风力发电机基础知识

合集下载

风力发电基础基础知识

风力发电基础基础知识

第5部分 风力发电机组的类型
5.4 按照机组风轮的叶片数目可划分为: • 单叶片风力发电机组 • 双叶片风力发电机组 • 三叶片风力发电机组 • 多叶片风力发电机组
第5部分 风力发电机组的类型
5.5 按照机组风轮的位置可划分为: • 上风向风力发电机组 • 下风向风力发电机组
第5部分 风力发电机组的类型
第4部分 风能利用与风力发电的历史
利用风力发电的尝试,始于二十世纪之 初。第一次世界大战后,丹麦的工程师们根 据飞机螺旋桨的原理,就制造出了小型风力 发电机组。之后、瑞典、苏联和美国也相继 成功地研制了一些小型风力发电装置。这些 小型风力发电机,容量大都在5千瓦以下,广 泛使用于多风的海岛和偏僻的乡村。
5.6 按照机组的控制方式可划分为: • 定桨距风力发电机组 • 变桨距风力发电机组
第5部分 风力发电机组的类型
5.7 按照机组的转速与电能频率的关系可划 分为: •恒速恒频风力发电机组 •变速恒频风力发电机组
第5部分 风力发电机组的类型
5.8 按照机组驱动链的型式可划分为: • 直驱型风力发电机组 • 半直驱型风力发电机组 • 传统有齿箱型风力发电机组
第2部分 发展风力发电的意义
发展风力发电的直接好处是:
•安全、清结、无污染--基本不破坏人类(我 们自己)的生活环境 •同时缓解诸如传统能源日益紧缺等问题 •风力发电使人类向文明又迈进了一步
第3部分 风力发电的基本原理
“人类很早就开始使用发电技术了,发电 技术是通过某种动力来带动发电机发电。传 统的动力来自于水能和热能。利用水轮机将 水能转化为电能的称之为水力发电;利用汽 轮机将化石燃料产生的蒸汽的热能转化为电 能的称之为火力发电。风能也是一种动力, 也可以用来发电,我们称之为风力发电。”

风力发电基础知识

风力发电基础知识

第一章风力发电机组结构1.8 控制系统控制系统利用微处理器、逻辑程序控制器或单片机通过对运行过程中输入信号的采集传输、分析,来控制风电机组的转速和功率;如发生故障或其他异常情况能自动地检测平分析确定原因,自动调整排除故障或进入保护状态。

控控制系统的主要任务就是自动控制风机组运行,依照其特性自动检测故障并根据情况采取相应的措施。

控制系统包括控制和检测两部分。

控制部分又设置了手动和自动两种模式,运行维护人员可在现场根据需要进行手动控制,而自动控制应在无人值班的条件下预先设置控制策略,保证机组正常安全运行。

检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询。

现场数据可通过网络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。

安全系统要保证机组在发生非常情况时立即停机,预防或减轻故障损失。

例如定桨距风电机组的叶尖制动片在运行时利用液压系统的高压油保持与叶片外形组合成一个整体,同时保持机械制动器的制动钳处于松开状态,一旦发生液压系统失灵或电网停电,叶尖制动片和制动钳将在弹簧作用下立即使叶尖制动片旋转约90°,制动钳变为夹紧状态,风轮被制动停止旋转。

根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运行情况主要分为以下几类:待机状态、发电状态、大风停机方式、故障停机方式、人工停机方式和紧急停机方式。

(1)待机状态风轮自由转动,机组不发电(风速为0~3m/s),刹车释放。

(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。

发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。

(3)故障停机方式:故障停机方式分为:可自启动故障和不可自启动故障。

停机方式为正常刹车程序:即先叶片顺桨,党当发动机转速降至设定值后,启动机械刹车。

(4)人工停机方式:这一方式下的刹车为正常刹车,即先叶片顺桨,当发电机转速降至设定值后启动机械刹车。

风力发电科普知识(图文版)

风力发电科普知识(图文版)

