高二数学会考模拟试卷(附答案)
湖南高二高中数学水平会考带答案解析
湖南高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.已知,则的终边在()A 第一象限B 第二象限C 第三象限D 第四象限2.已知f ( x ) = + 1 ,则f ( 0) = ()A.-1B.0C.1D.23.算式的值是()A B C D4.铁路旅行规定:旅客每人免费携带品的外部尺寸长宽高之和不超过160厘米设携带品外部尺寸长宽高分别为a,b,c (单位:厘米),这个规定用数学关系式可表示为()A.a + b + c<160B.a + b + c>160C.a + b + c≤ 160D.a + b + c≥1605.假设,集合,那么等于()A.{4,8}B.{4,10}C.{0,4,8}D.{0,4,10}6.若,则下列各式正确的是()A B C D7.如图,在正六边形ABCDEF中,点O为其中点,则下列判断错误的是()A B ∥ C D8.在空间中,下列命题正确的是()A平行于同一平面的两条直线平行B平行于同一直线的两个平面平行C垂直于同一直线的两条直线平行D垂直于同一平面的两条直线平行9.圆心在上,半径为3的圆的标准方程为()A BC D10.已知的取值范围为()A.B.C.D.二、填空题1.函数的最小正周期2.已知,,那么与的夹角的余弦值为3.正方体的全面积是,它的顶点都在一个球面上,则这个球的表面积是_________。
4.在△中,若,则等于5.为等差数列,,则__________三、解答题1.设,求的值2.求到两个定点的距离之比等于2的点的轨迹方程。
3.已知{ a n }是各项为正数的等比数列,且a 1 = 1,a 2 + a 3 = 6, 求该数列前10项的和S 104.如图,在直三棱柱ABC —A 1B 1C 1 中,AB = AC = 1,AA 1 = ,AB ⊥AC 求异面直线BC 1与AC 所成角的度数5.某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本(万元)与年产量(吨)之间的关系可近似地表示为。
湖南高二高中数学水平会考带答案解析
湖南高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.设集合,.则()A.B.C.D.2.直线的倾斜角是()A.300;B.600;C.1200;D.1350。
3.过点且垂直于直线的直线方程为()A.B.C.D.4.圆与直线的位置关系是()A.直线过圆心B.相交C.相切D.相离5.圆锥的底面半径是3,高是4,则它的侧面积是()A.B.C.D.6.函数在区间[3,6]上最小值是()A.1B.3C.D.57.已,,,则的大小顺序为()A.B.C.D.8.如图所示,一个空间几何的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的体积为()A.B.C.D.b表示两条不同的直线,表示平面,则以下命题正确的有()9.设a,①;②;③;④.A.①②B.①②③C.②③④D.①②④10.已知函数在上是减函数,则与的大小关系为()A.B.C.D.无法比较大小二、填空题1.已知___________。
2.过点(1,2)且在两坐标轴上的截距相等的直线的方程3.函数在区间上的最小值为 .4.某工厂2002年生产某种产品2万件,以后每一年比上一年增产20%,则从________年开始这家工厂生产这种产品的年产量超过12万件。
5.设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中,正确命题的序号是______________________.三、解答题1.(本小题8分)已知圆C的圆心是直线和的交点且与直线相切,求圆C的方程.2.(本题满分8分)已知某几何体的俯视图是如下图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S3.(本题满分9分)已知是定义在上的奇函数。
山东高二高中数学水平会考带答案解析
山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.若,则一定成立的不等式是A.B.C.D.2.等差数列中,若,则等于A.3B.4C.5D.63.在中,a=15,b=10,A=60°,则=A.B.C.D.4.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A.90B.100C.145D.1905.在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a=1,等于A. B. C. D.26.不等式的解集为,不等式的解集为,不等式的解集是,那么等于A.-3B.1C.-1D.37.已知两个正数、的等差中项是5,则、的等比中项的最大值为A. 10B. 25 C 50 D. 1008.已知圆的半径为4,为该圆的内接三角形的三边,若,则三角形的面积为A.B.C.D.9.当时,不等式恒成立,则的最大值和最小值分别为A.2,-1B.不存在,2C.2,不存在D.-2,不存在10.已知x、y满足约束条件则目标函数z=(x+1)2+(y-1)2的最大值是A.10B.90C.D.211.已知等比数列满足,且,则当时,A.B.C.D.12.已知方程的四个实根组成以为首项的等差数列,则A.2 C. D.二、填空题1.等差数列的前项和为,若,则2.若关于x的不等式的解集为,则实数a的取值范围是3.设等比数列的公比,前项和为,则4.在中,角的对边分别是,已知,则的形状是三角形.三、解答题1.已知集合,(Ⅰ)当时,求(Ⅱ)若,求实数的取值范围.2.在△ABC中,角A、B、C的对边分别为a、b、c,且(Ⅰ)求角A的大小;(Ⅱ)若,求△ABC的面积.3.如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?4.已知点(1,2)是函数的图象上一点,数列的前项和.(Ⅰ)求数列的通项公式(Ⅱ)若,求数列的前项和.5.运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(Ⅰ)求这次行车总费用y关于x的表达式(Ⅱ)当x为何值时,这次行车的总费用最低,并求出最低费用的值6.已知数列中,,,(Ⅰ)证明数列是等比数列,并求出数列的通项公式(Ⅱ)记,数列的前项和为,求使的的最小值山东高二高中数学水平会考答案及解析一、选择题1.若,则一定成立的不等式是A.B.C.D.【答案】C【解析】本题考查的是不等式的性质。
高二数学会考模拟试卷(附答案)
高二数学会考模拟试卷一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1、已知集合{}3,1,0=A ,{}2,1=B ,则B A ⋃等于( )A {}1B {}3,2,0C {}3,2,1,0D {}3,2,1 2、b a >,则下列各式正确的是( ) A 22+>+b aB b a ->-22C b a 22->-D 22b a >3、函数12)(2+=x x f 是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 既不是奇函数又不是偶函数4、 点A(0,1)且与直线25y x =-平行的直线的方程是( ) A 210x y -+=B 210x y --=C 210x y +-=D 210x y ++=5、在空间中,下列命题正确的是( ) A 平行于同一平面的两条直线平行B 平行于同一直线的两个平面平行C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行6、已知,a b R +∈,且1ab =,则a b +的最小值是( )A1 B2 C3 D47、如图,在正六边形ABCDEF 中,点O 为其中点,则下列判断错误的是( ) A OC AB = B AB ∥DE C BE AD = D FC AD = 8、已知向量(3,1),(1,2)a b =-=-,则2a b -=( ) A (7,0) B (5,0) C (5,-4) D (7,-4)9、“0=x ”是“0=xy ”的( )A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件 10、焦点为(1,0)的抛物线的标准方程是( ) A 22y x = B 22x y =C 24y x =D 24x y =11、不等式0)2)(1(<++x x 的解集是( ) A {}12-<<-x xB {}12->-<x x x 或C {}21<<x xD {}21><x x x 或12、函数中,在(-∞,0)上为增函数的是( )A 1y x =-+B 1y x =C 12xy ⎛⎫= ⎪⎝⎭D 21y x =-13、满足n n a a a 21,111==+,则=4a ( ) A 32 B 14 C 18 D 11614、5(12)x -的展开式中2x 的系数是 ( )A10B -10 C40 D -40 15、双曲线19422=-y x 的离心率是 ( )A32B 49C 25D 21316、用1,2,3,4,5组成没有重复数字的三位数,其中偶数共有 ( )A60个 B30个 C24个 D12个 17、若α∈(0,2π),且sin α=54,则cos2α等于( ) A257 B —257C1 D 5718、把直线y =-2x 沿向量→a =(2,1)平移所得直线方程是( )A y =-2x +5B y =-2x -5 Cy =-2x +4 D y =-2x -4 19、若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为 A –1或3 B1或3C –2或6 D0或420、在︒60的二面角βα--l ,面α上一点到β的距离是2cm ,那么这个点到棱的距离为( )A3cm B C D 3cm21、若2k <且0k ≠,则椭圆22132x y +=与22123x y k k+=--有( ) A 相等的长轴B 相等的短轴C 相同的焦点D 相等的焦距22、计算机是将信息换成二位制进行处理的二进制,即“逢二进一”。
浙江省高二上学期学业水平合格性模拟考试数学试题(解析版)
高二上学期学业水平合格性模拟考试数学试题一、单选题1.设集合,,则( ){}1A x x =≥{}12B x x =-<<A B = A .B .C .D . {}1x x >-{}1x x ≥{}11x x -<<{}12x x ≤<【答案】D【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:.{}|12A B x x =≤< 故选:D.2.命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x ,使x 1 ≤C .对任意实数x, 都有x 1D .存在实数x ,使x 1 ≤≤【答案】C【详解】解:特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .3.已知i 是虚数单位,则= 31i i +-A .1-2iB .2-iC .2+iD .1+2i 【答案】D【详解】试题分析:根据题意,由于,故可知选D. 33124121112i i i i i i i i ++++=⨯==+--+【解析】复数的运算点评:主要是考查了复数的除法运算,属于基础题.4.等于( )()sin πα-A .-B .C .-D . sin αsin αcos αcos α【答案】B【分析】利用诱导公式即可求解.【详解】. ()sin sin παα-=故选:B5.函数f (x )=+lg(1+x )的定义域是( ) 11x-A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞) 【答案】C【解析】根据函数解析式建立不等关系即可求出函数定义域.【详解】因为f (x )=+lg(1+x ), 11x-所以需满足, 1010x x -≠⎧⎨+>⎩解得且,1x >-1x ≠所以函数的定义域为(-1,1)∪(1,+∞),故选:C【点睛】本题主要考查了函数的定义域,考查了对数函数的概念,属于容易题.6.不等式4-x 2≤0的解集为( )A .B .或 {}|22x x -≤≤{2x x ≤-}2x ≥C .D .或 {}|44x x -≤≤{4x x ≤-}4x ≥【答案】B【分析】根据一元二次不等式的求解方法直接求解即可.【详解】不等式即,解得或,240x -≤()()220x x -+≥2x ≤-2x ≥故不等式的解集为或.{2x x ≤-}2x ≥故选:B. 7.“”是“一元二次方程”有实数解的 14m <20x x m ++=A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分必要条件【答案】A 【详解】试题分析:方程有解,则.