则关于x 的不等式0kx b +≥的解集是()A .x>2B .x<2C .x≥2D .x≤28.如图,在平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是()A .6B .8C .9D .109.如图,在菱形ABCD 中,AC AB =,则ABC ∠=()A .30B .45C .60D .7510.样本方差的计算公式()()()22221230120202030S x x x ⎡⎤=-+-++-⎣⎦ 中,数字30和20分别表示样本的()A .众数、中位数B .方差、标准差C .数据的个数、中位数D .数据的个数、平均数二、填空题11有意义的x的取值范围是______.12.若三角形的边长分别为6、8、10,则它的最长边上的高为_____.13.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为2=0.4s 甲,2=0.3s乙,则成绩较为稳定的是________(填“甲”或“乙”).14.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____.15.返校复学前,小张进行了14天体温测量,结果统计如下:体温36.336.436.536.636.736.8天数123431则小张这14天体温的众数是__________.16.函数y =kx 与y =6–x 的图像如图所示,则k =________.17.菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.18.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED=____度.19.如图,有一块菱形纸片ABCD ,沿高DE 剪下后拼成一个矩形,矩形的长和宽分别是5cm ,3cm .EB 的长是______.三、解答题20.计算:3172912138-21.已知a 32,23b =+,求22a b ab +的值.22.已知,如图,E 、F 分别为□ABCD 的边BC 、AD 上的点,且∠1=∠2,求证:AE=CF .23.某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数1522(1)填空:10名学生的射击成绩的众数是_________,中位数是_________.(2)求这10名学生的平均成绩.24.已知函数y =x+2.(1)填表,并画出这个函数的图象;x …0…y =x+2…0…(2)判断点A(﹣3,1)是否在该函数的图象上,并说明理由.25.如图,ABCD 的对角线AC ,BD 相交于点O ,且5AB =,4AO =,3BO =.求证:ABCD 是菱形.26.如图,在平面直角坐标系中,点(A ,点B 在x 轴的正半轴上,且5OB =.(1)写出点B的坐标;(2)求AB的长.27.如图,E、F分别是菱形ABCD的边AD、BC的中点,若四边形AECF是矩形,且1AE ,求菱形ABCD的面积.28.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?29.为落实“精准扶贫”精神,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图示,直接写出日销售量的最大值为________;(2)根据图示,求李大爷家百香果的日销售量y与上市时间x的函数解析式,并求出第15天的日销售量.参考答案1.A【详解】解:AB=2,不是最简二次根式,不正确;C,不是最简二次根式,不正确;D不是最简二次根式,不正确.故选:A.2.C【解析】【详解】解:A、∵52+122=132,∴此三个数值可以构成直角三角形,不符合题意;B、∵62+82=102,∴此三个数值可以构成直角三角形,不符合题意;C、∵42+72≠92,∴此三个数值不能构成直角三角形,符合题意;D、∵92+402=412,∴此三个数值可以构成直角三角形,不符合题意,故选:C.【点睛】本题考查勾股定理的逆定理,熟练掌握利用勾股定理的逆定理判断直角三角形的方法步骤是解答的关键.3.B【解析】【分析】根据合并同类项,二次根式的乘法和除法运算法则逐项分析即可.【详解】A.B.=C.D.故选B.【点睛】本题考查了合并同类项,二次根式的乘法和除法运算法则,掌握合并同类项,二次根式的乘法和除法运算法则是解题的关键.4.A【解析】【详解】解:形如y=kx,k为常数且k≠0,这样的函数称为正比例函数,符合条件的只有选项A,故答案选A.5.C【解析】【分析】根据一次函数的性质分析一次函数的解析式的系数与常数项的符号,即可确定函数图像在第几象限.【详解】2021y x =-+,10,20210k b =-<=>,∴2021y x =-+的图象经过一、二、四象限,不经过第三象限.故选C .【点睛】本题考查了一次函数图像的性质,掌握一次函数图像的性质是解题的关键.6.B【解析】【分析】把一组数据按照从小到大(或从大到小)排列,若数据为奇数个,则排在最中间的数据就是这组数据的中位数,若数据的个数为偶数个,则最中间两个数据的平均数就是这组数据的中位数,再根据中位数的定义可得答案.【详解】解:根据中位数的定义知,这组数据的中位数为18,故选:B .【点睛】本题考查的是中位数的概念,掌握中位数的概念是解题的关键.7.D【解析】【分析】写出函数图象在x 轴上方及x 轴上所对应的自变量的范围即可.【详解】解:当x≤2时,y≥0.所以关于x 的不等式kx +3≥0的解集是x≤2.故选:D .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.8.B【解析】【分析】由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案.【详解】解:∵AC的垂直平分线交AD于E,∴AE=CE,∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=5,∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,故选:B.【点睛】此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE.9.C【解析】【分析】根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,再根据等边三角形的性质解答.【详解】解:在菱形ABCD中,AB=BC,∵AC=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°.故选:C.【点睛】本题考查了菱形的性质,主要利用了菱形的四条边都相等的性质,熟记性质并判断出△ABC 是等边三角形是解题的关键.10.D【解析】【分析】方差公式中2222121[()(()]n s x x x x x x n=-+-++- ,n 、x 分别表示数据的个数、平均数.【详解】解:样本方差的计算公式()()()222212301S 20202030x x x ⎡⎤=-+-++-⎣⎦ 中,数字30和20分别表示样本的数据的个数、平均数.故选D【点睛】本题考核知识点:方差.解题关键点:理解方差公式的意义.11.21x ≥-【解析】【分析】根据二次根式有意义的条件,被开方数为非负数,即可求得的x 的取值范围.【详解】有意义,210x ∴+≥,解得21x ≥-,故答案为:21x ≥-.【点睛】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键.12.4.8【解析】【详解】∵三角形三边的长分别为6、8和10,62+82=100=102,∴此三角形是直角三角形,边长为10的边是最大边,设它的最大边上的高是h ,∴6×8=10h ,解得,h=4.8,故答案为4.8.【点睛】本题主要考查勾股定理的逆定理以及三角形的面积公式,熟记并会应用是解题的关键.13.乙【解析】【分析】根据方差越大,波动越大,成绩越不稳定,方差越小,波动越小,成绩越稳定即可求解.【详解】解:因为2=0.4s 甲,2=0.3s乙,所以22s s 甲乙,所以乙成绩较为稳定.故答案为:乙.【点睛】本题主要考查方差的意义,解题的关键是要熟练掌握方差的意义.14.4【解析】【分析】首先求出直线y =12x ﹣1向上平移m 个单位长度得到y =12x ﹣1+m ,结合y =12x+3,即可求得m 的值.【详解】解:直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,∴﹣1+m =3,解得m =4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b 向上平移a 个单位,则解析式为y=kx+b+a ,向下平移a 个单位,则解析式为y=kx+b-a .15.36.6【解析】【分析】根据众数的定义判断即可;【详解】根据表格数据可知,36.6度出现了4天,出现的天数最多,故众数是36.6.故答案是36.6.【点睛】本题主要考查了众数的定义,准确分析表格是解题的关键.16.2【解析】【分析】首先把一次函数y=6-x 与y=kx 图像交点坐标的横坐标为2代入一次函数y=6﹣x 中,求得交点坐标为(2,4),然后代入y=kx 求得k 值即可.【详解】∵一次函数y=6﹣x 与y=kx 图像的交点横坐标为2,∴y=6﹣2=4,∴交点坐标为(2,4),把(2,4)代入y=kx ,得2k=4,解得:k=2.故答案为:2.【点睛】本题考查了两条直线相交问题,解题的关键是交点坐标适合y=6﹣x 与y=kx 两个解析式.17.20【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=12×8=4,BO=12×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴5AB =.∴此菱形的周长为:5×4=20故答案为:20.18.45【解析】【分析】根据正三角形和正方形的性质可得∠EAB=150°,AE=AB ,从而得出∠AEB 的大小,进而得出∠BED 的大小.【详解】∵四边形ABCD 是正方形,△AED 是正三角形∴∠EAD=60°,∠AED=60°,∠DAB=90°,AE=AD=AB∴△AEB 是等腰三角形,∠EAB=150°∴∠AEB=∠ABE=15°∴∠BED=45°故答案为:45°【点睛】本题考查正方形和正三角形的性质,解题关键利用正三角形和正方形的性质,得出∠AEB=∠ABE .19.1cm【解析】【分析】根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt △AED 中,求出AE 即可解决问题.【详解】解:∵四边形ABCD 是菱形,∴AB=BC=CD=AD=5(cm),∵DE ⊥AB,DE=3(cm),在Rt △ADE 中222253AD DE -=-,∴BE=AB−AE=5−4=1(cm),故答案为1cm.【点睛】本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.20.12-【解析】【分析】先根据二次根式的性质化简二次根式,同时计算立方根,最后进行实数的加减运算即可.【详解】3=-1()2=-12=-【点睛】本题考查了二次根式的性质,求一个数的立方根,掌握二次根式的性质是解题的关键.21.()ab a b +;-【解析】【分析】先将代数式因式分解,进行二次根式的混合运算计算,ab a b +的值,再代入求解即可.【详解】22a b ab +()ab a b =+a 2=,2b =2)1ab ∴==-22a b +=+=∴原式1=-⨯=-【点睛】本题考查了提公因式法因式分解,二次根式的混合运算,先用提公因式法因式分解是解题的关键.22.详见解析【解析】【分析】通过证明三角形全等求得两线段相等即可.【详解】∵四边形ABCD为平行四边形∴∠B=∠D,AB=CD∵∠1=∠2,∠B=∠D,AB=CD∴△ABE≌△CDF∴AE=CF.【点睛】本题主要考查平行四边形性质与全等三角形,解题关键在于找到全等三角形. 23.(1)7环,7环;(2)这10名学生的平均成绩为7.5环.【解析】【分析】(1)根据众数和中位数的定义,可找到问题答案;(2)根据平均数的定义计算,即可计算得到答案.【详解】(1)∵10名学生成绩中,7环总共出现5次,次数最多∴众数是7环∵中位数是所有成绩从小到大排列中间两个数据的平均数又∵中间两个数据均为7环∴中位数为7环(2)67582927.510+⨯+⨯+⨯=环∴这10名学生的平均成绩为7.5环.【点睛】本题考察了数据分析中众数、中位数、平均数的知识;求解关键是准确掌握中位数、众数、平均数定义,从而计算得到答案.24.(1)2,﹣2,作图见解析;(2)点A(﹣3,1)不在该函数的图象上,见解析.【解析】【分析】(1)分别代入x =0,y =0求出与之对应的y ,x 的值,再描点、连线,即可画出函数图象;(2)代入x =﹣3求出与之对应的y 值,再将其与1y =比较后即可得出结论.