风⼒发电科普知识(图⽂版)风⼒发电科普知识(图⽂版)⽬录什么是风能?----------------------------------------------------------------------------------4风能来源于何处?----------------------------------------------------------------------------5风功率如何计算?----------------------------------------------------------------------------5全球风能总量有多⼤?----------------------------------------------------------------------6我国风能总量有多少?----------------------------------------------------------------------6风是怎样形成的?-----------------------------------------------------------------------------6⼤⽓运动的受⼒影响是什么?-------------------------------------------------------------6地形对风有什么影响?----------------------------------------------------------------------7什么是海风,陆风;⼭风,⾕风?-------------------------------------------------------7为什么说风能是⼀种绿⾊能源?----------------------------------------------------------8发展风⼒发电具有什么优势?-------------------------------------------------------------9⼈类利⽤风能的历史-------------------------------------------------------------------------9什么是风电场?------------------------------------------------------------------------------10中国风⼒资源分布---------------------------------------------------------------------------11风⼒发电的经济性---------------------------------------------------------------------------12建⽴风电场的应⽤考虑有哪些⽅⾯?---------------------------------------------------13风⼒发电机噪⾳⼤么?---------------------------------------------------------------------14风⼒发电机组的分类及各⾃特点---------------------------------------------------------14风⼒发电机的功率曲线---------------------------------------------------------------------19什么是风⼒发电机的额定输出功率------------------------------------------------------20典型风⼒发电机各部件介绍---------------------------------------------------------------20风⼒发电机的⼯作原理---------------------------------------------------------------------28我国现阶段主要风⼒发电机型的发电过程---------------------------------------------29直驱式风⼒发电机组的特点---------------------------------------------------------------30什么是电⽹?---------------------------------------------------------------------------------32风机并⽹需要考虑哪些⽅⾯?------------------------------------------------------------32并⽹运⾏模式的规模划分------------------------------------------------------------------32风⼒发电机的并⽹有什么好处?---------------------------------------------------------33什么是“防孤岛功能”-----------------------------------------------------------------------33风⼒发电机并⽹运⾏的模式及其特点(根据发电机划分)------------------------33影响风电项⽬投资收益的⼏个因素------------------------------------------------------36风电项⽬开发流程---------------------------------------------------------------------------39风电项⽬的投资构成是什么?------------------------------------------------------------40风⼒发电项⽬的度电成本------------------------------------------------------------------41功率曲线与发电量---------------------------------------------------------------------------42风资源状况的评价指标---------------------------------------------------------------------43知识丰富⽣命!知识就是⼒量!什么是风能?风能就是空⽓的动能,是指风所负载的能量,风能的⼤⼩决定于风速和空⽓的密度。

风力发电设备知识点总结

风力发电设备知识点总结

风力发电设备知识点总结一、风力发电技术概述风力发电是一种利用风能转化为电能的可再生能源技术。

风力发电技术通过安装在风力发电机组上的叶片捕捉风能,然后转化为机械能,再通过发电机转化为电能供电。

风力发电技术已经成为世界上最重要的可再生能源之一,成为当前清洁能源发展的主力军之一。

由于风力发电具有无污染、资源丰富、可再生等特点,受到了世界各国的高度重视和积极发展。

二、风力发电设备的主要组成部分1. 风力发电机组风力发电机组包括风力涡轮机、齿轮箱、发电机、控制系统和塔架等五个主要部分。

其中,风力涡轮是捕捉风能的设备,通过转化为机械能,然后传递给齿轮箱;齿轮箱将转速提高,并传动到发电机,通过发电机转化为电能供应给电网;控制系统能够自动调整风力发电机组的运行状态,保证其安全、高效地发电。