是的充分不必20x x m ++=11404m m ∆=-≥⇒≤14m <14m ≤要条件.故A 正确.【解析】充分必要条件8.已知 是空间三个不重合的平面,是空间两条不重合的直线,则下列命题为真命题的,,αβγ,m n 是( )A .若,,则B .若,,则 αβ⊥βγ⊥//αγαβ⊥//m βm α⊥C .若,,则D .若,,则 m α⊥n α⊥//m n //m α//n α//m n 【答案】C【分析】根据空间中线线、线面、面面的位置关系的性质定理与判定定理一一判断即可;【详解】解:由,,得或与相交,故A 错误;αβ⊥βγ⊥//αγαγ由,,得或或与相交,故B 错误;αβ⊥//m β//m αm α⊂m α由,,得,故C 正确;m α⊥n α⊥//m n 由,,得或与相交或与异面,故D 错误.//m α//n α//m n m n m n 故选:C .9.设函数,则( ) 331()f x x x =-()f x A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减 【答案】A【分析】根据函数的解析式可知函数的定义域为,利用定义可得出函数为奇函数, {}0x x ≠()f x 再根据函数的单调性法则,即可解出.【详解】因为函数定义域为,其关于原点对称,而, ()331f x x x =-{}0x x ≠()()f x f x -=-所以函数为奇函数.()f x 又因为函数在上单调递增,在上单调递增, 3y x =()0,+¥(),0-¥而在上单调递减,在上单调递减, 331y x x-==()0,+¥(),0-¥所以函数在上单调递增,在上单调递增. ()331f x x x=-()0,+¥(),0-¥故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.10.已知非零向量满足,且,则与的夹角为 a b ,2a b =ba b ⊥ (–)a b A . B . C . D . π6π32π35π6【答案】B【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即()a b b -⊥ ,a b 可计算出向量夹角.【详解】因为,所以=0,所以,所以=()a b b -⊥ 2()a b b a b b -⋅=⋅- 2a b b ⋅= cos θ22||122||a b b b a b ⋅==⋅ ,所以与的夹角为,故选B . a b 3π【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.[0,]π11.下列函数中,既是偶函数又区间上单调递增的是 A .B .C .D . 3y x =1y x =+21y x =-+2x y -=【答案】B【详解】试题分析:因为A 项是奇函数,故错,C ,D 两项项是偶函数,但在上是减函数,(0,)+∞故错,只有B 项既满足是偶函数,又满足在区间上是增函数,故选B .(0,)+∞【解析】函数的奇偶性,单调性.12.已知函数在区间(-∞,1]是减函数,则实数a 的取值范围是( ) 2()2f x x ax b =-+A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]【答案】A【分析】由对称轴与1比大小,确定实数a 的取值范围.【详解】对称轴为,开口向上,要想在区间(-∞,1]是减函数,所以2()2f x x ax b =-+x a =. [)1,a ∈+∞故选:A13.把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平()y f x =12移个单位长度,得到函数的图像,则( ) 3πsin 4y x π⎛⎫=- ⎪⎝⎭()f x =A . B . 7sin 212x π⎛⎫- ⎪⎝⎭sin 212x π⎛⎫+ ⎪⎝⎭C . D . 7sin 212x π⎛⎫- ⎪⎝⎭sin 212x π⎛⎫+ ⎪⎝⎭【答案】B 【分析】解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到()y f x =,即得,再利用换元思想求得的解析表达式; 23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()y f x =解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换法则得到的sin 4y x π⎛⎫=- ⎪⎝⎭()y f x =解析表达式.【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到()y f x =12的图象,再把所得曲线向右平移个单位长度,应当得到的图象, (2)y f x =3π23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦根据已知得到了函数的图象,所以, sin 4y x π⎛⎫=- ⎪⎝⎭2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,则, 23t x π⎛⎫=- ⎪⎝⎭,234212t t x x πππ=+-=+所以,所以; ()sin 212t f t π⎛⎫=+ ⎪⎝⎭()sin 212x f x π⎛⎫=+ ⎪⎝⎭解法二:由已知的函数逆向变换, sin 4y x π⎛⎫=- ⎪⎝⎭第一步:向左平移个单位长度,得到的图象, 3πsin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象, sin 212x y π⎛⎫=+ ⎪⎝⎭即为的图象,所以. ()y f x =()sin 212x f x π⎛⎫=+ ⎪⎝⎭故选:B.14.函数的图象大致为( ) 241x y x =+A . B .C .D .【答案】A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标()()241x f x f x x --==-+()f x 原点对称,选项CD 错误;当时,,选项B 错误. 1x =42011y ==>+故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 15.若定义在的奇函数f (x )在单调递减,且f (2)=0,则满足的x 的取值范围是R (,0)-∞(10)xf x -≥( )A .B . [)1,1][3,-+∞ 3,1][,[01]--C .D .[1,0][1,)-⋃+∞[1,0][1,3]-⋃【答案】D【分析】首先根据函数奇偶性与单调性,得到函数在相应区间上的符号,再根据两个数的乘积()f x 大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在上的奇函数在上单调递减,且,R ()f x (,0)-∞(2)0f =所以在上也是单调递减,且,,()f x (0,)+∞(2)0f -=(0)0f =所以当时,,当时,,(,2)(0,2)x ∈-∞-⋃()0f x >(2,0)(2,)x ∈-+∞ ()0f x <所以由可得: (10)xf x -≥或或 0210x x <⎧⎨-≤-≤⎩0012x x >⎧⎨≤-≤⎩0x =解得或,10x -≤≤13x ≤≤所以满足的的取值范围是,(10)xf x -≥x [1,0][1,3]-⋃故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.16.若,则的最小值为( ) 0,0,2a b a b >>+=41y a b =+A . B . C .5 D .4 7292【答案】B【分析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的y ()()241a b a b++y最小值.【详解】解:,2a b += ∴12a b +=(当且仅当时等号成立) ∴41415259()()222222a b b a y a b a b a b +=+=+=+++=…2b a =故选:B . 17.如图所示,在三棱锥A -BCD 中,AC =AB =BD =CD =2,且∠CDB =90°.取AB 中点E 以及CD 中点F ,连接EF ,则EF 与AB 所成角的正切值取值范围为( )A .B .C .D . 1[21[2【答案】C 【分析】由题意可得当平面平面时,张角最大,即EF 与AB 所成角最大,从而可得最ABC ⊥BCD 大值,当平面与平面重合时,张角最小,即EF 与AB 所成角最小,从而可得最小值,又ABC BCD 平面与平面不能重合,即可求得EF 与AB 所成角的正切值取值范围.ABC BCD 【详解】解:如图,作于H ,EH BC ⊥因为,当平面平面时,张角最大,即EF 与AB 所成角最大, 112BE AB ==ABC ⊥BCD 如图①,作与M ,HM CD ⊥BF==EF==因为,所以,BC==222AB AC BC+=90BAC∠=︒所以EF与AB的夹角为或其补角,BEF∠,所以cos∠sin BEF∠=tan∠故EF与AB,当平面与平面重合时,张角最小,即EF与AB所成角最小,ABC BCD如图②所示,即为EF与AB所成角的平面角,45FEA∠=︒,tan1FEA∠=又平面与平面不能重合,ABC BCD所以EF与AB所成角的正切值取值范围为.故选:C.18.在△ABC中,D是BC边上一点,且BD=2DC=4,,则AD的最大值为()60BAC∠=︒A.B.4 C D.221【答案】A【分析】由正弦定理可得,再在中由余弦定理化简得出AB C=ABD△,即可求出.2216AD C=+【详解】因为,所以,24BD DC==6BC=在中,由正弦定理可得,则,ABCA sin sinAB BCC BAC===∠AB C=在中,由余弦定理得ABD△2222cosAD AB BD AB BD B=+-⋅⋅248sin1624cosC C B =+-⨯⨯()248sin16cosC C A C=+++2148sin16cos2C C C C⎛⎫=++-⎪⎝⎭,cos16216C C C=+=+因为,所以,0120C︒<<︒02240C︒<<︒则当,即时,290C=︒45C=︒.AD2==+故选:A.二、填空题19.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示.(Ⅰ)直方图中的_________;=a(Ⅱ)在这些购物者中,消费金额在区间内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【详解】由频率分布直方图及频率和等于1可得,0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=解之得.于是消费金额在区间内频率为,所以消3a =[0.5,0.9]0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=费金额在区间内的购物者的人数为:,故应填3;6000.[0.5,0.9]0.6100006000⨯=【解析】本题考查频率分布直方图,属基础题.20.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】. 710【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有种情况.2510C =若选出的2名学生恰有1名女生,有种情况,11326C C =若选出的2名学生都是女生,有种情况,221C =所以所求的概率为. 6171010+=【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”. 21.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC那么P 到平面ABC 的距离为___________..【分析】本题考查学生空间想象能力,合理画图成为关键,准确找到在底面上的射影,使用线面P 垂直定理,得到垂直关系,勾股定理解决.【详解】作分别垂直于,平面,连,,PD PE ,AC BC PO ⊥ABC CO 知,,,CD PD CD PO ⊥⊥=PD OD P 平面,平面,CD \^PDO OD ⊂PDOCD OD ∴⊥,., PD PE ==∵2PC =sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,为平分线, PO CO ∴⊥CO ACB ∠,451,OCD OD CD OC ︒∴∠=∴===2PC =.PO ∴==【点睛】画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题即很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.22.