【详解】解:(1)当x =0时,y =0+2=2;当y =0时,x+2=0,解得:x =﹣2.描点:()()0,2,2,0,-连线,画出函数图象,如图所示.故答案为:2;﹣2.(2)点A (﹣3,1)不在该函数的图象上,理由如下:当x =﹣3时,y =﹣3+2=﹣1,﹣1≠1,∴点A (﹣3,1)不在该函数的图象上.【点睛】本题考查的是一次函数的作图,一次函数的性质,掌握一次函数的作图与性质是解题的关键.25.见解析【解析】【分析】根据已知数据,先求证ABO 是Rt ,即AC BD ⊥,进而根据菱形的判定定理即可得证.【详解】5AB =,4AO =,3BO =,22525AB ==,22224325AO BO +=+=,222AB AO BO ∴=+,ABO ∴V 是Rt ,90AOB ∠=︒∴,即AC BD ⊥,四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.【点睛】本题考查了勾股定理的逆定理,菱形的判定定理,勾股定理证得ABO 为Rt 是解题的关键.26.(1)(5,0)B ;(2)2【解析】【分析】(1)根据点B 在x 轴的正半轴上,且5OB =即可写出B 点的坐标;(2)过A 点作AC OB ⊥于C ,求得,AC BC ,进而根据勾股定理即可求得AB 的长.【详解】(1) 点B 在x 轴的正半轴上,且5OB =,(5,0)B ∴,(2)过A 点作AC OB ⊥于C ,如图,(A ,(4,0)C ∴,1AC BC ∴==,2AB ∴==.【点睛】本题考查了勾股定理在平面直角坐标系中的应用,掌握勾股定理是解题的关键.27.【解析】【分析】由菱形的性质求得CD,再由勾股定理得CE,再根据菱形的面积公式求得结果.【详解】解:∵AECF是矩形,∴∠AEC=90°,∵E是AD的中点,∴DE=AE=1,∵ABCD是菱形,∴CD=AD=2∴CE=,∴菱形ABCD的面积S AD CE=⨯=【点睛】本题主要考查了菱形的性质,矩形的性质,菱形的面积公式,勾股定理,关键是求CE的长度.28.(1)甲、乙样本的平均数分别为:40kg,40kg;产量总和为7840千克(2)乙.【解析】【分析】(1)根据折线图先求出甲山和乙山的杨梅的总数就可以求出样本的平均数;利用样本平均数代替总体平均数即可估算出甲、乙两山杨梅的产量总和;(2)根据甲乙两山的样本数据求出方差,比较大小就可以求出结论.【详解】解:(1)甲山上4棵树的产量分别为:50千克、36千克、40千克、34千克,所以甲山产量的样本平均数为:50364034==404x+++千克;乙山上4棵树的产量分别为:36千克、40千克、48千克、36千克,所以乙山产量的样本平均数为36404836=4x+++千克.答:甲、乙两片山上杨梅产量数样本的平均数分别为:40kg,40kg;甲、乙两山的产量总和为:100×98%×2×40=7840千克.(2)由题意,得S 甲2=2222(4050)(4036)(4040)(4034)=384-+-+-+-(千克2);S 乙2=2222(4036)(4040)(4048)(4036)=244-+-+-+-(千克2)∵38>24∴S 2甲>S 2乙∴乙山上的杨梅产量较稳定.【点睛】本题考查了折线统计图、方差、平均数和极差,从图中找到所需的统计量是解题的关键.29.(1)960千克;(2)80,0121202400,1220x x y x x ≤⎧=⎨-+≤⎩<<,第15天的日销售量为600千克.【解析】【分析】(1)根据图象找出图象最高点的纵坐标即可得答案;(2)分别设出两个函数的解析式,利用待定系数法即可得y 与x 的解析式,把x=15代入12<x≤20时的解析式,求出y 值即可得第15天的日销售量.【详解】(1)由图像可知,函数的最大值为960,∴日销售量的最大值为960千克,故答案为:960千克.(2)当012x <≤时,设1y k x =,把(12,960)代入上式得112960k =,解得:180k =,∴函数解析式为80y x =,当1220x ≤≤时,设2y k x b =+,把(12,960),(20,0)代入得:2212960200k b k b +=⎧⎨+=⎩,解得:21202400k b =-⎧⎨=⎩,∴函数解析式为1202400y x =-+,∴y 与x 的函数解析式为80,(012)1202400,(1220)x x y x x ≤⎧=⎨-+≤⎩<<,当15x =时,120152400600y =-⨯+=∴第15天的日销售量为600千克.【点睛】本题考查函,用待定系数法求函数的解析式以及分析最值的方法,会看图找出关键点是本题的关键,此类题是函数与实际问题相结合,是考试常考题型.。
新人教版八年级数学下册期末考试【含答案】
新人教版八年级数学下册期末考试【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩ 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.若a =7+2、b =2﹣7,则a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、B5、D6、A7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、22()1y x =-+3、3m ≤.4、8.5、96、6三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、22x -,12-.3、(1)-3x +2<-3y +2,理由见解析;(2)a <34、略5、(1)略;(2)8.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
最新人教版八年级下册数学《期末考试卷》(含答案解析)
最新人教版八年级下册数学《期末考试卷》(含答案解析)人教版八年级下册期末考试数学试卷一、选择题1.若a 是最简二次根式,则a 的值可能是() A. -2B. 2C.32D. 82. 下列四组线段中,可以构成直角三角形的是() A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 33.下列计算正确的是() A.235+= B. 2332-= C. (2)2=2D.39=34.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为() A. 4,5B. 5,4C. 4,4D. 5,55.能判定四边形ABCD 是平行四边形的是() A. AD //BC ,AB =CD B. ∠A =∠B ,∠C =∠D C. ∠A =∠C ,∠B =∠DD. AB =AD ,CB =CD6.已知()()122,,4,A y B y -是一次函数3y x =-+的图象上的两个点,则12,y y 的大小关系是() A. 12y y >C. 12y y =D. 不能确定7.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC 连接AE 交CD 于点F ,则∠AFC 等于()A .112.5°B. 120°C. 135°D. 145°8.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A. 5.5B. 5C. 6D. 6.59.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是()A .(6,8)B. (10,8)C. (10,6)D. (4,6)10.如图①,正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作,PQ BD PQ ∥与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,APQ V 的面积为()A. 24cmC. 262cmD. 242cm二、填空题11.26x -x 的取值范围是_______12.下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数x (秒) 51 50 51 50 方差2S (秒2) 3.53.514.515.5根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________. 13.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.14.如图,ABC ?的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .三、解答题16.计算:(1)()()1883131-++-(2)3231233÷17.如图,平行四边形ABCD 中,点E F 、分别在AB CD 、上,且,BE DF EF =与AC 相交于点P ,求证:PA PC =.18.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,85(2)使平行四边形有一锐角为45°,且面积为4.19.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.20.A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中12l l ,表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填12l l 或);甲的速度是__________km/h ;乙的速度是________km/h .(2)甲出发后多少时间两人恰好相距5km ?21.将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1)试判断四边形DHBG 为何种特殊的四边形,并说明理由;(2)若AB =8,AD =4,求四边形DHBG 的面积.22.为迎接:“国家卫生城市”复检,某市环卫局准备购买A ,B 两种型号的垃圾箱,通过市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需540元,购买2个A 型垃圾箱比购买3个B 型垃圾箱少用160元.(1)求每个A 型垃圾箱和B 型垃圾箱各多少元?(2)该市现需要购买A ,B 两种型号的垃圾箱共30个,其中买A 型垃圾箱不超过16个.①求购买垃圾箱的总花费w (元)与A 型垃圾箱x (个)之间的函数关系式;②当买A 型垃圾箱多少个时总费用最少,最少费用是多少? 23.如图,在平面直角坐标系中,直线l1:162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线l2:1 2y x=交于点A .(1)求出点A 的坐标(2)若D 是线段OA 上的点,且△COD 的面积为12,求直线CD 的解析式(3)在(2)的条件下,设P 是射线CD 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点P 的坐标;若不存在,请说明理由.答案与解析一、选择题1.a的值可能是()A. -2B. 2C. 32D. 8【答案】B【解析】【分析】直接利用最简二次根式的定义分析得出答案.∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2. 下列四组线段中,可以构成直角三角形的是()A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,3 【答案】B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.3.下列计算正确的是()A. =2-= C. )2=2 D. 3 【答案】C利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.【详解】解:A3∴选项A不正确;B、=∴选项B不正确;C、)2=2,∴选项C正确;D3,∴选项D不正确.故选C.【点睛】本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.4.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A. 4,5B. 5,4C. 4,4D. 5,5【答案】A【解析】【分析】根据众数及中位数定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.【点睛】本题考查(1)、众数;(2)、中位数.5.能判定四边形ABCD是平行四边形的是()A. AD//BC,AB=CDB. ∠A=∠B,∠C=∠DC. ∠A=∠C,∠B=∠DD. AB=AD,CB=CD【答案】C根据平行四边形的判定定理依次确定即可.