2. 风力涡轮机风力涡轮机是风力发电机组中最为核心的部件,也是用来捕捉风能并转化为机械能的设备。

风力涡轮机分为水平轴风力涡轮机和垂直轴风力涡轮机两种,一般而言水平轴风力涡轮机更为常见,因为其在效率和稳定性方面有一定优势。

风力涡轮机通常由机翼、叶片、轴承、桨叶、风轮和塔等部分组成。

利用风力作用在叶片上产生扭矩,进而推动轴承旋转,从而带动风轮旋转。

3. 齿轮箱齿轮箱是风力发电机组中的一个重要部件,主要用于将风轮的旋转速度增大到发电机的标准转速。

齿轮箱扮演着传递动能和调整传动比的重要角色。

齿轮箱的设计和制造对于风力发电机组的运转效率和寿命起到重要影响。

4. 发电机发电机是风力发电机组的核心部件之一,它负责将机械能转化为电能。

发电机的类型主要分为同步发电机和异步发电机两种。

由于大多数风力发电机组需要变频发电,异步发电机普遍受到青睐。

同时,发电机的输出电压和频率需要满足电网要求,这也是设计发电机时需要考虑的重要因素。

5. 控制系统控制系统是风力发电设备的智能化控制核心。

控制系统可以根据风速、风向、负荷需求等参数,来自动调整风力发电机组的运行状态,保证其在不同工况下运行稳定、高效,并确保设备的安全性。

风力发电基础知识

风力发电基础知识

维护成本高:风力发电机组需要 定期维护维护成本较高
添加标题
添加标题
添加标题
添加标题
投资成本高:建设风力发电场需 要大量生态环境产生一定影响如噪音、 电磁辐射等
风力发电的适用场景
风力资源丰富的地区如海岸线、山地、草原等 远离电网的偏远地区如海岛、边远山区等 需要清洁能源的地区如环保要求高的城市、工业园区等 需要稳定电力供应的地区如医院、学校、工厂等
单击此处添加副标题
风力发电基础知识
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 风力发电的原理 风力发电的优势与局限性 风力发电技术的发展历程 风力发电的应用前景 风力发电的实际应用案例
01
添加目录项标题
02
风力发电的原理
风力发电的工作原理
风力发电的基本原理:利用风力推动风力发电机的叶片旋转从而产生电能。 风力发电机的结构:包括叶片、转子、发电机、塔架等部分。 风力发电的过程:风力推动叶片旋转转子带动发电机发电电能通过输电线路传输到电网。 风力发电的优点:清洁、可再生、环保、无污染。
采用风能预测技术:通过风能预测技术提高风力发电系统的稳定性和效 率
提高风电机组稳定性的措施与技术保障
采用先进的控制技术如 自适应控制、模糊控制 等提高风电机组的稳定 性和可靠性。
加强风电机组的维护和 保养定期检查和更换易 损部件确保风电机组的 正常运行。
采用先进的风电机 组设计如采用多叶 片、可变桨距等设 计提高风电机组的 稳定性和效率。
德国:Nordsee-Ost风电场欧洲最大的 海上风电场之一
中国:内蒙古辉腾锡勒风电场中国最大的 风电场之一
美国:lt Wind Energy Center美国最大 的风电场之一

风力发电基础知识

风力发电基础知识

风力发电基础知识风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。

风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。

风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。

转子空气动力学为了解风在风电机的转子叶片上的移动方式,我们将红色带子绑缚在模型电机的转子叶片末端。

黄色带子距离轴的长度是叶片长度的四分之一。

我们任由带子在空气中自由浮动。

本页的两个图片,其中一个是风电机的侧视图,另一个使风电机的正视图。

大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。

距轴心四分之一叶片长度处的转速为16米/秒。

图中的黄色带子比红色带子,被吹得更加指向风电机的背部。

这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。

为什么转子叶片呈螺旋状?大型风电机的转子叶片通常呈螺旋状。

从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。

如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。

因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。

风电机结构机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。

维护人员可以通过风电机塔进入机舱。

机舱左端是风电机转子,即转子叶片及轴。

转子叶片:捉获风,并将风力传送到转子轴心。

现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。

轴心:转子轴心附着在风电机的低速轴上。

低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。

在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。

风力发电车知识大全

风力发电车知识大全

风力发电车知识大全一、风力发电原理风力发电是利用风能驱动风力发电机组转动,进而驱动发电机产生电能的过程。

风能是一种可再生能源,具有清洁、绿色、可持续的优点。

风力发电的基本原理可以归纳为以下几点:1.风的动能驱动风力发电机组转动;2.风力发电机组将机械能转化为电能;3.发电机产生的电能通过电力电子装置整流、逆变等处理后,供给负载使用。

二、风力发电机组构造风力发电机组主要由风轮、齿轮箱、发电机、塔筒等组成。

其中:1.风轮:由叶片和轮毂组成,是风力发电机组中的重要部分,用于捕捉风能并传递给发电机;2.齿轮箱:将风轮的机械能转化为高速旋转的机械能,再传递给发电机;3.发电机:将机械能转化为电能;4.塔筒:支撑整个机组,并可以通过控制偏航系统来追踪最佳风向。