若函数恰有两个零点,则实数的范围是________ 2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩a 【答案】 1[,1)[2,)2+∞ 【分析】分别设,分两种情况讨论,即可求出的范围.()2,()4()(2)x h x a g x x a x a =-=--a 【详解】解:设,()2,()4()(2)x h x a g x x a x a =-=--若在时,与轴有一个交点,1x <()2x h x a =-x 所以,并且当时, ,所以,0a >1x =(1)20h a =->02a <<而函数有一个交点,所以,且,()4()(2)g x x a x a =--21a ≥1a <所以, 112a ≤<若函数在时,与轴没有交点,()2x h x a =-1x <x 则函数有两个交点,()4()(2)g x x a x a =--当时,与轴无交点,无交点,所以不满足题意(舍去),0a ≤()h x x ()g x 当时,即时,的两个交点满足,都是满足题意的, (1)20h a =-≤2a ≥()g x 12,2x a x a ==综上所述的取值范围是,或. a 112a ≤<2a ≥故答案为:. 1[,1)[2,)2+∞ 【点睛】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题23.已知函数 ()21sin cos cos 2,2f x x x x x x R =+-∈(1)求函数的单调减区间;()f x (2)求当时函数的最大值和最小值. 0,2x π⎡⎤∈⎢⎥⎣⎦()f x 【答案】(1);(2). 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦()()min max 15,22f x f x =-=【分析】(1)将化为,然后解出不等式()f x ()12sin 262f x x π⎛⎫=-+ ⎪⎝⎭3222262k x k πππππ+≤-≤+即可;(2)当时,,然后可求出答案. 0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤-∈-⎢⎥⎣⎦【详解】(1)()211cos 211sin cos cos 22cos 22cos 22222x f x x x x x x x x x -=+-=-=-+ 12sin 262x π⎛⎫=-+ ⎪⎝⎭令,可得 3222262k x k πππππ+≤-≤+5,36k x k k Z ππππ+≤≤+∈所以函数的单调减区间为 ()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)当时,, 0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤-∈-⎢⎥⎣⎦1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦所以 ()15,22f x ⎡⎤∈-⎢⎥⎣⎦即 ()()min max 15,22f x f x =-=24.如图,已知四边形ABCD 是菱形,,绕着BD 顺时针旋转得到60BAD ∠=︒ABD △120︒PBD △,E 是PC 的中点.(1)求证:平面BDE ;//PA (2)求直线AP 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;【分析】(1)连接交于,连接,利用中位线可得到,再利用直线与平面平行AC BD F EF //EF PA 的判定即可证明;(2)先根据(1)得到直线AP 与平面PBC 所成的角为直线与平面PBC 所成的角,然后过EF F 作,利用面面垂直的性质定理得到平面,进而得到为直线与平面FQ BE ⊥FQ ⊥PBC QEF ∠EF PBC 所成的角,最后求的正弦值即可.QEF ∠【详解】(1)连接交于,连接,因为四边形ABCD 是菱形,AC BD F EF 所以为的中点,又因为是的中点,所以,F AC E PC //EF PA 平面,平面,所以平面. EF ⊂BDE PA ⊄BDE //PA BDE(2)过作,垂足为,连接,F FQ BE ⊥Q FP由(1)知:,//EF PA 则直线AP 与平面PBC 所成的角为直线与平面PBC 所成的角,EF 易知,又是的中点,所以,同理,BP BC =E PC BE PC ⊥DE PC ⊥又,面,所以面,又面,BE DE E ⋂=,BE DE ⊂BDE PC ⊥BDE PC ⊂PBC 所以面面,面面,面,,PBC ⊥BDE PBC =BDE BE FQ ⊂BDE FQ BE ⊥所以面,所以为直线与平面PBC 所成的角,FQ ⊥PBC QEF ∠EF 由△绕着BD 顺时针旋转得到△,可得到,ABD 120︒PBD 120AFP ∠=︒假设,则,2AB a =,AF FP ===在中,由余弦定理可得:,AFP A 22222cos1209AP AF FP AF FP a =+-⋅︒=所以,3AP a =因为,所以,又为的中点,所以,PDC PCB ≅A A DE BE =F BD EF BD ⊥则在中,, Rt EFB △13,,22EF AP a FB a BE =====所以, sin FB FEB BE ∠==所以直线AP 与平面PBC 25.已知函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.(1)求实数a 的值;(2)若关于x 的方程f (log 2x )+1﹣2k log 2x =0在[2,4]上有解,求实数k 的取值范围; ⋅(3)若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,求实数m 的取值范围.(附:函数g (t )=t 在(0,1)单调递减,在(1,+∞)单调递增.) 1t+【答案】(1)﹣1;(2)0≤t ;(3)m ≤﹣3或m ≥3. 14≤【分析】(1)由二次函数的图像与性质即可求解.(2)采用换元把方程化为t 2﹣(2+2k )t +1=0在[1,2]上有解,然后再分离参数法,化为t 与2+2k 在[1,2]上有交点即可求解. ()g t =1t+y =(3)求出|f (x 1)﹣f (x 2)|max <1,把问题转化为1≤m 2﹣2mp ﹣2恒成立,研究关于p 的函数h (p )=﹣2mp +m 2﹣3,使其最小值大于零即可.【详解】(1)函数f (x )=x 2﹣2x +1+a 对称轴为x =1,所以在区间[1,2]上f (x )min =f (1)=a ,由根据题意函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.所以a =﹣1.(2)由(1)知f (x )=x 2﹣2x ,若关于x 的方程f (log 2x )+1﹣2k •log 2x =0在[2,4]上有解,令t =log 2x ,t ∈[1,2]则f (t )+1﹣2kt =0,即t 2﹣(2+2k )t +1=0在[1,2]上有解,t 2+2k 在[1,2]上有解, 1t+=令函数g (t )=t , 1t+在(0,1)单调递减,在(1,+∞)单调递增.所以g (1)≤2+2k ≤g (2),即2≤2+2t , 52≤解得0≤t . 14≤(3)若对任意的x 1,x 2∈(1,2],|f (x 1)﹣f (x 2)|max <1,若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,则1≤m 2﹣2mp ﹣2,即m 2﹣2mp ﹣3≥0,令h (p )=﹣2mp +m 2﹣3,所以h (﹣1)=2m +m 2﹣3≥0,且h (1)=﹣2m +m 2﹣3≥0,解得m ≤﹣3或m ≥3.【点睛】本题主要考查了二次函数的图像与性质、函数与方程以及不等式恒成立问题,综合性比较强,需有较强的逻辑推理能力,属于难题.。
2023—2024学年安徽省高二下学期普通高中学业水平合格性考试仿真模拟数学试卷
2023—2024学年安徽省高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题(★★) 1. 已知集合,则()A.B.C.D.(★) 2. 下列图象中,表示定义域和值域均为的函数是()A.B.C.D.(★★) 3. 已知向量,若,则()A.9B.C.1D.(★) 4. 已知函数,则()A.B.1C.2D.3(★★) 5. 若函数是指数函数,则有()A.B.C.或D.,且(★★) 6. 已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则()A.B.3C.D.(★) 7. 水平放置的的斜二测直观图如图所示,已知,则的面积是()A.4B.5C.6D.7(★★) 8. 命题“”的否定是()A.B.C.D.(★★★) 9. 函数的图象的一条对称轴是()A.B.C.D.(★★) 10. 已知复数z满足,则()A.B.C.D.(★) 11. “今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于()A.立方尺B.立方尺C.立方尺D.立方尺(★★) 12. 抛掷一枚质地均匀的骰子,记随机事件:“点数为奇数”,“点数为偶数”,“点数大于2”,“点数小于2”,“点数为3”.则下列结论不正确的是()A.为对立事件B.为互斥不对立事件C.不是互斥事件D.是互斥事件(★★) 13. 的内角的对边分别为的面积为,且,则边()A.7B.3C.D.(★) 14. 已知是空间中三个不同的平面,是空间中两条不同的直线,则下列结论错误的是()A.若,则B.若,则C.若,则D.若,则(★★★) 15. 若不等式对所有实数恒成立,则的取值范围为()A.B.C.D.(★) 16. 已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为()A.100,30B.100,21C.200,30D.200,7(★★) 17. 已知向量与的夹角为,则向量与上的投影向量为()A.B.C.D.(★★) 18. 若函数在上是单调增函数,则实数的取值范围为A.B.C.D.二、填空题(★★) 19. 已知,则 ________ .(★★★) 20. 已知单位向量与单位向量的夹角为,则____________ .(★★) 21. 某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为____________ .(★★) 22. 某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买台设备的总成本为(单位:万元).若要使每台设备的平均成本最低,则应购买设备 ____________ 台.三、解答题(★★★) 23. 已知,其中向量,(1)求的最小正周期;(2)在中,角的对边分别为,若,求角的值.(★) 24. 如图,在直三棱柱中,,,,点是的中点.(1)证明:;(2)证明:平面.(★★★) 25. 已知函数是奇函数,且(1)求的值;(2)判断函数在上的单调性,并加以证明;(3)若函数满足不等式,求实数的取值范围.。
高中会考试题数学及答案
高中会考试题数学及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 + 4x + 3,则f(-1)的值为:A. 0B. 2C. 4D. 6答案:B2. 已知等差数列{a_n}的前三项分别为1, 4, 7,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 若直线y = 2x + 1与直线y = -x + 3相交,则交点的横坐标为:A. -1B. 0C. 1D. 2答案:C5. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:B6. 函数y = x^3 - 3x^2 + 4x - 2的导数是:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 9x + 4D. 3x^2 - 9x + 2答案:A7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A9. 一个数列的前四项为2, 5, 8, 11,若该数列是等差数列,则第五项为:A. 14B. 15C. 16D. 17答案:A10. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的前三项分别为2, 6, 18,则该数列的公比为______。
答案:32. 一个矩形的长为10cm,宽为5cm,那么它的对角线长度为______。
答案:5√5 cm3. 函数y = √x的反函数是______。