【详解】A. AD//BC ,AB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;B. ∠A=∠B ,∠C=∠D ,不能判定四边形ABCD 是平行四边形,故不符合题意;C. ∠A=∠C ,∠B=∠D ,能判定四边形ABCD 是平行四边形,故符合题意; D. AB=AD ,CB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;故选:C.【点睛】此题考查平行四边形的判定定理,熟记定理内容即可正确解答.6.已知()()122,,4,A y B y -是一次函数3y x =-+的图象上的两个点,则12,y y 的大小关系是() A. 12y y > B. 12y y <C. 12y y =D. 不能确定【答案】A 【解析】【分析】由函数解析式3y x =-+可知0k <,则y 随x 的增大而减小,比较x 的大小即可确定y 的大小.【详解】3y x =-+中0k <,∴y 随x 的增大而减少,∵24-<,∴12y y >;故选:A .【点睛】本题考查了一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.7.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC 连接AE 交CD 于点F ,则∠AFC 等于()A. 112.5°B. 120°C. 135°D. 145°【答案】A 【解析】根据正方形的性质及已知条件可求得∠E 的度数,从而根据外角的性质可求得∠AFC 的度数.【详解】∵四边形ABCD 是正方形,CE=CA ,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFC=90°+22.5°=112.5°. 故答案为A.【点睛】本题考查正方形的性质,解题的关键是掌握正方形的性质.8.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A. 5.5B. 5C. 6D. 6.5【答案】A 【解析】【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果.【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形,∴∠B=90°,AE=12AC ,∴222251213AB BC +=+=,∴AE=6.5,∵点A 表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E 表示的数是5.5,即对角线AC 、BD 的交点表示的数是5.5;故选A .【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.9.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是()A. (6,8)B. (10,8)C. (10,6)D. (4,6)【答案】B 【解析】【分析】首先根据菱形的性质求出AB 的长度,再利用勾股定理求出DO 的长度,进而得到点C 的坐标.【详解】∵菱形ABCD 的顶点A 、B 的坐标分别为(-6,0)、(4,0),点D 在y 轴上,∴AB=AO+OB=6+4=10,∴AD=AB=CD=10,∴22221068DO AD AO -=-=,∴点C 的坐标是:(10,8).故选:B .【点睛】本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO 的长度. 10.如图①,正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作,PQ BD PQ ∥与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,APQ V 的面积为()A. 24cmB. 26cmC. 262cmD. 242cm【答案】B 【解析】【分析】由图②知,运动2秒时,42y PQ ==,距离最长,再根据运动速度乘以时间求得路程,可得点P 的位置,根据线段的和差,可得CP 的长,最后由APQ ABP ADQ CPQ ABCD S S S S S =---V V V V 正方形即可求得答案.【详解】由图②知,运动2秒时,42y =,y 的值最大,此时,点P 与点B 重合,则42PQ BD ==,∵四边形ABCD 为正方形,则222AB AD BD +=,∴4AB AD ==,由题可得:点P 运动3秒时,则P 点运动了32?=6cm ,此时,点P 在BC 上,如图:∴862CP =-=cm ,∴点P 为BC 的中点,∵PQ ∥BD ,∴点Q 为DC 的中点,∴APQ ABP ADQ CPQ ABCD S S S S S =---V V V V 正方形21114424222222=-??-??-??6=.故选:B.【点睛】本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,y=二、填空题11.x的取值范围是_______【答案】3x…【解析】【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:Q有意义,260x∴-…,解得:3x….故答案为3x….【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.12.下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.【答案】队员2【解析】【分析】根据方差的意义结合平均数可作出判断.【详解】因为队员1和2的方差最小,队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故答案为:队员2.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.【答案】y =2x ﹣2.【解析】【详解】解:根据一次函数的平移,上加下减,可知一次函数的表达式为y =2x-2.14.如图,ABC ?的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.【答案】3 【解析】【分析】首先判断△BAE 、△CAD 是等腰三角形,从而得出BA=BE ,CA=CD ,由△ABC 的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ .【详解】由题知BQ 为AE 的垂直平分线,AB BE ∴=,由题意知CP 为AD 的垂直平分线,AC CD ∴=. 26ABC C ?=Q ,且10BC =,16AB AC ∴+=.16AB AC BE CD ∴+=+=.16BD DE DE CE ∴+++=.6DE ∴=.又点P ,Q 分别为AD ,AE 的中点,116322PQ DE ∴==?=.【点睛】本题考查等腰三角形判定与性质,解题关键在于利用中位线定理求出PQ.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,则EB=EB′,AB=AB ′=3,可计算出CB′=2,设BE=x ,则EB′=x ,CE=4-x ,然后在Rt △CEB′中运用勾股定理可计算出x .②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=3,BC=4,∴2243 ,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得3x 2=,∴BE=32;②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为32或3.故答案为:32或3.三、解答题16.计算:(1)11+(2÷【答案】(12+;(2)【解析】【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=2÷3==82【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.17.如图,平行四边形ABCD 中,点E F 、分别在AB CD 、上,且,BE DF EF =与AC 相交于点P ,求证:PA PC =.【答案】见解析【解析】【分析】连接AF ,CE ,由四边形ABCD 是平行四边形,可得AB ∥CD ,AB=CD ,又由BE=DF ,证得AE=CF ,即可证得四边形AECF 是平行四边形,从而证得结论.【详解】连接AF ,CE ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∵BE=DF ,∴AB-BE=CD-DF ,∴AE=CF ,∴四边形AECF 是平行四边形,∴PA=PC .【点睛】本题考查了平行四边形的性质与判定.注意准确作出辅助线,证得四边形AECF 是平行四边形是解此题的关键.18.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,8,5;(2)使平行四边形有一锐角为45°,且面积为4.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)本题中8实际上是长为2宽为2的正方形的对角线长,5实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.【详解】(1)△ABC所求;(2)四边形ABCD为所求.【点睛】关键是确定三角形的边长,然后根据边长画出所求的三角形.19.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.【答案】(1)40;(2)30,50;(3)50500元【解析】【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50; (3)2063012501080810046121084+?+?+?+?++++×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元. 故答案为(1)40;(2)30,50;(3)50500元.【点睛】本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中12l l ,表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填12l l 或);甲的速度是__________km/h ;乙的速度是________km/h .(2)甲出发后多少时间两人恰好相距5km ?【答案】(1)2l ; 30; 20;(2)甲出发后1.3h 或者1.5h 时,甲乙相距5km .【解析】【详解】解:(1)乙离开A 地的距离越来越远,图像是2l ;甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;(2)由图可求出13060y x =-+,22010y x =- 由125y y -=得1.3x h =;由215y y -=得 1.5x h = 答:甲出发后1.3h 或者1.5h 时,甲乙相距5km .考点:一次函数的应用21.将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1)试判断四边形DHBG 为何种特殊的四边形,并说明理由;(2)若AB =8,AD =4,求四边形DHBG 的面积.【答案】(1)四边形DHBG 是菱形,理由见解析;(2)20.【解析】【分析】(1)由四边形ABCD 、FBED 是完全相同的矩形,可得出△DAB ≌△DEB (SAS ),进而可得出∠ABD=∠EBD ,根据矩形的性质可得AB ∥CD 、DF ∥BE ,即四边形DHBG 是平行四边形,再根据平行线的性质结合∠ABD=∠EBD ,即可得出∠HDB=∠HBD ,由等角对等边可得出DH=BH ,由此即可证出?DHBG 是菱形;(2)设DH=BH=x ,则AH=8-x ,在Rt △ADH 中,利用勾股定理即可得出关于x 的一元一次方程,解之即可得出x 的值,再根据菱形的面积公式即可求出菱形DHBG 的面积.【详解】解:()1四边形DHBG 是菱形.理由如下:。
数学八年级下学期《期末测试卷》附答案