三、风力发电影响因素风力发电的影响因素主要包括风速、风向、温度、湿度、气压等。

其中,风速是最重要的因素之一,因为风速的大小直接决定了风力发电机组的功率输出。

此外,其他因素也会对风力发电产生影响,例如风向不稳定、温度变化等。

四、风力发电优势与局限风力发电具有以下优势:1.可再生能源:风能是一种无尽的可再生能源,与化石能源相比,具有更少的污染和更低的碳排放;2.绿色环保:风力发电不会产生有害物质排放,对环境友好;3.降低能源成本:随着技术的进步和规模效应的显现,风力发电的成本逐渐降低,成为更具竞争力的能源形式;4.灵活性强:风力发电设备可以灵活布置,适应不同的地形和气候条件。

然而,风力发电也存在一些局限:1.风速不稳定:风速的不稳定导致风力发电的电力输出波动较大,对电网稳定运行带来一定挑战;2.地理位置限制:适合建设风力发电的地理位置需要一定的资源条件,如丰富的风能资源和合适的地理环境;3.初始投资成本高:建设风力发电站需要较大的资金投入,包括设备购置、安装、运输等费用。

五、风力发电发展现状与趋势近年来,全球风力发电发展迅速,特别是在欧美国家,风电已成为重要的能源形式之一。

风力发电知识入门

风力发电知识入门

2.风力资源
太阳辐射到地球的热能中有约2%被转变成风能,全球 大气中总的风能量约为1014MW(10亿亿千瓦)。其中可被开发 利用的风能理论值约有3.5×109MW(3.5万亿千瓦),比世界 上可利用的水能大10倍。
2.1 中国风力资源
据中国气象科学院预测,我国经济可开发风能 资源为:
· 陆上约有2.53亿千瓦 (年电量5000亿千瓦时 ) · 海上约有7.5亿千瓦 · 合计约10亿千瓦

风速频率分布曲线
1.6
风的测量
初步选定风电场之后,要进行1~2年的测风。 测风的主要目的是正确估计该地区可利用风能的大小,为装 备风力机提供风能依据。 风的测量主要包括风向测量和风速测量两项. 测风高度一般为10m、30m、50m、70m。 从测量数据中整理出每分钟(或每小时)的平均风速和最多风 向,并选取日最大风速(10min平均)和极大风速(瞬时)以及 对应的风向和出现的时间。 对影响风机出力和安全其它气象数据(如气温、气压、湿度、 太阳辐射、雨、冰雹、冰雪)以及特殊气象情况(如台风、雷 电、沙暴、盐雾、冰冻期等)有测量和统计。
5.10 风力发电场
5.10.1 风力发电场的选址 5.10.2 风力发电场机组的排布 5.10.3 风力发电场的容量系数 5.10.4 风力发电机组的安装和调试
5.10.1 风力发电场的选址
风电场场址选择要求很严格,主要依据是: 1. 2. 3. 该地区的年平均风速在6m/s以上,且盛行风向稳定。 在预选场址内进行1年以上的测风,获取风速、风向及风速沿高度 的变化等数据。 对影响风机出力和安全其它气象数据(如气温、气压、湿度、太阳 辐射、雨、冰雹、冰雪)以及特殊气象情况(如台风、雷电、沙 暴、盐雾、冰冻期等)有测量和统计。 4. 5. 6. 地区内的地形、地貌、障碍物有详细资料。 距公路和电力网应较近,以便降低设备运输成本和接入电网的工程 费用。 场址应距居民点有一定的距离,以避免噪音的影响。

风力发电知识。

风力发电知识。

风电发电场介绍一、电力基础知识(一)电力系统概述(二)三相交流电1、u(t)=Um sin(ωt+φ) i(t)=Im sin(ωt+φ)电压幅值Um,角频率ω=2πf,初相角φ三、有功功率和无功功率:S=UI=√(P^2+Q^2 )P=ScosφQ=Ssinφ在电网对用户输电的过程中,电网要提供给负载的电功率有两种:有功功率和无功功率。

有功功率(P)是指保持设备运转所需要的电功率,也就是将电能转化为其它形式的能量(机械能,光能,热能等)的电功率;而无功功率(Q)是指电气设备中电感、电容等元件工作时建立磁场所需的电功率。