答案:y = x^24. 已知一个抛物线的顶点为(2, -3),且开口向上,则它的标准方程为______。
高2数学会考试题及答案
高2数学会考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. -1D. 2答案:B2. 已知向量a=(3,-2),b=(2,1),则向量a+b的坐标为:A. (5,-1)B. (1,-3)C. (-1,3)D. (3,1)答案:A3. 函数y=|x|的图象是:A. 一条直线B. 两条直线C. 一个V形D. 一个倒V形答案:C4. 若复数z满足z^2=i,则z的值为:A. iB. -iC. i或-iD. 1或-1答案:C5. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a>0,b>0,则该双曲线的焦点位于:A. x轴上B. y轴上C. 第一象限D. 第四象限答案:A6. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π答案:B7. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值为:A. 14B. 17C. 20D. 23答案:A8. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B9. 函数y=ln(x)的定义域为:A. (-∞,0)B. (0,+∞)C. (-∞,+∞)D. [0,+∞)答案:B10. 已知圆的方程为(x-2)^2+(y-3)^2=9,则该圆的圆心坐标为:A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)答案:A二、填空题(每题4分,共20分)1. 若直线l的斜率为2,则直线l的倾斜角为______。
答案:arctan(2)2. 已知等比数列{bn}的首项b1=1,公比q=2,则b3的值为______。
答案:43. 函数y=cos(x)的图象关于______对称。
答案:y轴4. 已知抛物线方程为y^2=4x,该抛物线的焦点坐标为______。
高中数学会考模拟试题(附答案)
高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。
高中会考数学试题及答案
高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(无限循环)B. πC. √2D. 1/32. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个3. 已知等差数列的前三项和为6,第二项为2,求该数列的首项a1和公差d:A. a1 = 1, d = 1B. a1 = 0, d = 2C. a1 = 2, d = 0D. a1 = 3, d = -14. 集合A={1, 2, 3},集合B={2, 3, 4},求A∩B:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 已知三角形ABC的三边长分别为a=3, b=4, c=5,求其面积:B. 9C. 10D. 126. 根据题目所给的函数y=x^3-2x^2+x-2,求导数y':A. 3x^2-4x+1B. x^3-2x^2+1C. 3x^2-4x+2D. x^3-2x7. 已知sinθ=0.6,求cosθ的值(结果保留根号):A. √(1-0.36)B. -√(1-0.36)C. √(1-0.6^2)D. -√(1-0.6^2)8. 将下列二次方程x^2-4x+4=0进行因式分解:A. (x-2)(x-2)B. (x+2)(x-2)C. (x-1)(x-3)D. (x+1)(x+3)9. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,求圆心坐标:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)10. 根据题目所给的等比数列求和公式S_n = a1(1-q^n)/(1-q),当n=5,a1=2,q=2时,求S_5:B. 63C. 64D. 65二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 + bx + c,若f(1) = 2,则b + c =_______。
高二数学模拟考试卷(含答案)
解析】高二数学模拟考试卷、选择题(共 12 小题,每小题 5 分,满分 60 分)在给出的四个选项中,只有一项是符 21.复数 1-3 ii 是虚数单位 的模等于( )A . 5B . 1C . 5 55【答案】 C【解析】2 23 i312 1Q1 11ii 3i 3i3i555 5合题目要求的 D . 1032i2.极坐标方程 2sin 表示的圆的半径是( ) 1 1C .2A .B .34【答案】 D【解析】极坐标方程 2sin ,即 2 2 sin ,故选 C. D .1转化为普通方程,得: x 2 y 2 2y 0, 极坐标方程2sin表示的圆的半径是: r 12 1. 2故选 D. 3. 已 知 f 1xsinx cosx, 是f n 的导函数, 即 f 2 x f 1 ' x ,3x f 2 ',n,则f 2018 xA . sinx cosxB . cosx sinxC . sinx cosxD . sinx cosx答案】 CQ f 1 x sinx cosx , f 2 x f 1 ' x cosx sinx, f 3 x f 2 ' xsinx cosx,f 4 x f 3 ' x cosx sinx ,f 5 xf 4 ' x sinx cosx ,f n 4 x f n ' x ,即函数 f n x 是周期为 4 的周期函数,则f 2018 x f 504 4 2 x f 2 x cosx sinx . 故选 C.4.曲线 y sinx e x 在点 0,1 处的切线方程是( ) A . x 3y 3 0 B . x 2y 2 0 C . 2x y 1 0 D .3x y 1 0【答案】 C 【解析】xQ y sinx e ,xy' cosx e ,在 x 0 处的切线斜率 k f ' 0 1 1 2,y sinx e x 在 0,1 处的切线方程为: y 1 2x , 2x y 1 0 .故选 C.5.函数 f x 的定义域为 R ,导函数 f ' x 的图象如图所示,则函数 f x ( )x ,a ,函数是增函数; x a,b ,函数是减函数; x b,c ,函数是增函数; x c,d ,函数是减函数; x d, ,函数是增函数;可知极大值点为: a ,c ;极小值点为: b ,d . 故选 C.6.已知 a n log n 1 n 2 n N ,观察下列算式:B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 【答案】 C0,f ' c 0,f ' d 0A .无极大值点,有四个极小值点犯在乙、丙、丁三人之中 ”:乙说: “我没有作案,是丙偷的 ”:丙说: “甲、乙两人中有一人是小偷 ”:丁“乙说的是事实 ”.经过调查核实,四人中有两人说的是真两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A .甲B .乙C .丙D .丁【答案】 B 【解析】在甲、乙、丙、丁四人的供词不达意中,可以看出乙、丁两人的观点是一致的,此 乙、丁两人的供词应该是同真或同假 (即都是真话或者都是假话, 不会出现一真一假的情况) 假设乙、 丁两人说的是真话, 那么甲、丙两人说的是假话, 由乙说真话推出丙是罪犯的结论;a 1 a 2 log 2 3 log 3 4lg3 lg 4 lg2 lg 32,a 1 a 2 a 3 a 4a 5 a 6 log 2 3 log 3 4 log 78lg 3 lg 4 lg 2 lg3 lg8lg73, ,若a 1 a 2 a 3a m 2018 mN ,则 m 的值为(A . 22018 B . 22018 C .22016D . 22016答案】 A 解析】根据题意, a n log n 1 n2lg n 2 lg n+1a 1 a 2 log 2 3 log 3 4lg3 lg2 lg 4 lg3 lg 4lg22,若a 1 a 2a 3 a m 2018 m,则有a 1 a 2a 3a m log 2 3 log 3 4 log m 1 mlg3 lg2 lg4 lg3lg m 2 lg m 1lg m 22018 lg2则m2018,2018m 22018 2;故选 A.7.一名法官在审理一起珍宝盗窃案时, 四名嫌疑人甲、乙、丙、丁的供词如下,甲说:由甲说假话,推出乙、丙、丁三人不是罪犯的结论;显然这两个结论是相互矛盾的; 所以乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是 罪犯,乙、丙、丁中有一人是罪犯,由丁说假说,丙说真话,推出乙是罪犯. 故选 B.)时0故选 A.8.在 R 上可导的函数 f的图形如图所示,则关于 x 的不等式 x f ' x 0 的解集为A .,10,1B C . 2, 1 1,2D答案】 A解析】1,0 1, , 2 2,若x 0时,不等式 f'0不成立. 若x 0,则不等式 f'0 等价为 f '0, 此时函数单调递减,由图象可知,此若x 0,则不等式 f' 0 等价为 f ' 0, 此时函数单调递增,由图象可知,此时x1.故不等式 x f '0的解集为 ,10,1 .9.已知函数f x R 的图象上任一点x0,y0 处的切线方程为A.C.y0 x01,,122 x02 1 x x0 ,那么函数f x 的单调递减区间是(B.,2和1,2 D.2,答案】 C解析】Q 函数f x x R 上任一点 x 0, y 0 的切线方程为 y y 0 x 0 2 x 02 1 x x 0 ,即函数在任一点 x 0,y 0 的切线斜率为 k x 0 2 x 02 1 ,2即知任一点的导数为 f ' x x 2 x 2 1 . 由 f ' x x 2 x 2 1 0,得 x 1或1 x 2, 即函数 f x 的单调递减区间是 , 1 和 1,2 . 故选 C.x 1 tcos10.已知直线 l 的参数方程为 3 y 3 tsint 为参数),以原点 O 为极点, x 轴正半轴为极轴建立极坐标系,圆 C 的极坐标方程为4sin,直线 l 与圆 C 的两个交3A .B .C43答案】 D解析】2D .3直线 l 过点 M 1,,倾斜角为Q 圆 C 的极坐标方程为 4sin,即 2 2 sin 2 3 cos 32圆 C 的直角坐标方程为2y 2 3x 0 ,即 x324,Q132314,点为 A,B ,当 AB 最小时, 的值为( ) t 为参数),x 1 tcos Q 直线l 的参数方程为3y 3 tsinQ 直线l 与圆C 的两个交点为A,B ,当AB 最小时,直线CM⊥AB ,tan k AB 3 .23故选 D.11.如图,过原点斜率为k 的直线与曲线y ln x 交于两点A x1,y1 ,B x2,y2 ,给出以下结论:1①k 的取值范围是0,1e②x1 1 x2③当x x1,x2 时,f x kx ln x 先减后增且恒为负.其中所有正确的结论的序号是()A .①B .①②C.①③D.②③答案】 C解析】点M1, 3在圆内,3圆心C 3,1 与M1, 3连线的斜率3 k CM313131121令 f x kx lnx ,则 f ' x k ,x由已知 f x 有两个不同的零点,则 k 0 ,所有正确结论的序号是①③.故选 C.的最大值为(答案】 C 解析】1,故选 C.0,k 1 上单调递减,上单调递增, l n,则,①正确;且有 x1 x 2, kx 1 kx 2, ②错误;当x x 1,x 2时, fkx ln x 先减后增且恒为负,③正确; xf ' x2f x 2f'2xf12,x1,则 g'x 2f ' x2xf1,x lnx , fln xf'1 2ln12时,2ln x时,f'xe 2 时,f xmax1e2 12 e 2 ln 2ln x 0,12.已知函数 f 的导函数 f ' x ,满足 xf ' x 2f x1,且 f 1 1 ,则函数 f xA .0B .C .D . 2e1,、填空题(共 4小题,每小题 5分,满分 20 分)13.由直线x ,x 2,y 0 与y sin x 所围成的封闭图形的面积为33【答案】1【解析】函数的图象如图:Q 1 a cos x 1,①当a时,a a cos x a ,a 1,0 a 1 ;②当a时,适合;③当a 0时,a a cos x a ,a 1,1 a 0 .综上,1 a 1 .2S 3 sin xdx323 2 cos x | 3cos33故答案为:1.14.