人教版数学八年级下学期期末测试卷学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3 2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =73.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表: 成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A .4B .3C .2D .15.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .177.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y 的值随x 的增大而增大,其中正确结论的个数是( ) A .1B .2C .3D .410.如图,点E ,F 是▱A B C D 对角线上两点,在条件①D E =B F ;②∠A D E =∠C B F ;③A F =C E ; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F 是平行四边形,可添加的条件是( )A .①②③B .①②④C .①③④D .②③④11.如图,矩形A B C D 中,A B =1,B C =2,点P 从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为,对应的n值为,该组数据的中位数是.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为.15.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了 件.17.如图,在矩形A B C D 中,B C =20C m ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P 和点Q 的速度分别为3C m /s 和2C m /s ,则最快 s 后,四边形A B PQ 成为矩形.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为 . 三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 成绩人数x部门八年级0 0 1 11 1九年级 1 0 0 7(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 52.1 请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为;(2)可以推断出年级学生的体质健康情况更好一些,理由为.(至少从两个不同的角度说明推断的合理性).22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.23.如图,直线l与x轴交于点A ,与y轴交于点B (0,2).已知点C (﹣1,3)在直线l上,连接OC .(1)求直线l的解析式;(2)P为x轴上一动点,若△A C P的面积是△B OC 的面积的2倍,求点P的坐标.24.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表: x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(1)如图1,在正方形A B C D 中,E是A B 上一点,F是A D 延长线上一点,且D F=B E.求证:C E =C F;(2)如图2,在正方形A B C D 中,E是A B 上一点,G是A D 上一点,如果∠GC E=45°,请你利用(1)的结论证明:GE=B E+GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E是A B上一点,且∠D C E=45°,B E=4,则D E=.②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解析】由题意得,2﹣x≥0且x﹣3≠0,解答x≤2且x≠3,所以,自变量x的取值范围是x≤2.故选:A .2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =7【分析】根据勾股定理的逆定理对各个选项逐一代入计算,看是否符合A 2+B 2=C 2即可.【解析】A 、∵12+22≠32,∴不符合A 2+B 2=C 2.∴不能构成直角三角形.B 、∵A =32,B =42,C =52,∴A =9,B =16.C =25,∵92+162≠252,不符合A 2+B 2=C 2,∴不能构成直角三角形.C 、√22+√32=√52,符合A 2+B 2=C 2,∴能构成直角三角形.D 、52+62≠72,不符合A 2+B 2=C 2,∴不能构成直角三角形.故选:C .3.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数(人)2566876根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解. 【解析】该班人数为:2+5+6+6+8+7+6=40, 得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:45+452=45,平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425.故错误的为D . 故选:D . 4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个. A .4B .3C .2D .1【分析】根据三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定逐个判断即可.【解析】∵四边相等的四边形一定是菱形,∴①正确; ∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确; 其中正确的有2个.故选:C .5.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .【分析】由直线经过的象限结合四个选项中的图象,即可得出结论. 【解析】∵直线y =kx +B 经过一、二、四象限, ∴k <0,B >0, ∴﹣k >0,∴选项B 中图象符合题意. 故选:B .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .17【分析】根据菱形得出A B =B C ,得出等边三角形A B C ,求出A C 的长,根据正方形的性质得出A F =EF =EC =A C =4,求出即可. 【解析】∵四边形A B C D 是菱形, ∴A B =B C , ∵∠B =60°,∴△A B C 是等边三角形, ∴A C =A B =4,∴正方形A C EF 的周长是A C +C E +EF +A F =4×4=16, 故选:C .7.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m【分析】在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.【解析】如图:A B =A C =13C m ,B C =10C m . △A B C 中,A B =A C ,A D ⊥B C ; ∴B D =D C =12B C =5C m ;Rt △A B D 中,A B =13C m ,B D =5C m ; 由勾股定理,得:A D =√AB 2−BD 2=12C m . 故选:A .8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3【分析】由题意可知:中间小正方形的边长为:A ﹣B ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解析】由题意可知:中间小正方形的边长为:A ﹣B , ∵每一个直角三角形的面积为:12A B =12×8=4, ∴4×12A B +(A ﹣B )2=25, ∴(A ﹣B )2=25﹣16=9, ∴A ﹣B =3, 故选:D .9.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y的值随x的增大而增大,其中正确结论的个数是()A .1B .2C .3D .4【分析】根据一次函数的性质对各小题进行逐一判断即可.【解析】因为函数y=﹣2x+2,所以①当x>1时,y<0,正确;②它的图象经过第二、一、四象限,错误;③它的图象必经过点(﹣2,﹣2),错误;④y的值随x的增大而减小,错误;故选:A .10.如图,点E,F是▱A B C D 对角线上两点,在条件①D E=B F;②∠A D E=∠C B F;③A F=C E; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F是平行四边形,可添加的条件是()A .①②③B .①②④C .①③④D .②③④【分析】若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以.【解析】由平行四边形的判定方法可知:若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以,故选:D .11.如图,矩形A B C D 中,A B =1,B C =2,点P从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解析】由题意知,点P从点B 出发,沿B →C →D 向终点D 匀速运动,则当0<x≤2,s=12 x,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始是直线一部分,最后为水平直线的一部分.故选:C .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)【分析】(方法一)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,结合点C 、D ′的坐标求出直线C D ′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,根据三角形中位线定理即可得出点P为线段C D ′的中点,由此即可得出点P的坐标.【解析】(方法一)作点D 关于x轴的对称点D ′,连接C D ′交x轴于点P,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点, ∴点C (﹣3,2),点D (0,2). ∵点D ′和点D 关于x 轴对称, ∴点D ′的坐标为(0,﹣2). 设直线C D ′的解析式为y =kx +B ,∵直线C D ′过点C (﹣3,2),D ′(0,﹣2), ∴有{2=−3k +b −2=b ,解得:{k =−43b =−2,∴直线C D ′的解析式为y =−43x ﹣2.令y =−43x ﹣2中y =0,则0=−43x ﹣2,解得:x =−32, ∴点P 的坐标为(−32,0). 故选C .(方法二)连接C D ,作点D 关于x 轴的对称点D ′,连接C D ′交x 轴于点P ,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点,∴点C (﹣3,2),点D (0,2),C D ∥x轴,∵点D ′和点D 关于x轴对称,∴点D ′的坐标为(0,﹣2),点O为线段D D ′的中点.又∵OP∥C D ,∴点P为线段C D ′的中点,∴点P的坐标为(−32,0).故选:C .二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为3或﹣2,对应的n值为﹣2或3,该组数据的中位数是3.【分析】利用平均数和众数的定义得出m的值,进而利用平均数的定义求出n的值,从而求得中位数即可.【解析】∵一组数据4,3,2,m,n的众数为3,平均数为2,∴m的值可能为3,∴4+3+2+3+n=2×5,解得n=﹣2.同理m可能是﹣2,n可能是3,所以该组数据排序为:﹣2,2,3,3,4,所以中位数为3,故答案为:3或﹣2,﹣2或3,3.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为y=﹣2x+5.【分析】直接根据”上加下减,左加右减”的原则进行解答.【解析】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)x﹣1=﹣2x+5.故答案为:y=﹣2x+515.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度12米.【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和B C 构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.【解析】设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.故答案为:12米.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了280件.