无功功率比较抽象,它主要用于电气设备内电场与磁场的能量交换,在电气设备(电路系统)中建立和维护磁场的功率。

它不表现对外做功,由电能转化为磁能,又由磁场转化为电能,周而复始,并无能量损耗。

特别指出的是无功功率并不是无用功,只是它不直接转化为机械能、热能为外界提供能量,作用却十分重要。

电机运行需要旋转磁场,就是靠无功功率来建立和维护的,有了旋转的磁场,才能使转子转动,从而带动机械的运行。

变压器也需要无功功率,才能使一次线圈产生磁场,二次线圈感应出电压,凡是有电磁线圈的电气设备运行都需要建立磁场,然而建立及维护磁场消耗的能量都来自无功功率,没有无功功率电机不能转动、变压器不能运行、电抗器不能工作、继电器不会动作,所有设备中的磁场无法建立,电气设备也就不会运行。

因此供电系统中除了对用户提供有功功率,还要提供无功功率,两者缺一不可,否则电气设备将无法运行。

功率因数电网的电力负荷中的电气设备都是由电感、电容、电阻等元件组合而成,既有感性负载又有容性负载如电机、变压器、电抗器等,感性负载的电压与电流的相量间存在一个相位差,通常用相位角的余弦cosφ来表示,cosφ称为功率因数,P-有功功率,KW; Q-无功功率,KVar; S-视在功率,KVA;功率因数的大小,反映了电网系统中电源输出的视在功率的有效利用程度,为了提高电网系统中电能输送质量,希望功率因数越大越好。

风力发电基础知识

风力发电基础知识

1-3 风力发电运行方式
• 分类:独立运行和并网运行两种运行方式。 一、独立运行方式
• 独立运行的风力发电机组,又称离网型风力发电机组, 是把风力发电机组输出的电能经蓄电池蓄能,再供应 用户使用,如需要交流电,则要加逆变器。 (一)储能系统: • 风力发电系统采用的储能系统主要有:蓄电池储能、 抽水蓄能。 • 正在研究试验的有压缩空气储能、飞轮储能、电解水 制氢储能等。
2、塔架 风力机的塔架除了要支撑风力机的重量,还 要承受吹向风力机和塔架的风压,以及风力 机运行中的动载荷。它的刚度和风力机的振 动有密切关系。水平轴风力发电机的塔架主 要可分为管柱型和桁架型两类。一般圆柱形 塔架对风的阻力较小,特别是对于下风向风 力机,产生紊流的影响要比桁架式塔架小。 桁架式塔架常用于中小型风力机上,其优点 是造价不高,运输也方便。但这种塔架会使 下风向风力机的叶片产生很大的紊流。
• 风电场容量系数即发电成本是衡量风力发 电场经济效益的重要指标。风电场内风力 发电机组容量系数的计算方法为:
1-5 风力发电系统及装置
(一)风力发电机组的系统 组成 • 风力发电系统是将风能转
换为电能的机械、电气及 共控制设备的组合。 • 通常包括风轮、发电机、 变速器(小、微容量及特殊 类型的也有不包括变速器 的)及有关控制器和储能装 置。
二、风力发电场的风力发电机组排布
• 作用:合理地选择机组的排列方式,以 减少机组之间的相互影响,风电场内风 力发电机组的排列应以风电场内可获得 最大的发电量来考虑。 • 影响因素:主要受风能分布、风场地形 和土地征用的影响。 • 机组排列的最主要原则:是充分利用风 能资源,最大程度利用风能。
三、风力发电场的经济效益评估
Ф型风力机图
3、风力发电机组可分为定桨距机组与变 桨距机组。 定桨距风力发电机组的功率调节完全 依靠叶片的气动特性。这种机组的输出 功率随风速的变化而变化,当风速超过 额定风速时,通过叶片的失速或偏航控 制降低风能转换系数Cp,从而维持功率 恒定。