若函数fx x asinx在R上递增,【答案】1,1 【解析】Q f' x 1 a cosx,要使函数fx x asin x 在R 上递增,2 1 1 cos coscos 13 3 3 2 2则1 acosx 0对任意实数x 都成立.当3 x 3时,f x sinx 0,根据积分的几何意义可知,所求区域面积为则实数a 的取值范围为故答案为:1,115.观察下面一组等式:S1 1,S22 3 4=9,S33 4 56 7 25,S4 4 5 67 8 9 10 49 ,根据上面等式猜S2n 1 4n 3 an b ,则a2b2 【答案】25【解析】当n 1 时,S1413ab a b 1,①当n 2 时,S3 4 2 3 2a b 5 2a b 25,②,由①②解得a 4,b 3 ,22a2b216 9 25 ,故答案为:25 .f x016.如果函数y f x 在其定义域上有且只有两个数x0 ,使得0 f ' x0 ,那么我x0们就称函数y f x 为“双T 函数”,则下列四个函数中:① y x21 ,② y e x,③ y ln x ,④ y sinx 1 .为“双T 函数”的是 .答案】①③解析】对于①, y f x x 2 1,fx 1 x , xf ' x 2x ,x , 令 x 1x1 2x ,即 x x , 解得 x 1 ,满足题意, yf x 为 “双T 函数 ”; 对于②, y f xx e ,fx x e x ,f' xxx,x 令 e e x ,解得 x 1,x不满足题意, y f x 不是“双T 函数”;ln x, x 0 对于③, y f x lnxln x , x 0f x ln x1x 0 , , f ' x ,xxxln x 1令 ,即 ln x 1,解得 x e , xx fx lnx1x 0 ,f ' x 1,xxxln x 1令1,即 ln x1,解得 x e ,xx满足题意, yf x 为 “双T 函数 ”; 对于④, y f x sinx1,f xsin x 1, f ' x cosx ,xx xsin x 1令cos x ,即 sin x xcosx 1 0,xxi77已知z 1 16 10 2 a i , z 22 a2a4 1a(1)求实数 a 的值;(2)求z 1 z 2 的值.【答案】 1 3; 2 -23 7 9 +i 7【解析】(1)z 1z 21610 a 2 i2a2 a4 1aQ z 1 z 2 是实数,10 a 2a 20i (其中 i 为虚数单位) ,若 z 1 z 2 是实数 a3;2) 由( 1)可得z 16 i ,z 2 1 i ,716z 17i16 1+i16 16 z 1 z 2i1i 77 723 9由 g x sinx xcosx 1,则 g ' x xsin x ,令 g ' x 0 ,解得 x k , k Z ; 由三角函数的周期性知,方程 sin x xcosx 1 0 的解有无数个, 不满足题意, y f x 不是“双T 函数”; 综上,正确的命题序号是①③. 故答案为:①③.6 小题,满分 70 分)解答应写出文字说明,证明过程或演算步骤1)求证: 8 6 5 3 ;三、解答题(共 17.(本小题 12 分)i ,解得 a 3或 a 4 (舍去),18.(本小题 122)已知实数 a 、b 、c 满足 0 a 、b 、c 2,求证: 2 a b , 2 b c , 2 c a 不 同时大于 1. 【答案】 1 略;2 略 【解析】证明:( 1)要证: 8 6 5 3 , 只要证 8 3 5 6 ,22只要证 8 3 5 6 , 即证 11 2 24 11 2 30 , 即证 24 30 ,即证 24 30 ,显然成立, 故 8 6 5 3 .(2)假设 2 a b 1, 2 b c 1, 2 c a 1, 由题意知 2 a 0,2 b 0, 2 c 0,2 a b 那么 2 a b 1 ,21,三式相加,得 3 3 矛盾,所以假设不成立.19.(本小题 12 分) 已知函数 f x 1 a 2 x 2 2xln x . 1)当 a 1时,求函数 f x 的极值;同理所以 2 a b ,2 b c , 2 c a 不能同时大于 1.2)若函数 f x 在 0, 单调递增,求实数 a 的取值范围.答案】 1 极大值:121 2 ,无极小值; 2 - ,0 ee解析】1)当 a 1时, f x2xlnx ,x 0 ,f' x 21 lnx ,1令f' x 0,解得 x ,e1当 0 x 时, f ' x 0 ,函数单调递增, e1当 x 时, f ' x 0 ,函数单调递减,e1 12 2 1 ln 1 2,无极小值;e e e2) Q 函数 f x 在 0, 单调递增,f ' x 2 1 a x 2 1ln x0 ,在 0, 上恒成立,1 a 1 ln xx设g x1 ln xx 0 ,xg' x ln x2,x令g' x 0,解得 x 1 ,当0 x 1时, g ' x 0 , 函数 g x 单调递增, 当x 1时, g ' x0 ,函数 g x 单调递减,gx g 1 11 a 1,a 0故 a 的取值范围为 - ,020.(本小题 12 分) 1 n n 1数列a n 满足: a 1,前 n 项和 S n a n ,621)写出 a 2, a 3, a 4;1 当 x 时,函数取得极大值,极大值为 e2)猜出a n 的表达式,并用数学归纳法证明.答案】a2112,a31120,a4 30; 2 a n1n1n2证明略解析】1) Q a1 1,前n 项和S n61 1a2 a1 122212 a n ,令n3,即a1 a2 a36a3,a3120令n4,得a1 a2 a3 a410a4,a4令n 2 ,即a1 a2 3a2 .1302)猜想a n1n1n2 面用数学归纳法给出证明.①当n 1 时,结论成立.②假设当n k 时,结论成立,即a k1 k1k2则当n k 1 时,S k k,2 k 2k1k2S k 1 a k 12k 1 k 2即S k a k 1 a k 1 ,2k 1k k 1 k 2,a k 1 a k 1 ,2 k 2k 12k 1k k3a k 1 k,k12k 12 k 2a k 11 k2k3当n k 1 时结论成立.21.(本小题 12 分) 已知函数 f x e 2x ax . 1)讨论 f x 的单调性;解析】x 在 R 上递增,2x8xe2xh ' x22 x 1a 2时, g ' x 0没有实根, g 'x 在 0,+ 上单调递增, g x g 0 0 ,符合题意, 第16页(共 18页)由①②可知,对一切n N 都有 a n1 成立. n1n22)当 x 0 时, f x 2ax 1, 求 a 的取值范围.答案】 单调递增区间:,1 ln a ,单调递减区间:2221ln a 2,+ ;2,21) f '2e 2xa,时,得1ln a, 22,1ln a 22f' ,1ln a 22 上递减;1ln a ,+2f' 1ln a ,+22上递增.2)2xxeax 2ax 2 1 变形为2xe 2ax ax令g2xe2ax ax1, g ' x2e 2x2ax a,0 ,可得a 2e 2 x ,2x 1 0时, 0, h x 在 0,+ 上单调递增,h x 的值域是 2,+ , 0时,2x2e 2 x ,2 x 12当 a 2时, g ' x 0有唯一实根 x 0, x 0,x 0 时, g' x 0 ,g x 在 0,x 0 上递减, g x g 0 0 , 综上, a 的取值范围是 a 2.22.(本小题 10 分)xOy 的原点 O 为极点, x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l : cos sin 2 2 .1)试写出曲线 C 的极坐标方程与直线 l 的普通方程;2)在曲线 C 上求一点 P ,使点 P 到直线 l 的距离最小,并求此最小值. 答案】 1 2+2 2 sin 2 3,x y 2 2 0;解析】即 2 2 2 sin 2 3 .Q 直线 l : cos sin直线 l 的普通方程为 x2)设 P 3 cos,sin则 P 到直线 l 的距离 3 cos sin2222si n22 3当2sin2时,点 P 到直线 l 的距离最小,不符题意, 在平面直角坐标系 xOy 中,已知曲线 C :x 3 cos ( 为参数),以平面直角坐标系 ysin1)Q 曲线 C: xy 3 cos sin为参数),曲线 C 的普通方程为1,曲线 C 的极坐标方程为 2cos322sin1,此时3,1 2,2此最小值为d min。
湖南高二高中数学水平会考带答案解析
湖南高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.设集合,,则()A.B.C.D.2.函数在区间上的最小值是( )A.B.0C.1D.23.已知, , 且, 则等于 ( )A.-1B.-9C.9D.14.不等式的解集是( )A.B.C.D.5.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B.C.D.6.式子的值为()A.B.C.D.17.已知数列是公比为2的等比数列,若,则= ( )A.1B.2C.3D.48.下列函数中,在定义域内是单调递增函数的是()A.B.C.D.9.在中,内角的对边分别为,若,,,则等于( )A.1B.C.D.210.下表是某厂1—4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程为=-0.7x+a,则a等于() A.10.5 B.5.15 C.5.2 D.5.25二、填空题1.化简= .2.直线的倾斜角为.3.右边的程序中, 若输入,则输出的.4.若实数满足约束条件:,则的最大值等于.三、解答题1.已知函数.(1)求函数的最小正周期;(2)判断函数的奇偶性, 并说明理由。
2.某校在高二年级开设了,,三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从,,三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人)兴趣小组小组人数抽取人数3(1)求,的值;(2)若从,两个兴趣小组所抽取的人中选2人作专题发言,求这2人都来自兴趣小组的概率.3.如图,在正方体中,、分别为,中点。
(1)求异面直线与所成角的大小;(2)求证:平面。
4.已知圆(1)将圆的方程化为标准方程,并指出圆心坐标和半径;(2)求直线被圆所截得的弦长。
5.已知是首项的递增等差数列,为其前项和,且.(1)求数列的通项公式;(2)设数列满足,为数列的前n项和.若对任意的,不等式恒成立,求实数的取值范围.湖南高二高中数学水平会考答案及解析一、选择题1.设集合,,则()A.B.C.D.【答案】D【解析】由题意可知集合A表示的三个实数-1,0,1,而集合B表示的是大于0的所有实数,所以两个集合的交集为只含一个元素的集合即。
山东高二高中数学水平会考带答案解析
山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.△ABC中,,则△ABC一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形2.在等比数列{}中,已知,,则A.1B. 3C.±1D.±33.若则下列不等式成立的是A.B.C.D.4.三角形三边长为,且满足等式,则边所对角为A. 150°B. 30°C. 60°D. 120° [5.不等式表示的平面区域是A B C D6.已知数列则是这个数列的A.第6项B.第7项C.第8项D.第9项7.在中,若,则此三角形是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形8..函数()的最大值是A.0B.C. 4D. 169.已知数列满足若,则的值为,A.B.C.D.10.如果,那么的最小值是()A.4B.C.9D.1811.、数列的通项为=,,其前项和为,则使>48成立的的最小值为()A.7B.8C.9D.1012.若不等式和不等式的解集相同,则、的值为()A.=﹣8 =﹣10B.=﹣4 =﹣9C.=﹣1 =9D.=﹣1 =2二、填空题1.在中,已知,则= .2.数列的前项和为,,且,则3.已知则的最小值是 .4.函数的定义域是三、解答题1.已知等差数列成等比数列,求数列的公差.2.已知数列的前项和为,且是与2的等差中项,数列满足,点在直线上,(1)求数列,的通项公式;(2)设,求数列的前项和.3.如图,要测量河对岸两点间的距离,今沿河岸选取相距40米的两点,测得 60°,=45°, 60°, 30°,求两点间的距离.4.①已知不等式的解集是,求的值;②若函数的定义域为,求实数的取值范围.5.建造一个容积为8,深为2的长方体无盖水池,若池底和池壁的造价每平方米分别为120元和80元,则如何设计此池底才能使水池的总造价最低,并求出最低的总造价.山东高二高中数学水平会考答案及解析一、选择题1.△ABC中,,则△ABC一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【答案】A【解析】略2.在等比数列{}中,已知,,则A.1B. 3C.±1D.±3【答案】A【解析】设等比数列的公比为,则,解得。