【分析】根据图象可以求出甲、乙的工作效率,乙的用时与甲加工70件所用的时间相等,再根据工作量=工作效率×工作时间,求出答案.【解析】甲的工作效率为:50÷5=10件/分,乙的工作效率为:80÷2=40件/分因此:40×(70÷10)=280件,故答案为:28017.如图,在矩形A B C D 中,B C =20C m,点P和点Q分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P和点Q的速度分别为3C m/s和2C m/s,则最快4s后,四边形A B PQ成为矩形.【分析】根据矩形的性质,可得B C 与A D 的关系,根据矩形的判定定理,可得B P=A Q,构建一元一次方程,可得答案.【解答】解;设最快x秒,四边形A B PQ成为矩形,由B P=A Q得3x=20﹣2x.解得x=4,故答案为:4.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为4或8.【分析】作D E⊥A B 于E,由直角三角形的性质得出D E=12A D =2√3,由勾股定理得出A E=√3D E=6,B E=√BD2−DE2=2,得出A B =A E﹣B E=4,或A B =A E+B E=8,即可得出答案.【解析】作D E⊥A B 于E,如图所示:∵∠A =30°,∴D E=12A D =2√3,∴A E=√3D E=6,B E=√BD2−DE2=√42−(2√3)2=2,∴A B =A E﹣B E=4,或A B =A E+B E=8,∵四边形A B C D 是平行四边形,∴C D =A B =4或8;故答案为:4或8.三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.【分析】原式利用二次根式性质,二次根式除法法则,以及平方差公式计算即可求出值. 【解析】原式=√22−(4﹣3)+√94=√22−1+32=√2+12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.【分析】(1)根据勾股定理作出边长为√5的正方形即可得;(2)连接A C ,根据勾股定理逆定理可得△A B C 是以A C 、B C 为腰的等腰直角三角形,据此可得答案.【解析】(1)如图1所示:(2)如图2,连A C ,则BC=AC=√12+22=√5,AB=√12+32=√10,∵(√5)2+(√5)2=(√10)2,即B C 2+A C 2=A B 2,∴△A B C 为直角三角形,∠A C B =90°,∴∠A B C =∠C A B =45°.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 人数x部门八年级0 0 1 11 7 1九年级 1 0 0 7 10(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 8152.1请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.(至少从两个不同的角度说明推断的合理性).【分析】整理、描述数据:根据八、九年级各的20名学生的成绩即可补全表格;分析数据:根据众数的定义即可得;(1)总人数乘以样本中九年级体质优秀人数占九年级人数的比例即可得;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些.【解析】整理、描述数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 八年级0 0 1 11 7 1九年级 1 0 0 7 10 2分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 81 52.1(1)估计九年级体质健康优秀的学生人数为180×10+220=108人,故答案为:108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.故答案为:九年级;两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.【分析】(1)根据平行四边形的性质得到D F=B E,A B ∥C D ,根据平行四边形的判定定理证明四边形D EB F是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形A GB D 是矩形,根据直角三角形的性质得到ED =EB ,证明结论.【解答】(1)证明:∵四边形A B C D 是平行四边形,∴A B =C D ,A B ∥C D ,∵E、F分别为边A B 、C D 的中点,∴D F=B E,又A B ∥C D ,∴四边形D EB F是平行四边形,∴D E∥B F;(2)∵A G∥D B ,A D ∥C G,∴四边形A GB D 是平行四边形,∵∠G=90°,∴平行四边形A GB D 是矩形,∴∠A D B =90°,又E为边A B 的中点,∴ED =EB ,又四边形D EB F是平行四边形,∴四边形D EB F是菱形.23.如图,直线l 与x 轴交于点A ,与y 轴交于点B (0,2).已知点C (﹣1,3)在直线l 上,连接OC .(1)求直线l 的解析式;(2)P 为x 轴上一动点,若△A C P 的面积是△B OC 的面积的2倍,求点P 的坐标.【分析】(1)利用待定系数法求直线l 的解析式;(2)利用直线l 的解析式确定A 点坐标,再计算出S △A C P =2S △B OC =2,设P (t ,0),根据三角形面积公式得到12•|t ﹣2|×3=4,然后解方程求出即可的P 点坐标. 【解析】(1)设直线l 的解析式y =kx +B ,把点C (﹣1,3),B (0,2)代入解析式得,{b =2−k +b =3, 解得k =﹣1,B =2,∴直线l 的解析式:y =﹣x +2;(2)把 y =0代入y =﹣x +2得﹣x +2=0,解得:x =2,则点A 的坐标为(2,0),∵S △B OC =12×2×1=1,∴S △A C P =2S △B OC =2,设P (t ,0),则A P =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).24.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:x /元… 15 20 25 … y /件 … 25 20 15 …已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【分析】(1)根据题意可以设出y 与x 的函数关系式,然后根据表格中的数据,即可求出日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解析】(1)设日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =kx +B , {15k +b =2520k +b =20, 解得,{k =−1b =40, 即日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =﹣x +40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元), 即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(1)如图1,在正方形A B C D 中,E 是A B 上一点,F 是A D 延长线上一点,且D F =B E .求证:C E =C F ;(2)如图2,在正方形A B C D 中,E 是A B 上一点,G 是A D 上一点,如果∠GC E =45°,请你利用(1)的结论证明:GE =B E +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E 是A B 上一点,且∠D C E =45°,B E =4,则D E = 10 .②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.【分析】(1)根据正方形的性质,可直接证明△C B E≌△C D F,从而得出C E=C F;(2)延长A D 至F,使D F=B E,连接C F,根据(1)知∠B C E=∠D C F,即可证明∠EC F=∠B C D =90°,根据∠GC E=45°,得∠GC F=∠GC E=45°,利用全等三角形的判定方法得出△EC G≌△FC G,即GE=GF,即可得出答案GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中利用勾股定理即可求解;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E的垂线,垂足是E,过C 作A G的垂线,垂足是G,B E和GC 相交于点F,B F=6﹣2=4,设GC =x,则C D =GC =x,FC =6﹣x,B C =2+x.在直角△B C F中利用勾股定理求得C D 的长,则三角形的面积即可求解.【解析】(1)证明:如图1,在正方形A B C D 中,∵B C =C D ,∠B =∠C D F,B E=D F,∴△C B E≌△C D F,∴C E=C F;(2)证明:如图2,延长A D 至F,使D F=B E,连接C F,由(1)知△C B E≌△C D F,∴∠B C E=∠D C F.∴∠B C E+∠EC D =∠D C F+∠EC D即∠EC F=∠B C D =90°,又∵∠GC E=45°,∴∠GC F=∠GC E=45°,∵C E=C F,∠GC E=∠GC F,GC =GC ,∴△EC G≌△FC G,∴GE=GF,∴GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形.A E=AB ﹣B E=12﹣4=8,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中,A E2+A D 2=D E2,则82+(12﹣x)2=(4+x)2,解得:x=6.则D E =4+6=10.故答案是:10;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E 的垂线,垂足是E ,过C 作A G 的垂线,垂足是G ,B E 和GC 相交于点F ,则四边形A EFG 是正方形,且边长=A D =6,B E =B D =2,则B F =6﹣2=4,设GC =x ,则C D =GC =x ,FC =6﹣x ,B C =2+x .在直角△B C F 中,B C 2=B F 2+FC 2,则(2+x )2=42+x 2,解得:x =3.则B C =2+3=5,则△A B C 的面积是:12A D •B C =12×6×5=15.。
新人教版八年级数学(下册)期末试卷(带答案)
新人教版八年级数学(下册)期末试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、B6、B7、D8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、x1≥.3、±2.4、20°.5、49 136、6三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版八年级下学期期末考试数学试卷及答案解析(共七套)