风力发电知识点总结

风力发电知识点总结

风力发电知识点总结一、风力发电原理风力发电利用风力驱动风力发电机,将风能转化为机械能后再转化为电能,是一种可再生能源的发电方式。

风力发电原理主要包括风的形成原理、风力发电机的工作原理和发电机组的工作原理。

1. 风的形成原理风是因地球的自转和太阳辐射造成的。

太阳光照射到地球上的不同地区和表面,使得地球表面温度不均匀,产生不同的气压区。

气压差引起气流的移动,形成了风。

这个过程是地球大气环流的基础。

2. 风力发电机的工作原理风力发电机的基本工作原理是利用风力带动叶片旋转,通过传动系统转动发电机产生电能。

当风力带动叶片旋转时,发电机的转子受到机械传动装置的带动,旋转产生电能,这个过程就是固定磁场中导体回路的运动相对于磁场产生感应电动势的原理来实现的。

3. 发电机组的工作原理发电机组是由风力发电机、传动系统和调速装置组成的。

风力发电机叶片受到风力的作用带动转子旋转,通过传动系统将机械能传递到发电机,并通过发电机产生电能。

调速装置是指通过调整叶片的角度或调整传动系统的转速来保持发电机的稳定输出,并根据风速的变化调整叶片的角度,以保持发电机的稳定运行。

二、风力发电技术风力发电技术包括风电场选址、风力发电机设备、风力发电系统和风力发电控制系统。

1. 风电场选址风电场选址是指寻找适合建设风电场的地点。

一般来说,风电场选址需要考虑多种因素,包括地形地貌、气象条件、土地利用和环境保护等。

2. 风力发电设备风力发电设备主要由风力发电机、叶片和塔架组成。

风力发电机的类型包括水平轴风力发电机和垂直轴风力发电机。

水平轴风力发电机叶片与地面平行,能够利用风能进行旋转,而垂直轴风力发电机叶片与地面垂直,能够利用风能进行旋转。

塔架主要是支撑风力发电机的结构,使其能够在空中旋转。

3. 风力发电系统风力发电系统主要由控制系统、变流器、变压器和电网等组成。

控制系统可以根据风速的不同控制风力发电机的旋转,保持其在最佳工作状态,能够提高发电效率。

风力发电的技术资料

风力发电的技术资料

风力发电的基础了解1) 风的功率风的能量指的是风的动能。

特定质量的空气的动能可以用下列公式计算。

能量= 1/2 X 质量X ( 速度)^2吹过特定面积的风的的功率可以用下列公式计算。

功率= 1/2 X 空气密度X 面积X ( 速度)^3其中,功率单位为瓦特;空气密度单位为千克/ 立方米;面积指气流横截面积,单位为平方米;速度单位为米/ 秒。

在海平面高度和摄氏15 度的条件下,乾空气密度为1.225 千克/ 立方米。

空气密度随气压和温度而变。

随著高度的升高,空气密度也会下降。

於上述公式中可以看出,风的功率与速度的三次方〔立方〕成正比,并与风轮扫掠面积成正比。

不过实际上,风轮只能提取风的能量中的一部分,而非全部。

2) 风力发电机的工作原理现代风力发电机采用空气动力学原理,就像飞机的机翼一样。

风并非" 推" 动风轮叶片,而是吹过叶片形成叶片正反面的压差,这种压差会产生升力,令风轮旋转并不断横切风流。

风力发电机的风轮并不能提取风的所有功率。

根据Betz 定律,理论上风电机能够提取的最大功率,是风的功率的59.6% 。

大多数风电机只能提取风的功率的40% 或者更少。

风力发电机主要包含三部分∶风轮、机舱和塔杆。

大型与电网接驳的风力发电机的最常见的结构,是横轴式三叶片风轮,并安装在直立管状塔杆上。

风轮叶片由复合材料制造。

不像小型风力发电机,大型风电机的风轮转动相当慢。

比较简单的风力发电机是采用固定速度的。

通常采用两个不同的速度- 在弱风下用低速和在强风下用高速。

这些定速风电机的感应式异步发电机能够直接发产生电网频率的交流电。

比较新型的设计一般是可变速的(比如Vestas 公司的V52-850 千瓦风电机转速为每分钟14 转到每分钟31.4 转)。

利用可变速操作,风轮的空气动力效率可以得到改善,从而提取更多的能量,而且在弱风情况下噪音更低。

因此,变速的风电机设计比起定速风电机,越来越受欢迎。

风力发电机基础知识及电气控制