安徽省合肥市2023-2024学年高二下学期学业水平考试数学模拟卷含答案
普通高中学业水平合格性考试数学(答案在最后)一、选择题:本大题共18小题,每小题3分,满分54分.在每小题给出的四个选项中,只有一项是符合题目要求的1.下列元素与集合的关系中,正确的是()A.*3-∈NB.0∉NC.12∈Z D.R【答案】D 【解析】【分析】由元素与集合的关系即可求解.【详解】由题意*13,0,2-∈∉∉N Z N R .故选:D.2.下列向量关系式中,正确的是()A.MN NM =B.AB AC BC+= C.AB CA BC+= D.MN NP PQ MQ++= 【答案】D 【解析】【分析】由向量加减法的运算规则,验证各选项的结果.【详解】MN NM =-,A 选项错误;BC AC AB=-,B 选项错误;AB CA CA AB CB =+=+,C 选项错误;由向量加法的运算法则,有MN NP PQ MQ ++=,D 选项正确.故选:D.3.已知角α的终边经过点125,1313⎛⎫- ⎪⎝⎭,则tan α=()A.512-B.125-C.1213-D.513【答案】A 【解析】【分析】由三角函数定义即可得解.【详解】由题意5125tan 131312α⎛⎫=÷-=- ⎪⎝⎭.故选:A.4.已知i 为虚数单位,则复数23i i z =-+的虚部为()A.1B.1- C.iD.i-【答案】B 【解析】【分析】由复数四则运算以及虚部的概念即可求解.【详解】由题意2i 3i i 2z =-+=-,所以复数23i i z =-+的虚部为1-.故选:B.5.“21x >”是“1x >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据21x >得到1x >1x <-,从而得到答案.【详解】由21x >,解得1x >或1x <-.所以“21x >”是“1x >”的必要而不充分条件故选:B【点睛】本题主要考查必要不充分条件,同时考查二次不等式的解法,属于简单题.6.已知lg3,lg5x y ==,则用,x y 表示lg45为()A.2xy B.3xyC.2x y+ D.2x y-【答案】C 【解析】【分析】运用对数运算性质计算.【详解】()2lg45lg 53lg 52lg 32x y =⨯=+=+.故选:C.7.已知函数()23f x x x=--,则当0x <时,()f x 有()A .最大值3+ B.最小值3+C.最大值3- D.最小值3-【答案】B 【解析】【分析】由基本不等式即可求解.【详解】由题意当0x <时,()()233f x x x ⎡⎤⎛⎫=+-+-≥+ ⎪⎢⎥⎝⎭⎣⎦,等号成立当且仅当x =.故选:B.8.已知一组样本数据12,,,n x x x 的平均数为3,中位数为4,由这组数据得到新样本数据1y ,2,,n y y ,其中()11,2,3,,i i y x i n =+= ,则12,,,n y y y 的平均数和中位数分别为()A.3,4 B.3,5C.4,4D.4,5【答案】D 【解析】【分析】由平均数的定义及12,,,n x x x 的大小排列顺序与变化后的12,,,n y y y 的大小排列顺序一致,即可求出结果.【详解】由题意知,123n x x x n +++= ,则()()()121211134n n x x x y y y n ny n n n++++++++++==== ,又因为()11,2,3,,i i y x i n =+= ,所以12,,,n x x x 的大小排列顺序与变化后的12,,,n y y y 的大小排列顺序一致,由于12,,,n x x x 的中位数为4,则12,,,n y y y 的中位数为5.故选:D.9.已知函数()()ln 2f x x =-,则下列结论错误的是()A.()30f = B.()f x 的零点为3C.()f x 在()0,∞+上为增函数D.()f x 的定义域为()2,+∞【答案】C 【解析】【分析】由函数()()ln 2f x x =-性质依次判断各选项可得出结果.【详解】()()3ln 32=ln1=0f =-,可知函数()f x 的零点为3,可知A,B 正确;()()ln 2f x x =-中,由20x ->,解得:2x >,故函数的定义域为()2,∞+,且函数在()2,∞+为增函数,故C 错误,D 正确.故选:C10.已知i 为虚数单位,复数z 满足13z ≤≤,则复数z 对应的复平面上的点Z 的集合所表示的图形是()A.正方形面B.一条直线C.圆面D.圆环面【答案】D 【解析】【分析】设i,(,)z a b a b =+∈R ,根据模的定义求出轨迹方程即可得解.【详解】设i,(,)z a b a b =+∈R ,则由13z ≤≤可得13≤≤,即2219a b ≤+≤,所以复数z 对应的点在复平面内表示的图形是圆环面.故选:D.11.已知函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论正确的是()A.()f x 的最小正周期为2πB.()f x 的最大值为2C.()f x 的图象关于直线π6x =对称D.()f x 的图象关于坐标原点对称【答案】C 【解析】【分析】根据余弦函数的性质逐一判断即可.【详解】()f x 的最小正周期2ππ2T ==,故A 错误;()f x 的最大值为1,故B 错误;因为πcos 016f ⎛⎫==⎪⎝⎭,所以()f x 的图象关于直线π6x =对称,故C 正确;因为()π10cos 032f ⎛⎫=-=≠ ⎪⎝⎭,所以()f x 的图象不关于坐标原点对称,故D 错误.故选:C .12.某种汽车在水泥路面上的刹车距离(指汽车刹车后,由于惯性往前滑行的距离)S (米)和汽车的刹车前速度x (千米/小时)有如下的关系:211909S x x =-.在一次交通事故中,测得某辆这种汽车的刹车距离为80(米),则这辆汽车在出事故时的速度为()A.90千米/小时B.80千米/小时C.72千米/小时D.70千米/小时【答案】A 【解析】【分析】题意可得,,求解一元二次方程即可.【详解】由题意可得,21180909S x x =-=,化简为21080900x x --⨯=,解得80x =-或90x =,又因为0x ≥,所以90x =.故选:A.13.若π32cos()410α-=,则sin2α=()A.725B.1625C.1625-D.725-【答案】C 【解析】【分析】利用两角差的余弦公式展开,然后平方得到.【详解】由πcos()410α-=得3cos sin 5αα+=,平方得223(cos sin )()5259αα+==,22cos 2sin cos sin 259αααα++=即1sin 2295α+=,得16sin225α=-.故选:C14.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为0.80,乙中靶的概率为0.85,则恰好有一人中靶的概率为()A.0.85B.0.80C.0.70D.0.29【答案】D 【解析】【分析】由对立事件概率、互斥加法以及独立乘法即可求解.【详解】由题意恰好有一人中靶的概率为()()10.800.850.8010.850.170.120.29-⨯+⨯-=+=.故选:D.15.已知函数()log a f x x =与()()0,1xg x aa a =>≠互为反函数.若()ln f x x =的反函数为()g x ,则(2)g =()A.ln 2B.e2 C.2e D.2【答案】C 【解析】【分析】根据题意,得到()x g x e =,代入2x =,即可求解.【详解】由函数()log a f x x =与()()0,1xg x aa a =>≠互为反函数,若()ln f x x =的反函数为()x g x e =,则2(2)e g =.故选:C.16.已知4,a e = 为单位向量,它们的夹角为2π3,则向量a 在向量e 上的投影向量为()A.2eB.2e -C.D.-【答案】B 【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在向量e 上的投影向量为222π41cos 321a e e a e e e e ee e⨯⨯⋅⋅⋅===-;故选:B17.从1,2,3,4,5中任取2个数,设事件A =“2个数都为偶数”,B =“2个数都为奇数”,C =“至少1个数为奇数”,D =“至多1个数为奇数”,则下列结论正确的是()A.A 与B 是互斥事件B.A 与C 是互斥但不对立事件C.B 与D 是互斥但不对立事件D.C 与D 是对立事件【答案】A 【解析】【分析】根据互斥事件和对立事件的定义判断.【详解】根据题意()()()()()()()()()(){}Ω1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5,=(){}()()(){}2,4,1,3,1,5,3,5,A B ==()()()()()()()()(){}1,2,1,3,1,4,1,5,2,3,2,5,3,4,3,5,4,5,C =,()()()()()()(){}1,2,1,4,3,2,3,4,2,5,4,5,2,4,D =则A B ⋂=∅,所以A 与B 是互斥事件,A 正确;,A C A C =∅=Ω ,所以A 与C 是互斥且对立事件,B 错误;,B D B D =∅=Ω ,所以B 与D 是互斥且对立事件,C 错误;()()()()()(){}1,2,1,4,3,2,3,4,2,5,4,5,C D ⋂=所以C 与D 不是对立事件,D 错误.故选:A.18.在三棱锥-P ABC 中,PO ⊥平面ABC ,垂足为O ,且PA PB PC ==,则点O 一定是ABC 的()A.内心B.外心C.重心D.垂心【答案】B 【解析】【分析】根据题意,结合勾股定理,求得OA OB OC ==,即可求得答案.【详解】如图所示,分别连接,,OA OB OC ,因为PO ⊥平面ABC ,可得,,PO OA PO OB PO OC⊥⊥⊥又因为PA PB PC ==,利用勾股定理,可得OA OB OC ==,所以点O 一定是ABC 的外心.故选:B.二、填空题:本大题共4小题,每小题4分,共16分.19.设集合{}()(){}1,2,3,4,140A B x x x ==--=,则A B =ð____________.【答案】{}2,3##{}3,2【解析】【分析】根据补集的定义即可得解.【详解】()(){}{}1401,4B x x x =--==,则{}2,3A B =ð.故答案为:{}2,3.20.设函数()f x 是定义域为R 的奇函数,且()()2f x f x +=,则()4f =____________.【答案】0【解析】【分析】由函数为奇函数可得()00f =,再根据函数的周期性即可得解.【详解】因为函数()f x 是定义域为R 的奇函数,所以()00f =,因为()()2f x f x +=,所以函数()f x 是以2为周期的周期函数,所以()()400f f ==.故答案为:0.21.已知,a b 是两个不共线的向量,若,AB a b AC a b λ=+=-,且AC AB μ=,则λ=____________.【答案】1-【解析】【分析】由平面向量基本定理列出方程组,1μλμ==-即可求解.【详解】由题意()AC a b AB a b a b λμμμμ=-=++== ,且,a b是两个不共线的向量,所以,1μλμ==-,所以1λ=-.故答案为:1-.22.已知ABC 内角A,B,C 的对边分别为a,b,c,设其面积为S,若)2224S b c a =+-,则角A 等于______.【答案】60 【解析】【分析】由已知利用三角形面积公式,同角三角函数基本关系式及余弦定理化简tan A =,结合A 的范A 的值.【详解】由题意,因为)2224S b c a =+-,所以14sin 2cos 2bc A bc A ⋅=,即tan A =,又由000180A <<,所以060A =,故答案为060【点睛】本题主要考查了三角形面积公式,同角三角函数基本关系式及余弦定理,特殊角的三角函数值在解三角形中的综合应用,其中解答中熟记正、余弦定理和三角形的面积公式,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:本大题共3小题,每题10分,满分30分.解答应写出文字说明、证明过程或演算步骤.23.从甲、乙两班某次学业水平模拟考试成绩中各随机抽取8位同学的数学成绩.甲班:78,69,86,58,85,97,85,98乙班:66,78,56,86,79,95,89,99规定考试成绩大于或等于60分为合格.(1)求甲班这8位同学数学成绩的极差,并估计甲班本次数学考试的合格率;(2)估计乙班本次考试数学成绩的平均分,并计算乙班这8名同学数学成绩的方差.