人教版八年级下学期期末考试数学试卷(一)一、选择题(本题有10个小题,每小题3分,共30分)1.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.下列等式不一定成立的是()A.(﹣)2=2 B.﹣=C.×= D. =(b≠0 )3.满足下列条件的△ABC,不是直角三角形的是()A.b2=a2﹣c2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:54.如图,数轴上的点A所表示的数为x,则x的值为()A. B. +1 C.﹣1 D.1﹣5.四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A.AB∥DC,AD=BC B.AD∥BC,AB∥DCC.AB=DC,AD=BC D.OA=OC,OB=OD6.2019年5月份,某市测得一周大气的PM2.5的日均值(单位:微克/立方米)如下:31,35,31,33,30,33,31.对于这组数据下列说法正确的是()A.众数是30 B.中位数是31 C.平均数是33 D.方差是32 7.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19 8.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.它的图象经过第一、二、四象限C.当x>0时,y<0D.y的值随x值的增大而增大9.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC 的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.1310.如图,某出租车公司提供了甲、乙两种出租车费用y(元)与出租车行驶路程x(千米)之间的关系,①若行驶路程少于120千米,则所收费用两出租车甲比乙便宜20元;②若行驶路程超过200千米,则所收费用乙比甲便宜12元;③若所收费用出租车费用为60元,则乙比甲行驶路程多;④若两出租车所收费用相差10元,则行驶路程是145千米或185千米.其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题:每小题3分,共18分.11.若﹣2a>﹣2b,则a<b,它的逆命题是.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S乙2=0.8,则射击成绩较稳定的是.(填“甲”或“乙”)13.若是正整数,则最小的整数n是.14.已知菱形ABCD的边长为5cm,对角线AC=6cm,则其面积为cm2.15.如图,Rt△ABC中,∠BCA=90°,AB=3,AC=2,D为斜边AB上一动点(不与点A、B重合),DE⊥BC,DF⊥AC,垂足分别为E、F,连接EF,则EF的最小值是.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A 3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B 2的坐标分别为B1(1,1),B2(3,2),则B8的坐标是.三、解答题:共72分.解答写出必要的演算步骤、文字说明或证明过程.17.(1)计算:×﹣×(2)当x﹣>0,化简.18.已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.19.如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.20.学生安全是近几年社会关注的重大问题,安全隐患主要是超速,如图某中学校门前一条直线公路建成通车,在该路段MN限速5m/s,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了10s,已知∠CAN=45°,∠CBN=60°,BC=100m,此车超速了吗?请说明理由.(参考数据: =1.41, =1.73)21.(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.某快递公司,今年三月份与五月份完成投递的快递总件数分别为4万件和4.84万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.4万件,那么该公司现有10名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?22.已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:(1)直线AB的解析式;(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.23.某校想了解本校学生每周的课外阅读时间情况,随机抽取了八年级部分学生,对学生每周的课外阅读时间x(单位:h)进行分组整理,并绘制了如图所示的不完整的统计图;请根据图中提供的信息,回答下列问题:(1)a= %,并写出该扇形所对的圆心角的度数为,请补全条形图.(2)在这次抽样调查中,课外阅读时间的众数和中位数分别是多少?(3)如果该校共有学生2000人,请你估计该校“课外阅读时间不少于7h”的学生人数大约有多少人?24.在正方形ABCD中,过点A引射线AH,交边CD于点H(H不与点D重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,连接E、G且延长EG交CD于F.【感知】如图2,当点H为边CD上任意一点时(点H与点C不重合).连接AF,可得FG与FD的大小关系是;【探究】如图1,当点H与点C重合时,证明△CFE是等腰直角三角形.【应用】①在图2,当AB=5,BE=3时,利用探究的结论,求CF的长;②在图1中,当AB=5,是否存在△CFE的面积等于0.5,如存在,求出BE的长;若不存在,说明理由.25.今年“五一”小黄金周期间,我市旅游公司组织50名游客分散到A、B、C 三个景点游玩.三个景点的门票价格如表所示:景点 A B C门票单价(元)30 55 75所购买的50张票中,B种票张数是A种票张数的3倍还多1张,设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购买门票总费用为w(元),求出w与x之间的函数关系式;(3)若每种票至少购买1张,且A种票不少于10张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)1.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.下列等式不一定成立的是()A.(﹣)2=2 B.﹣=C.×=D. =(b≠0 )【分析】根据二次根式的性质、化简乘除法进行计算即可.【解答】解:A、(﹣)2=2,正确;B、﹣=2﹣=,正确;C、×=,正确;D、=(a>0,b>0 ),错误;故选D.【点评】本题考查了二次根式的混合运算,掌握二次根式的性质和化简是解题的关键.3.满足下列条件的△ABC,不是直角三角形的是()A.b2=a2﹣c2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形;三角形内角和定理进行分析即可.【解答】解:A、b2=a2﹣c2,是直角三角形,故此选项不合题意;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∠A:∠B:∠C=3:4:5,则∠C=180°×=75°,不是直角三角形,故此选项符合题意,故选:D.【点评】此题主要考查了勾股定理逆定理,以及三角形内角和定理,关键是正确掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,数轴上的点A所表示的数为x,则x的值为()A.B. +1 C.﹣1 D.1﹣【分析】由题意,利用勾股定理求出点A到﹣1的距离,即可确定出点A表示的数x.【解答】解:根据题意得:x=﹣1=﹣1,故选C【点评】此题考查了实数与数轴,弄清点A表示的数x的意义是解本题的关键.5.四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A.AB∥DC,AD=BC B.AD∥BC,AB∥DC C.AB=DC,AD=BC D.OA=OC,OB=OD 【分析】直接根据平行四边形的判定定理求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、当AB∥DC,AD=BC,可得四边形ABCD是平行四边形或等腰梯形;故本选项错误;B、当AD∥BC,AB∥DC时,可得四边形ABCD是平行四边形;故本选项正确;C、当AB=DC,AD=BC时,可得四边形ABCD是平行四边形;故本选项正确;D、当OA=OC,OB=OD时,可得四边形ABCD是平行四边形;故本选项正确.故选A.【点评】此题考查了平行四边形的判定.注意掌握平行四边形的判定定理的应用是解此题的关键.6.2019年5月份,某市测得一周大气的PM2.5的日均值(单位:微克/立方米)如下:31,35,31,33,30,33,31.对于这组数据下列说法正确的是()A.众数是30 B.中位数是31 C.平均数是33 D.方差是32【分析】根据众数、平均数、中位数和方差的计算公式分别进行计算即可得出答案.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这组数据从小到大排列,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是:(31+35+31+33+30+33+31)÷7=32,故本选项错误;D、这组数据的方差是: [(30﹣32)2+3(31﹣32)2+2(33﹣32)2+(35﹣32)2]=,故本选项错误;故选B.【点评】本题考查了众数、平均数、方差和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].7.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.它的图象经过第一、二、四象限C.当x>0时,y<0D.y的值随x值的增大而增大【分析】根据一次函数图象上点的坐标特征对A进行判断;根据一次函数的性质对B、D进行判断;利用x>0时,函数图象在y轴的左侧,y<1,则可对C进行判断.【解答】解:A、当x=1时,y=﹣3x+1=﹣2,则点(1,3)不在函数y=﹣3x+1的图象上,所以A选项错误;B、k=﹣3<0,b=1>0,函数图象经过第一、二、四象限,所以B选项正确;C、当x>0时,y<1,所以C选项错误;D、y随x的增大而减小,所以D选项错误.故选B.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.9.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC 的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.10.如图,某出租车公司提供了甲、乙两种出租车费用y(元)与出租车行驶路程x(千米)之间的关系,①若行驶路程少于120千米,则所收费用两出租车甲比乙便宜20元;②若行驶路程超过200千米,则所收费用乙比甲便宜12元;③若所收费用出租车费用为60元,则乙比甲行驶路程多;④若两出租车所收费用相差10元,则行驶路程是145千米或185千米.其中正确的说法有()A.1个B.2个C.3个D.4个【分析】①根据函数图象确定出两出租车的收费,然后判断即可;②分别求出两出租车起步价后的收费函数表达式,再求出乙比甲便宜12元的路程,即可得解;③根据函数表达式分别求出两出租车收费60元的路程,即可得解;④分乙比甲多10元和甲比乙多10元两种情况求解.【解答】解:①由图可知,行驶路程少于120千米,甲收费30元,乙收费50元,所收费用两出租车甲比乙便宜20元正确,故本小题正确;②设甲行驶120千米后的函数关系式为y=kx+b,则,解得,所以,y=x﹣18,乙行驶200千米后的函数表达式为y=mx+n,则,解得,所以,y=x﹣30,若所收费用乙比甲便宜12元,则x﹣18﹣(x﹣30)=12,∵方程有无数解,∴x≥200时都满足,即,行驶路程超过200千米,则所收费用乙比甲便宜12元,故本小题正确;③甲: x﹣18=60,解得x=195,乙: x﹣30=60,解得x=225,∵225>195,∴乙比甲行驶路程多,故本小题正确;④若乙比甲多10元,则50﹣(x﹣18)=10,解得x=145,若甲比乙多10元,则x﹣18﹣50=10,解得x=195,所以,两出租车所收费用相差10元,则行驶路程是145千米或195千米,故本小题错误;综上所述,正确的说法是①②③共3个.故选C.【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的表达式,结合实际情况分别求解.二、填空题:每小题3分,共18分.11.若﹣2a>﹣2b,则a<b,它的逆命题是若a<b,则﹣2a>﹣2b .【分析】交换原命题的题设与结论即可得到它的逆命题.【解答】解:若﹣2a>﹣2b,则a<b,它的逆命题是若a<b,则﹣2a>﹣2b.故答案为若a<b,则﹣2a>﹣2b.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S乙2=0.8,则射击成绩较稳定的是乙.(填“甲”或“乙”)【分析】直接根据方差的意义求解.【解答】解:∵S甲2=1,S乙2=0.8,1<0.8,∴射击成绩比较稳定的是乙,故答案为:乙.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2= [(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好13.若是正整数,则最小的整数n是 3 .【分析】先化简二次根式,然后依据被开方数是一个完全平方数求解即可.【解答】解: =4,∵是正整数,∴3n是一个完全平方数.∴n的最小整数值为3.故答案为:3.【点评】本题主要考查的是二次根式的知识,依据3n是一个完全平方数求得n 的值是解题的关键.14.已知菱形ABCD的边长为5cm,对角线AC=6cm,则其面积为24 cm2.【分析】根据菱形的性质结合勾股定理得出BD的长,进而利用菱形面积公式求出答案.