风力发电机基础知识及电气控制
首先,假设现在风电机组正常(zhèngcháng)工作,机舱叶 轮处于迎风状态,但是随着时间变化,风向逐渐的变化了, 那么机组就不能在原来位置工作了。
这时,由风速风向仪测得风向变化,并传给控制系统存储 下来,控制系统又来控制偏航驱动装置中的四台偏航电机往 风速变化的方向同步运转,偏航电机通过减速齿轮箱带动小 齿轮旋转。小齿轮是与大齿圈相啮合的,与偏航电机、偏航 齿轮箱统一称为偏航驱动装置,上图可以看出,偏航驱动装 置通过螺栓紧固在主机架上,而大齿圈通过88个螺栓紧固在 塔筒法兰上,不可旋转,那么只能是小齿轮围绕着大齿圈旋 转带动主机架旋转,直到机舱位置与风向仪测得的风向相一 致。
额定转速:与额定功率匹配的叶轮转速。
第五页,共62页。
技术参数 额定功率 切入风速 切出风速 额定风速 叶轮直径 轮毂高度 平均风速 生存风速 转速范围 额定转速 风机类型
1.5MW 系列(xìliè)风力发电机组基本参
单位数 1500/70
1500/61
1500/82
1500/77
kW
1500
1500
偏航驱动 (qū dònɡ) 装置
侧面(cè mià n) 轴承
第十九页,共62页。
划垫保 持装置
偏航(piān há nɡ)大齿 圈
大齿圈 划垫保持装置
主机架
侧面(cèmiàn) 轴承
锁紧螺母 (luómǔ)
调整 第二十页,共62页。
偏航系统的功能(gōngnéng)就是捕捉风向,控制机舱平 稳、精确、可靠的对风
22
第二十二页,共62页。
变桨系统(xìtǒng)
第二十三页,共62页。
变桨轴承(zhóuchéng)
第二十四页,共62页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电机组的主要组成部分
制动器 :制动器是使风力发电机停止转动的装置,也 称刹车。 发电机 :发电机是风力发电机组中最关键的部件,是 将风能最终转变成电能的设备。发电机的性能好坏直 接影响整机效率和可靠性。风力发电机上常用的发电 机有以下几种: ① 直流发电机,常用在微、小型风力发电机上。 ② 永磁发电机,常用在小型风力发电机上。 ③ 同步或异步交流发电机 塔架 :塔架是支撑风力发电机的支架。塔架有型钢架 结构的,有圆锥型钢管和钢筋混凝土的等三种形式。
发电机:强制空冷异步发电机
发电机电压与频率:690V;50Hz
风力发电机组的主要组成部分
机舱:机舱内安装有传动系统、电机、偏航、主控系统等, 是风力机塔架以上部位的主要承力装置。 风轮 :叶片安装在轮毂上称作风轮,它包括叶片、轮毂、主 轴等。风轮是风力发电机接受风能的部件。 叶片是风力发电机组最关键的部件,现代风力发电机上每个 转子叶片的测量长度大约为20米叶片数通常为2枚或3枚,大 部分转子叶片用玻璃纤维强化塑料制造。叶片可分为变浆距 和定浆距两种叶片,其作用都是为了调速,当风力达到风力 发电机组设计的额定风速时,在风轮上就要采取措施,以保 证风力发电机的输出功率不会超过允许值。 轮毂是连接叶片和主轴的零部件。 主轴也称低速轴,将转子轴心与齿轮箱连接在一起,承受的 扭矩较大,一般由40Cr或其他高强度合金钢制成。
风力发电机组的主要组成部分
电缆扭缆计数器 :电缆是用来将电流从风电 机运载到塔下的重要装置。但是当风电机偶 然沿一个方向偏转太长时间时,电缆将越来 越扭曲,导致电缆扭断或出现其他故障。因 此风力发电机配备有电缆扭曲计数器,用于 提醒操作员应该将电缆解开了。风力发电机 还配备有拉动开关在电缆扭曲太厉害时被激 发,断开装置或刹车停机,然后解缆。
风力发电机基础知识
请大家认真做好笔记
谢谢合作!!
驿道风场
2015年11月17日
为什么发展风电
风能作为一种清洁的可再生能源,风是一种潜力 很大的新能源,目前全世界每年燃烧煤所获得的 能量,只有风力在一年内所提供能量的三分之一。 随着传统能源的日益紧缺,生活环境的不断恶化, 所以不得不重视利用风力来发电,开发新能源。
风力发电机组的类型
按照机组风轮轴的状态可划分为: 垂直轴风力发电机组 水平轴风力发电机组
风力发电工作原理
风带动风力发电机产生电, 风能转化成电能。