【答案】(1)极差为40;87.5%;(2)平均分为81分;方差184.【解析】【分析】(1)根据极差定义计算可得结果,由成绩可知这8名同学中有7人合格,可得合格率为87.5%;(2)根据平均数以及方差的定义计算可得平均分为81分,方差为184.【小问1详解】甲班这8位同学数学成绩的极差为985840-=;因为甲班这8名同学中合格的有7人,所以可以估计甲班本次数学考试的合格率为787.5%8=;【小问2详解】因为乙班这8名同学的数学平均分为5666787986899599818+++++++=,所以可以估计乙班本次考试数学成绩的平均分为81分;乙班这8名同学本次考试数学成绩的方差为2222222221(5681)(6681)(7881)(7981)(8681)(8981)(9581)(9981)8s ⎡⎤=-+-+-+-+-+-+-+-⎣⎦14721848==.24.如图,四棱锥1D ABCD -的底面ABCD 是边长为3的正方形,E 为侧棱1D D 的中点.(1)证明:1//BD 平面ACE ;(2)若1D D ⊥底面ABCD ,且14D D =,求四棱锥1D ABCD -的表面积.【答案】(1)证明见解析(2)36.【解析】【分析】(1)利用直线与平面平行的判定定理容易证出;(2)容易推导出四个侧面都是直角三角形,进而1D ABCD -表面积可求.【小问1详解】如下图,连接BD ,设BD 与AC 相交与点M ,连接EM .因为底面ABCD 是边长为3的正方形,所以M 为BD 中点,又因为E 为侧棱1D D 的中点,所以1//BD EM ,又1BD ⊄平面ACE ,EM ⊂平面ACE ,所以1//BD 平面ACE .【小问2详解】因为1D D ⊥底面ABCD ,AB ⊂平面ABCD ,所以1D D AB ⊥,又AB AD ⊥,11,,DD AD D DD AD ⋂=⊂平面1D AD ,所以AB ⊥平面1D AD ,而1AD ⊂平面1D AD ,所以1AB AD ⊥,同理可证1BC CD ⊥,所以1111,,,D AD D AB D BC D CD △△△△均为直角三角形,则四棱锥1D ABCD -的表面积为()111112S D D AD D D CD D A AB D C BC AB CB =⨯+⨯+⨯+⨯+⨯()212342353362=⨯⨯+⨯⨯+=,所以四棱锥1D ABCD -的表面积为36.25.如图,OABC 为正方形,()()2,0,0,2A C ,点()()2cos ,2sin P θθθ++∈R 为直角坐标平面内的一点,M 为线段AB 的中点,设()f PO PM θ=⋅ .(1)求点B 的坐标;(2)求()fθ的表达式;(3)当()f θ取最大值时,求sin θ的值.【答案】(1)()2,2;(2)()33sin 2cos f θθθ=++;(3)313sin 13θ=.【解析】【分析】(1)由OA CB = 和向量的坐标运算可解;(2)由数量积的坐标运算求解;(3)化简()f θ得()()13sin 3f θθϕ=++,由正弦函数最值求解.【小问1详解】设(),B x y ,因为ABCD 为正方形,所以OA CB = ,又()()2,0,,2OA CB x y ==- ,所以2,2x y ==,所以点B 的坐标为()2,2;【小问2详解】因为M 为线段AB 的中点,所以()2,1M ,因为()()2cos ,2sin ,cos ,1sin PO PM θθθθ=----=--- ,所以()()()()2cos cos 2sin 1sin 33sin 2cos PO PM θθθθθθ⋅=---+----=++ ,所以()33sin 2cos f θθθ=++;【小问3详解】因为()()33sin 2cos 3f θθθθϕ=++=++,其中sinϕϕ==所以当()π2π2k k θϕ+=+∈Z ,即π2π2k θϕ=+-时,()f θ有最大值3+,此时πsin sin 2πcos 213k θϕϕ⎛⎫=+-== ⎪⎝⎭,故当()f θ取最大值3+313sin 13θ=.。
高二数学会考试题和答案
高二数学会考试题和答案一、选择题(每题3分,共30分)1. 函数y=x^2-4x+4的最小值是()。
A. 0B. -1C. 3D. 4答案:B2. 若直线l的方程为y=2x+1,则直线l的斜率为()。
A. 0B. 1C. 2D. 3答案:C3. 已知函数f(x)=x^3-3x+2,求f'(x)的值()。
A. 3x^2-3B. x^2-3C. 3x^2-3xD. 3x^2-3x+2答案:A4. 已知a>0,b>0,且a+b=1,则ab的最大值为()。
A. 1/4B. 1/2C. 1D. 0答案:A5. 若复数z满足|z|=1,则z的共轭复数|z*|等于()。
A. 0B. 1C. -1D. 2答案:B6. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()。
A. 9B. 11C. 13D. 15答案:A7. 已知双曲线C的方程为x^2-y^2/4=1,点P(2,0)在双曲线C的右支上,则双曲线C的渐近线方程为()。
A. y=±2xB. y=±xD. y=±1/2x答案:A8. 已知函数f(x)=x^3-3x+2,求f''(x)的值()。
A. 6xB. 3x^2-3C. 6x^2D. 3x^2-6x答案:A9. 已知向量a=(1,2),b=(2,-1),则向量a+b的值为()。
A. (3,1)B. (3,-3)C. (-1,3)D. (-1,-3)10. 已知等比数列{bn}的首项b1=2,公比q=1/2,则b4的值为()。
A. 1/2B. 1/4C. 1/8D. 1/16答案:C二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+4,求f(x)的顶点坐标为______。
答案:(2,0)12. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标为______。
答案:(-1/2,0)13. 已知函数f(x)=x^3-3x+2,求f''(x)=0的解为______。
山东高二水平数学会考试卷及答案解析
山东高二水平数学会考试卷及答案解析:___________ ___________ ___________ 班级姓名:分数:题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题条件,条件,则是的().1.p q.充分不必要条件.必要不充分条件充要条件.既不充分又不必要条件A B D【答案】A【解析】,,试题分析:的充分不必要条件.考点:四种条件的判定.已知等差数列的前项和为,满足2.n()A.B.C.D.【答案】D【解析】,又.试题分析:,所以,那么n考点:等差数列的前项和.3.x=0下列函数中,在处的导数不等于零的是().D.A.B.C y=【答案】A【解析】x=01,试题分析:因为,,所以,,所以,在处的导数为故选A。
考点:导数计算。
点评:简单题,利用导数公式加以验证。
4.设,若,则等于()A.e2B.e C.D.ln2【答案】B【解析】试题分析:因为,所以所以,解得考点:本小题主要考查函数的导数计算.点评:导数计算主要依据是导数的四则运算法则,其中乘法和除法运算比较麻烦,要套准公式,仔细计算.5.曲线的直角坐标方程为()A.B.C.D.【答案】B【解析】试题分析:化为考点:极坐标方程点评:极坐标与直角坐标的关系为6.是虚数单位,复数( )A.B.C.D.【答案】A【解析】试题分析:考点:复数运算点评:复数运算中7.关于直线与平面,有下列四个命题:①若,且,则;②若且,则;③若且,则;④若,且,则.其中真命题的序号是()A.①②B.③④C.①④D.②③【答案】D【解析】试题分析:直线m//平面α,直线n//平面β,当α∥β时,直线m,n有可能平行,也有可能异面,所以①不正确;∵,α⊥β,所以,故②正确;据此结合选项知选D.考点:本题主要考查空间直线与平面的位置关系。
点评:熟练掌握空间直线与平面之间各种关系的几何特征是解答本题的关键。
数学会考高中试题及答案
数学会考高中试题及答案一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 4x + 3 \),下列说法正确的是:A. 函数的图像是开口向上的抛物线B. 函数的图像是开口向下的抛物线C. 函数的图像与x轴有两个交点D. 函数的图像与x轴没有交点答案:A2. 圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A3. 已知等差数列的前三项依次为1,3,5,则该数列的第五项为:A. 7B. 9C. 11D. 13答案:B4. 函数\( y = \log_2(x) \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案:A5. 集合\( A = \{1, 2, 3\} \)和集合\( B = \{2, 3, 4\} \)的交集为:A. \( \{1\} \)B. \( \{2, 3\} \)C. \( \{2, 4\} \)D. \( \{3, 4\} \)答案:B6. 直线\( y = 2x + 1 \)与直线\( y = -x + 4 \)的交点坐标为:A. (1, 3)B. (-1, 3)C. (1, -1)D. (-1, -1)答案:A7. 已知\( \sin \alpha = \frac{1}{2} \),\( \alpha \)是第二象限角,则\( \cos \alpha \)的值为:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( -\frac{\sqrt{3}}{2} \)答案:D8. 函数\( f(x) = x^3 - 3x^2 + 3x - 1 \)的单调递增区间为:A. \( (-\infty, 1) \)B. \( (1, +\infty) \)C. \( (-\infty, 2) \)D. \( (2, +\infty) \)答案:B9. 向量\( \vec{a} = (1, 2) \)和向量\( \vec{b} = (2, 1) \)的夹角为:A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{3} \)C. \( \frac{\pi}{2} \)D. \( \frac{2\pi}{3} \)答案:A10. 已知等比数列的前三项依次为2,4,8,则该数列的公比为:A. 2B. 4C. 1D. 0.5答案:A二、填空题(每题4分,共20分)1. 已知\( \tan \theta = 3 \),\( \theta \)是第一象限角,则\( \sin \theta \)的值为______。
高二数学会考试卷和答案
高二数学会考试卷和答案### 一、选择题(每题3分,共30分)### 1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^2 + 1 \)D. \( f(x) = \frac{1}{x} \)**答案:B**### 2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}**答案:B**### 3. 直线 \( y = 2x + 3 \) 与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)**答案:C**### 4. 函数 \( f(x) = \sin(x) \) 在区间[0, π]上的值域是?A. [-1, 1]B. [0, 1]C. [-1, 0]D. [0, π]**答案:B**### 5. 已知等比数列的首项为2,公比为3,其第五项的值是?A. 486B. 81C. 243D. 729**答案:D**### 6. 圆 \( x^2 + y^2 = 9 \) 与直线 \( y = x \) 的交点个数是?A. 0B. 1C. 2D. 3**答案:C**### 7. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值是?A. 0B. 1C. 4D. -4**答案:A**### 8. 已知 \( \cos(\theta) = \frac{3}{5} \),且 \( \theta \) 在第一象限,求 \( \sin(\theta) \) 的值?A. \(\frac{4}{5}\)B. \(\frac{3}{5}\)C. \(-\frac{4}{5}\)D. \(-\frac{3}{5}\)**答案:A**### 9. 已知 \( a \) 和 \( b \) 是两个不同的正数,若 \( \log_a b = \frac{1}{2} \),则 \( a \) 和 \( b \) 的关系是?A. \( a = \sqrt{b} \)B. \( a = b^2 \)C. \( b = a^2 \)D. \( b = \sqrt{a} \)**答案:C**### 10. 已知 \( \tan(\alpha) = 2 \),求 \( \sin(\alpha) \) 的值?A. \(\frac{2\sqrt{5}}{5}\)B. \(\frac{\sqrt{5}}{5}\)C. \(\frac{2}{\sqrt{5}}\)D. \(\frac{1}{\sqrt{5}}\)**答案:A**## 二、填空题(每题4分,共20分)### 11. 已知 \( \sin(\alpha) = \frac{1}{2} \),且 \( \alpha \) 在第二象限,求 \( \cos(\alpha) \) 的值。