【解答】解:如图所示:∵菱形ABCD的边长为5cm,对角线AC=6cm,∴AO=CO=3cm,则BO==4(cm),则BD=8cm,则其面积为:×6×8=24(cm2).故答案为:24.【点评】此题主要考查了菱形的性质以及勾股定理,正确掌握菱形的性质是解题关键.15.如图,Rt△ABC中,∠BCA=90°,AB=3,AC=2,D为斜边AB上一动点(不与点A、B重合),DE⊥BC,DF⊥AC,垂足分别为E、F,连接EF,则EF的最小值是.【分析】连接CD,易证四边形CEDF是矩形,根据矩形的性质可知CD=EF,所以CD最小时则EF最小,根据垂线段最短可知CD⊥AB时,CD最短问题得解.【解答】解:连接CD,∵∠BCA=90°,AB=3,AC=2,∴BC==,∵∠BCA=90°,DE⊥BC,DF⊥AC∴四边形EDFC为矩形,∴EF=CD,∴当CD⊥AB时,CD最短,∵CD==,∴EF的最小值是.【点评】本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A 3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B 2的坐标分别为B1(1,1),B2(3,2),则B8的坐标是(28﹣1,28﹣1)或(255,128).【分析】首先利用待定系数法求得直线的解析式,然后分别求得B1,B2,B3…的坐标,可以得到规律:Bn(2n﹣1,2n﹣1),据此即可求解.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得:,解得:,则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21﹣1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22﹣1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23﹣1,∴Bn的纵坐标是:2n﹣1,横坐标是:2n﹣1,则Bn(2n﹣1,2n﹣1).∴B8的坐标是:(28﹣1,28﹣1),即(255,128).故答案为:(28﹣1,28﹣1)或(255,128).【点评】此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.三、解答题:共72分.解答写出必要的演算步骤、文字说明或证明过程.17.(1)计算:×﹣×(2)当x﹣>0,化简.【分析】(1)根据二次根式的乘法和减法可以解答本题;(2)根据x﹣>0,可以化简.【解答】解:(1)×﹣×===﹣11;(2)∵x﹣>0,∴2x﹣1>0,∴==2x﹣1.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.18.已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.【分析】把x=﹣1代入已知方程列出关于m的新方程,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为x2,则﹣1+x2=﹣1,解得x2=0.把x=﹣1代入x2+x+m2﹣2m=0,得(﹣1)2+(﹣1)+m2﹣2m=0,即m(m﹣2)=0,解得m1=0,m2=2.综上所述,m的值是0或2,方程的另一实根是0.【点评】本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.19.如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是OA的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.学生安全是近几年社会关注的重大问题,安全隐患主要是超速,如图某中学校门前一条直线公路建成通车,在该路段MN限速5m/s,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了10s,已知∠CAN=45°,∠CBN=60°,BC=100m,此车超速了吗?请说明理由.(参考数据: =1.41, =1.73)【分析】过C作CH⊥MN,在Rt△BHC 中利用勾股定理计算出CH的长,再在Rt △AHC 中根据直角三角形的性质可得AH=CH=50m,然后表示出车的速度,再与5m/s进行比较即可.【解答】解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=100 m,在Rt△BHC 中,由勾股定理得:BH2+CH2=BC2,又∵BC=2BH=100 m,BH=50m,解得CH=50m,在Rt△AHC 中,∵∠CAH=45°,∴AH=CH=50m,∴AB=50﹣50≈36.5(m),车的速度为v==3.65m/s,∴3.65<5,∴此车没有超速.【点评】此题主要考查了解直角三角形的应用,解决此问题的关键在于正确理解题意,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.21.(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.某快递公司,今年三月份与五月份完成投递的快递总件数分别为4万件和4.84万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.4万件,那么该公司现有10名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)直接利用三月份与五月份完成投递的快递总件数分别为4万件和4.84万件,表示出5月份的总件数进而得出等式;(2)首先求出6月份的任务,进而得出10名快递投递业务员能完成的快递投递任务,再利用每人每月最多可投递快递0.4万件,即可得出需要的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得4(1+x)2=4.84解得:x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)∵今年6月份的快递投递任务是4.84×(1+10%)=5.324(万件),∴10名快递投递业务员能完成的快递投递任务是:0.4×10=4<5.324,∴该公司现有的10名快递投递业务员不能完成今年6月份的快递投递任务:∵平均每人每月最多可投递0.4万件,∴需要增加业务员(5.324﹣4)÷0.4=3.31≈4(人),即该公司现有的10名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加4名业务员.【点评】此题主要考查了一元二次方程的应用,根据题意正确表示出5月份的任务量是解题关键.22.已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:(1)直线AB的解析式;(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.【分析】(1)将x=3代入y=x中求出y值,即得出点E的坐标,结合点A、E 的坐标利用待定系数法即可求出直线AB的解析式;(2)由点F的坐标可表示出点C、D的坐标,由此即可得出线段CD的长度,根据平行四边形的判定定理即可得出CD=OB,即得出关于a的方程,解方程即可得出结论.【解答】解:(1)把x=3代入y=x,得y=3,∴E(3,3),把A(12,0)、E(3,3)代入y=kx+b中,得:,解得:,∴直线AB的解析式为y=﹣x+4.(2)由题意可知C、D的横坐标为a,∴C(a,﹣ a+4),D(a,a),∴CD=|a﹣(﹣a+4)|=|a﹣4|.若以点B、O、C、D为顶点的四边形是平行四边形,则CD=OB=4,即|a﹣4|=4,解得:a=6或a=0(舍去).故:当以点B、O、C、D为顶点的四边形是平行四边形时,a的值为6.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法求函数解析式以及平行四边形的判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据CD=OB得出关于a的方程.本体属于中档题,难度不大,解决该题型题目时,根据平行四边形的判定找出相等的线段是关键.23.某校想了解本校学生每周的课外阅读时间情况,随机抽取了八年级部分学生,对学生每周的课外阅读时间x(单位:h)进行分组整理,并绘制了如图所示的不完整的统计图;请根据图中提供的信息,回答下列问题:(1)a= 10 %,并写出该扇形所对的圆心角的度数为36°,请补全条形图.(2)在这次抽样调查中,课外阅读时间的众数和中位数分别是多少?(3)如果该校共有学生2000人,请你估计该校“课外阅读时间不少于7h”的学生人数大约有多少人?【分析】(1)根据各组的百分比之和为1计算求出a,根据各部分扇形圆心角的度数=部分占总体的百分比×360°求出圆心角,求出课外阅读时间8h的人数,补全条形图;(2)根据众数和中位数的概念解答;(3)计算出抽取的活动时间不少于7h的百分比,估计总体即可.【解答】解:(1)解:a=1﹣40%﹣20%﹣25%﹣5%=10%,360°×10%=36°,故答案为:10;36°;抽查的人数为:120÷20%=600人,课外阅读时间8h的人数是:600×10%=60人,补全条形图如下:(2)∵课外阅读时间5h的最多,∴众数是5h.∵600人中,按照课外阅读时间从少到多排列,第300人和301人都是6 h,∴中位数是6 h.(3)∵2000×(25%+10%+5%)=2000×40%=800.∴估计“活动时间不少于7h”的学生人数大约有800人.【点评】本题考查的是条形统计图、扇形统计图、众数和中位数的概念,读懂统计图,从统计图中得到必要的信息是解决问题的关键.注意条形统计图能清楚地表示出每个项目的数据.24.在正方形ABCD中,过点A引射线AH,交边CD于点H(H不与点D重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,连接E、G且延长EG交CD于F.【感知】如图2,当点H为边CD上任意一点时(点H与点C不重合).连接AF,可得FG与FD的大小关系是FG=FD ;【探究】如图1,当点H与点C重合时,证明△CFE是等腰直角三角形.【应用】①在图2,当AB=5,BE=3时,利用探究的结论,求CF的长;②在图1中,当AB=5,是否存在△CFE的面积等于0.5,如存在,求出BE的长;若不存在,说明理由.【分析】【感知】由折叠和正方形的性质得到结论判断出RT△AFG≌RT△AFD即可;【探究】同(1)的方法判断出Rt△EGC≌Rt△FGC即可.【应用】①在Rt△ECF中,利用勾股定理得到,FE2=FC2+EC2,求出FG,即可;②由△ECF的面积为S=0.5建立EC×FC=(5﹣y)2求解即可.【解答】解:[感知]:如图②,连接AF,∵四边形ABCD是正方形,∴AB=AD,∠ABE=90°,由折叠得,∠AGE=∠ABC=90°,AG=AB=AD,在RT△AFG和RT△AFD,,∴RT△AFG≌RT△AFD,∴FG=FD,故答案为=;【探究】连接AF,②∵BC⊥CD,∠EGC=∠FGC=90°,AC是正方形ABCD的对角线,∴∠ECG=∠FCG=45°,在△EGC=△FGC中∴Rt△EGC≌Rt△FGC.∴∠CEG=∠CFG,∵∠ECF=90°,∴△CFE是等腰直角三角形,【应用】①设FG=x,则FC=5﹣x,FE=3+x,在Rt△ECF中,FE2=FC2+EC2,即(3+x)2=(5﹣x)2+22解得x=,即FG的长为.∴FD=FG=CF=CD﹣FD=5﹣=②由折叠性质可得∠EGA=∠B=90°EC=FC设BE=y,则EC=EC=5﹣y,△ECF的面积为S=EC×FC=(5﹣y)2=0.5 整理得 y2﹣10y+24=0,解得y1=4,y2=6(舍去)故当AB=5,存在△CFE的面积等于0.5,且BE=4.。
人教版八年级下册数学期末考试试题及答案
人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。
新人教版八年级数学下册期末考试卷【附答案】
新人教版八年级数学下册期末考试卷【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x=,则x=__________2.若式子x1x+有意义,则x的取值范围是__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。
人教版八年级下册数学期末考试试题及答案
人教版八年级下册数学期末考试试题及答案人教版八年级下册数学期末考试试卷一、单选题1.下列运算正确的是()A。
3+4=7B。
12÷3=4C。
(-2)²=4D。
14÷21=362.使得式子x/(4-x)有意义的x的取值范围是()A。
x≥4B。
x>4C。