风力发电机组的基本结构
风力发电机组是由叶片、轮毂、主轴、齿轮箱、偏航机构、发电机、塔架、 控制系统及附属部件组成的。
风机主要技术参数
额定功率:1500KW
叶片数量:3
风轮布置:水平轴 上风向 顺时针
风轮倾角:5°
风轮转速:11-19.2rpm
轮毂中心高:70.2m
额定转速:17.3rpm来自风轮直径:77 m切入风速:3.0 m/s
额定风速:11.5 m/s
切出风速:25m/s
安全风速:59.5 m/s(3s) 功率调节:变速变桨距
变桨调节方式:独立电动变桨
风力发电机组的主要组成部分
调速装置 :风速是变化的,风轮的转速也会随 风速的变化而变化。为了使风轮运转所需要额定 转速下的装置称为调速装置,调速装置只在额定 风速以上时调速。可变浆距的调速装置;
偏航装置 :调向装置就是使风轮正常运转时一 直使风轮对准风向的装置。借助电动机转动机舱 以 使转子正对着风。偏航装置由电子控制器操 作,电子控制器可以通过风向标来感觉风向。通 常在风改变其方向时,风电机一次只会偏转几 度。
国内风机生产厂家
新疆金风科技股份有限公司 大唐华创风能 大连重工起重集团(华锐风电科技有限公司) 东方汽轮机厂 湖南湘电风能有限公司 浙江运达风力发电工程有限公司 广东明阳风电技术有限公司、 上海电气风电设备有限公司、 保定天威风电科技有限公司、 浙江华仪风能开发有限公司、 北京北重汽轮机有限责任公司、 银川恩德风电设备制造有限公司等。
风力发电机组的主要组成部分
风力发电机控制系统: 风力发电机控制属于离散型控制, 是将风向标、风速计、风轮转速、发电机电压、频率、电 流、发电机温升、增速器温升、机舱振动、塔架振动、电 缆过缠绕、电网电压、电流、频率等传感器的信号收集然 后按设计程序给出各种指令实现自动启动、自动调向、自 动调速、自动并网、运行中机组故障的自动停机、自动电 缆解绕、过振动停机、过大风停机等的自动控制。自我故 障诊断及微机终端故障输出需维修的故障,由维修人员维 修后给微机以指令,微机再执行自动控制程序。风电场的 机组群可以实现联网管理、互相通信,出现故障的风机会 在总站的微机终端和显示器上读出、调出程序和修改程序 等,使现代风力发电机真正实现了现场无人职守的自动控 制。
提供国民经济发展所需的能源 减少温室气体排放 减少二氧化硫排放 提高能源利用效率,减轻社会负担 增加就业机会
风电发展历史
二十世纪初。丹麦的工程师根据飞机螺旋桨的原理,就制造 出了小型风力发电机组。之后、瑞典、苏联和美国也相继成 功地研制了一些小型风力发电装置。 中国利用风能发电,始于二十世纪七十年代。当时以微小型 风力发电机组为主,单机容量在50~500W不等,主要用于满 足内蒙、青海等省区牧民的汲水、照明需求。直到二十世纪 八十年代,才开始研制“中、大型”风力发电机组。 1996年,中国实施“乘风计划”,先后在新疆、内蒙、广东、 山东、辽宁、福建、浙江、河北等省区建设了19个风电场。
自动偏航
该过程是以风向传感器输出为基准,当风向改变超过允许 误差范围时,控制器发出自动偏航指令。连续一段时间检 测风向情况,为了达到很好的控制效果,在不同的角度差 值下设置不同的延时时间,根据风向传感器信号θ给出偏 航控制指令。当θ=180,表明机舱已处于准确对风位置, 若171≤θ≤189,属于误差范围之内,偏航系统将不对称做 出任何调节。差值大于10时延时10s执行自动偏航动作; 差值小于25大于15时延时5s执行自动偏航动作,这样实现 了大角度快速执行,小角度精确检测执行。在此基础上, 若θ>180表明机舱相对风向标有一个向右偏离的夹角,偏 航电机启动,机舱右偏自动对风。若θ<180表明机舱相对 风向标有一个向左偏离的夹角,偏航电机启动,机舱左偏 自动对风。
风力发电机组的主要组成部分
增速器 :增速器就是齿轮箱。由于风轮机工作 在低转速下,而 发电机工作在高转速下,为 实现匹配采用增速齿轮箱。使用齿轮箱可以 将风电机转子上的较低转速、较高转矩转换 为用于发电机上的较高转速、较低转矩。
联轴器: 增速器与发电机之间用联轴器连接, 为了减少占地空间,往往联轴器与制动器设 计在一起。
相关文档
最新文档