会考数学模拟试题与答案解析
会考数学模拟试题与答案解析高中会考数学模拟试题与答案解析一、选择题1. 若函数 f(x) = 2x^2 - 5x + 3,求 f(2) 的值。
解析:将 x=2 代入函数 f(x),得 f(2) = 2(2)^2 - 5(2) + 3 = 8 - 10 + 3 = 1。
2. 设直线 y = mx + c 与曲线 y = 2x^2 - x + 1 相切,则常数 m 的值为多少?解析:相切的直线与曲线有且仅有一个交点。
首先,求出曲线的导函数 f'(x) = 4x - 1。
然后,令导函数与直线的斜率相等,即 4x - 1 = m。
由于相切,令导函数与直线在交点处的函数值相等,即 2x^2 - x + 1 = mx + c。
联立两个方程,求解得 m = 2,c = 2。
二、填空题1. 直线 x - 3y - 3 = 0 与直线 5x + ky - 7 = 0 平行,则 k 的值为______。
解析:两条直线平行,斜率相等。
将两条直线的方程转化为一般式,得到 y = (1/3)x - 1 和 y = -(5/k)x + 7/k。
比较斜率,得 (1/3) = -(5/k),解得 k = -15。
2. 已知集合 A={1, 3, 5, 7},集合 B={2, 4, 6, 8},则 A ∪ B = ______。
解析:集合的并集是指将两个集合中的元素合并,形成一个新的集合,不包括重复的元素。
将集合 A 和集合 B 合并,得到集合 A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}。
三、解答题1. 解方程 3x + 2 = 4x - 1,并判断方程的解是否正确。
解析:将方程化简,得到 x = 3。
验证解是否正确,将 x = 3 代入方程,两边相等,方程的解是正确的。
2. 函数 y = 2x^2 + bx + 3 与 x 轴交于两个点 A(-1, 0) 和 B(2, 0),求常数 b 的值。
解析:由题意得到两个方程,-1:0 = 2(-1)^2 + b(-1) + 3 和 2:0 =2(2)^2 + b(2) + 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学会考模拟试卷(二)一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1、已知集合{}3,1,0=A ,{}2,1=B ,则B A ⋃等于( )A {}1B {}3,2,0C {}3,2,1,0D {}3,2,1 2、b a >,则下列各式正确的是( ) A 22+>+b aB b a ->-22C b a 22->-D 22b a >3、函数12)(2+=x x f 是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 既不是奇函数又不是偶函数4、 点A(0,1)且与直线25y x =-平行的直线的方程是( ) A 210x y -+=B 210x y --=C 210x y +-=D 210x y ++=5、在空间中,下列命题正确的是( ) A 平行于同一平面的两条直线平行B 平行于同一直线的两个平面平行C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行6、已知,a b R +∈,且1ab =,则a b +的最小值是( )A1 B2 C3 D47、如图,在正六边形ABCDEF 中,点O 为其中点,则下列判断错误的是( ) A OC AB = B AB ∥DE C BE AD = D FC AD = 8、已知向量(3,1),(1,2)a b =-=-,则2a b -=( ) A (7,0) B (5,0) C (5,-4) D (7,-4)9、“0=x ”是“0=xy ”的( )A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件 10、焦点为(1,0)的抛物线的标准方程是( ) A 22y x = B 22x y =C 24y x =D 24x y =11、不等式0)2)(1(<++x x 的解集是( ) A {}12-<<-x xB {}12->-<x x x 或C {}21<<x xD {}21><x x x 或12、函数中,在(-∞,0)上为增函数的是( )A 1y x =-+B 1y x =C 12xy ⎛⎫= ⎪⎝⎭D 21y x =-13、满足n n a a a 21,111==+,则=4a ( ) A 32 B 14 C 18 D 11614、5(12)x -的展开式中2x 的系数是 ( )A10B -10 C40 D -40 15、双曲线19422=-y x 的离心率是 ( )A32B 49C 25D 21316、用1,2,3,4,5组成没有重复数字的三位数,其中偶数共有 ( )A60个 B30个 C24个 D12个 17、若α∈(0,2π),且sin α=54,则cos2α等于( )A257 B —257C1 D 5718、把直线y =-2x 沿向量→a =(2,1)平移所得直线方程是( )A y =-2x +5B y =-2x -5 Cy =-2x +4 D y =-2x -4 19、若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为 A –1或3 B1或3C –2或6 D0或420、在︒60的二面角βα--l ,面α上一点到β的距离是2cm ,那么这个点到棱的距离为( )A3cm B C D 321、若2k <且0k ≠,则椭圆22132x y +=与22123x y k k+=--有( ) A 相等的长轴B 相等的短轴C 相同的焦点D 相等的焦距22、计算机是将信息换成二位制进行处理的二进制,即“逢二进一”。
如(1101)2表示二进位制,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数()162111转换成十进制形式是( )A217―2 B216―2 C216―1 D215―1 二、填空题(本题有6小题,每小题3分,共18分) 23、函数3,()y x x R =∈的反函数是__________24、已知(2,5)a =,(,3)b λ=-,且a b ⊥,则λ=______________25、一个口袋内装有大小相等的2个白球和3个黑球,从中摸出2个球,则摸到2个黑球的概率为_________26、球的表面积扩大到原来的2倍,则球的体积扩大到原来的____________倍。
27、变量x ,y 满足约束条件:⎪⎩⎪⎨⎧≥+≤+≤011y y x x y ,则2x+y 的最大值为____________28、如图,已知两个灯塔A 和B 与观察站C 的距离都为akm ,灯塔A 在观察站C 的北偏东 10,灯塔B 在观察站C 的南偏东 50,则灯塔A,B 间的距离是 km 三、解答题(本题有5小题,共38分) 29、(本题6分) 已知函数31()cos ,2f x x x x R =-∈ 求()f x 的最大值,并求使()f x 取得最大值时x 的集合。
30、(本题6分)在数列{}n a 中,112,3n n a a a +==+,求n a 及前n 项和n S 31、(本题8分) 如图,四边形ABCD ,ADEF 均为正方形,090CDE ∠=,求异面直线BE 与CD 所成的角的大小。
32、(本题8分)已知函数2(3)()2m f x x m x-=++,定义域为D (1)如果0x D ∈,使00()f x x =,那么称00(,)x x 为函数()f x 图象上的不动点,求当0m =时,函数()y f x =图象上的不动点;(2)当[1,)x ∈+∞时,函数()y f x =的图象恒在直线y x =的上方,求实数m 的取值范围。
33、(本题10分)椭圆的中心在原点,焦点在x 轴上,离心率12e =,且经过点15(5,)2(1)求椭圆的方程;(2)以椭圆的左右焦点F 1,F 2为顶点,椭圆的左右顶点A 、B 为焦点的双曲线为C ,P 是双曲线在第一象限内任一点,问是否存在常数λ,使11PBF PF B λ∠=∠恒成立?若存在,求出λ的值;若不存在,说明理由。
附加题(本题5分,供选做,得分计入总分)一个电路如图所示,,,,,,a b c d e f 为6个开关,其闭合的概率都是12,且相互独立的, (1)求灯亮的概率;(2)设计一个电路图,要求原来的6个开关全部用上,灯亮的概率在715(,)816内。
高二数学会考模拟试卷(二)参考答案题号 1 2 3 4 5 6 7 8 9 10 11 答案 C A B A D B D D B C A 题号1213141516171819202122答案 D C C D CB A D A DC题号 232425262728答案,3xy x R =∈ 152 3102233a三、解答题 29、解:()cossin sincos sin()666f x x x x πππ=-=-当262x k πππ-=+,即22,3x k k Z ππ=+∈时,max ()1f x =30、解:由题意可知公差3d =1(1)2(1)331n a a n d n n ∴=+-=+-⨯=-21(1)(1)323222n n n n n n nS na d n --+=+=+⨯=31、解法一:过E 作EG||DC ,且EG=DC ,连结CG ,BG ,则∠BEG 为异面直线BE 与CD 所成的角由于四边形ABCD ,ADEF 均为正方形,故DEGC 也为正方形,又AD ⊥DC ,AD ⊥DE ,∴AD ⊥面DEGC , ∴BC ⊥面DEGC ,∴BC ⊥EG ,又EG ⊥CG , ∴EG ⊥面BCG∴EG ⊥GE ,在RT ∆BGE 中,2EG , ∴tan 2BEG ∠=2BEG ∠=故异面直线BE 与CD 所成的角的大小为2 解法二:由于四边形ABCD ,ADEF 均为正方形,∴AD ⊥DC ,AD ⊥DE ,又090CDE ∠=,所以以D 为原点,以DC ,DC ,DA 所在直线为x,y,z 轴建立空间直角坐标系,如图所示。
设正方形边长为1,则C (1,0,0),E (0,1,0),B (1,0,1)∴(1,0,0)DC =,(1,1,1)EB =-,13cos ,||||3DC EB DC EB DC EB •∴<>=== 即异面直线BE 与CD 所成的角的大小为3arccos332、解:(1)当m=0时,6()2f x x x=-,显然D={|0}x x ≠ 由()f x x =得6x x=,即6x =所以函数()y f x =图象上的不动点为6,6),(6,6)- (2)由题意,当[1,)x ∈+∞时,不等式()f x x >恒成立,即2(3)2m x m x x-++>恒成立,由于0x >,不等式等价于22(3)0x mx m ++->对[1,)x ∈+∞恒成立,又等价于226(2)2(2)22(2)4222x x x m x x x x --++++>==-++++++恒成立。
而根据函数2()g x x x =-+的单调性可知,当[1,)x ∈+∞时,2(2)42x x -++++有最大值53,因此只要53m >时,上述不等式恒成立,即所求实数m 的取值范围为53m >33、解:(1)设椭圆的方程为22221x y a b+=由题意知12c a =,得2234b a =,又222522514a b +=解得22100,75a b ==∴椭圆的方程为22110075x y += (2)存在,λ=2由题意可知双曲线方程为2212575x y -= 离心率为2,右准线l 方程为:52x = F 1(-5,0),B (10,0)∴准线l 为F 1B 的垂直平分线,交F 1P 于点M ,过P 作PD ⊥l 交于D ,由双曲线第二定义可知2PBPD=,即2PB PD =且BF 1=2F 1C 。
DP||F 1C ,∴11MP PD MF F C =,∴11111212PBMP PD PBMF FC F B F B ===∴BM 是∠PBF 1的角平分线,又∠MBF 1=∠PF 1B ∴∠PBF 1=2∠PF 1B附加题(1)灯亮的概率为55 64(2)设计如下:答案不唯一命题人:马站高级中学周传松。