x≤4D。
x<43.由线段a,b,c可以组成直角三角形的是()A。
a=5,b=8,c=7B。
a=2,b=3,c=4C。
a=24,b=7,c=25D。
a=5,b=5,c=64.下列结论中,矩形具有而菱形不一定具有的性质是()A。
内角和为360°B。
对角线互相平分C。
对角线相等D。
对角线互相垂直5.某校规定学生的学期数学成绩满分为100分,其中研究性研究成绩占40%,期末卷面成绩占60%,XXX的两项成绩(百分制)依次是80分,则XXX这学期的数学成绩是()A。
80分B。
82分C。
84分D。
86分6.对于一次函数y=(3k+6)x-k,y随x的增大而减小,则k 的取值范围是()A。
k<0B。
k<-2C。
k>-2D。
-2<k<07.直线y=2x-7不经过()A。
第一象限B。
第二象限C。
第三象限D。
第四象限8.已知直角三角形的两直角边长分别为3和4,则斜边上的高为()A。
5B。
3C。
1.2D。
2.49.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛。
如果小明知道了自己的比赛成绩,要判断能否进入决赛,XXX需要知道这11名同学成绩的()A。
平均数B。
中位数C。
众数D。
方差10.如图,当y1>y2时,x的取值范围是()A。
x>1B。
x>2C。
x<1D。
x<211.∠B=50°,CD⊥XXX于点D,∠BCD和∠BDC的角平分线相交于点E,如图,在△ABC中,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A。
2024年人教版初二数学下册期末考试卷(附答案)
一、选择题(每题1分,共5分)1. 若a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c2. 下列哪个数是有理数?A. √3B. πC. 1/2D. √13. 已知等差数列的前三项分别是2,5,8,求第10项。
A. 29B. 30C. 31D. 324. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 等边三角形5. 若|a 3| = 4,则a的值为?A. 7B. 1C. 7或1D. 4二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。
()2. 任何数乘以1都等于它本身。
()3. 0既不是正数也不是负数。
()4. 两个锐角相加一定大于90度。
()5. 任何数都有相反数。
()三、填空题(每题1分,共5分)1. 两个互为相反数的和是______。
2. 任何数乘以______都等于它本身。
3. 两个负数相乘,结果是______。
4. 两个锐角相加一定______90度。
5. 任何数都有______数。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等边三角形的性质。
3. 简述矩形的性质。
4. 简述平行四边形的性质。
5. 简述勾股定理。
五、应用题(每题2分,共10分)1. 已知等差数列的前三项分别是2,5,8,求第10项。
2. 已知等边三角形的周长为18,求它的面积。
3. 已知矩形的周长为20,求它的面积。
4. 已知平行四边形的面积为30,求它的周长。
5. 已知直角三角形的两条直角边分别为3和4,求它的斜边。
六、分析题(每题5分,共10分)1. 分析并解答:已知a > b,c > d,那么a + c与b + d的大小关系。
2. 分析并解答:已知等差数列的前三项分别是2,5,8,求第10项。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作一个等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
53
56
59
…
(1)按照上表所示的规律,当x每增加1时,y如何变化?
(2)写出座位数y与排数x之间的关系式;
(3)按照上表所示 规律,某一排可能有90个座位吗?说说你的理由.
22.如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AM BE,垂足为M,AM交BD于点F.
(1)求实数b的值和点A的坐标;
(2)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线l与直线ll于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.
答案与解析
一、选择题(本题共10小题,每小题3分,满分30分.)
1.使 有意义的a的取值范围为( )
A.a≥1B.a>1C.a≥﹣1D.a>﹣1
【详解】∵S甲2=0.52.S乙2=0.62,S丙2=0.50,S丁2=0.45,
∴S丁2<S丙2<S甲2<S乙2,
∴成绩最稳定的是丁.
故选D.
【点睛】本题考查的知识点是方差.熟练应用方差的性质是解题的关键.
8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()
14.一次数学测验中,某小组七位同学的成绩分别是:90,85,90,95,90,85,95.则这七个数据的众数是_____.
15.满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____;②_____.
16.在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN=_____.
A. 4<m<6B. 4≤m≤6C. 4<m<5D. 4≤m<5
二、填空题(本大题共6小题,每小题3分,满分18分)
11.化简:(2 )2=_____.
12.若将直线y=﹣2x向上平移3个单位后得到直线AB,那么直线AB的解析式是_____.
13.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.
∴AO=AB=5,
∴AC=2AO=10,
在Rt△ABC中,由勾股定理得,
BC= .
故答案为5 .
【点睛】本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.
A. 29B. 24C. 23D. 18
7.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.3环,方差分别为S甲2=0.52.S乙2=0.62,S丙2=0.50,S丁2=0.45,则成绩最稳定的是( )
A.甲B.乙C.丙D.丁
8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()
人教版数学八年级下学期
期末测试卷
一、选择题(本题共10小题,每小题3分,满分30分.)
1.使 有意义 a的取值范围为( )
A.a≥1B.a>1C.a≥﹣1D.a>﹣1
2.如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=( )
A. 15°B. 30°C. 45°D. 60°
3.下列运算正确的是( )
A. B. C. D.
9.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()
A.52B.42C.76D.72
10.如图,在平面直角坐标系xOy中,菱形ABCD 顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E、F,将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的取值范围是( )
【答案】C
【解析】
【分析】
根据二次根式有意义的条件:被开方数是非负数列不等式,解之即可得出答案.
【详解】∵ 有意义,
∴ ,
解得a≥﹣1.
故选C.
【点睛】本题考查了二次根式有意义的条件.利用二次根式定义中的限制性条件:被开方数是非负数列出不等式是解题的关键.
2.如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=( )
∵点D落在△EOF的内部(不包括三角形的边),
∴4<m<6.
故选A.
【点睛】本题考查了菱形的性质及点的平移.利用菱形的性质求出点D的坐标并确定点D在EF上时的的横坐标是解题的关键.
二、填空题(本大题共6小题,每小题3分,满分18分)
11.化简:(2 )2=_____.
【答案】8.
【解析】
【分析】
根据二次根式的性质: 进行化简即可得出答案.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AM BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.
23.如图,已知直线l:y=﹣ x+b与x轴,y轴的交点分别为A,B,直线l1:y= x+1与y轴交于点C,直线l与直线ll的交点为E,且点E的横坐标为2.
10.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E、F,将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的取值范围是( )
A. 4<m<6B. 4≤m≤6C. 4<m<5D. 4≤m<5
A. B. C. D.
【答案】A
【解析】
【分析】
根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.
【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,
∴k<0,
∵一次函数y=x+k的一次项系数大于0,常数项小于0,
∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.
故选A.
【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).
(1)参加这次夏令营活动的初中生共有多少人?
(2)活动组织者号召参加这次夏令营活动 所有学生为贫困学生捐款结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元问平均每人捐款是多少元?
21.某剧院的观众席的座位为扇形,且按下列分式设置:
排数(x)
1
2
3
4
…
座位数(y)
【答案】A
【解析】
【分析】
根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到EF上时的x的值,从而得到m的取值范围,即可得出答案.
【详解】∵菱形ABCD的顶点A(2,0),点B(1,0),
∴点D的坐标为(4,1),
当y=1时,
x+3=1,
解得x=−2,
∴点D向左移动2+4=6时,点D在EF上,
14,15,15,16, 16, 16, 17,
最中间的数据是16,
所以这组数据 中位数是16.
故选B.
【点睛】本题考查了中位数的定义.熟练应用中位数的定义来找出一组数据的中位数是解题的关键.
5.若函数的解析式为y= ,则当x=2时对应的函数值是( )
A. 4B. 3C. 2D. 0
【答案】A
【解析】
4.已知一组数据:15,16,14,16,17,16,15,则这组数据的中位数是( )
A. 17B. 16C. 15D. 14
【答案】B
【解析】
【分析】
根据中位数的定义:将一组数据从小到大(或从大到小)排列,最中间的数据(或最中间两个数据)的平均数,就是这组数据的中位数,即可得出答案.
【详解】把这组数据按照从小到大的顺序排列:
A. 29B. 24C. 23D. 18
【答案】D
【解析】
【分析】
根据平行四边形的对角线互相平分可求出DO与CO的长,然后求出△DOC的周长即可得出答案.
【详解】在平行四边形ABCD中,
∵CD=AB=7, , ,
∴△DOC的周长为:DO+CO+CD=5+6+7=性质.熟练掌握平行四边形的性质是解题的关键.
9.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()
A.52B.42C.76D.72
【答案】C
【解析】
解:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得:x=13.故“数学风车”的周长是:(13+6)×4=76.故选C.
3.下列运算正确的是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.
【详解】A. 不是同类二次根式,不能合并,故A错误;
B. ,故B错误;
C. ,故C错误;
D. 故D正确.
故选D.
【点睛】本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.
【详解】∵将直线y=﹣2x向上平移3个单位,