圆和相似三角形综合题型46页PPT

合集下载

第12讲相似三角形的判定复习课件(共46张PPT)

第12讲相似三角形的判定复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
4.如图4-12-5,AB是半圆O的直径, D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD类似, 可以添加一个条件.下列添加的条件其中错误
的是 A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
大师导航 归类探究 自主招生交流平台 思维训练
第四章 类似三角形
第12讲 类似三角形的判定
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
部分数学符号的来历 数学运算中经常使用符号,如+,-,×,÷,=,>, <,∽,≌,(), 等,你知道它们都是谁首先使用,何时 被人们公认的吗? 加减号“+”“-”:1489 年德国数学家魏德曼在他的著 作中首先使用了这两个符号,但正式为大家公认是从 1514 年荷 兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于 1631 年提出用“×”表示相乘;另一乘号“·”是数学家赫锐奥特首 创的.除号“÷”:最初这个符号是作为减号在欧洲大陆流行, 奥屈特用“∶”表示除或比,也有人用分数线表示比,后来有 人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中 正式把“÷”作为除号.等号“=”:最初是 1540 年由英国牛
D.147
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ∵∠C=∠E,∠ADC=∠BDE, ∴△ADC∽△BDE,∴DDEC=ABDD, 又∵AD∶DE=3∶5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴D5C=34,∴DC=145.
∵AC⊥BC,∴∠ACB=90°,
又∵BE是∠ABC的平分线, ∴FG=FC,
例2答图

第20讲圆与相似三角形的结合复习课件(共38张PPT)

第20讲圆与相似三角形的结合复习课件(共38张PPT)
在 Rt△ADC 中,∵∠ACD=30°,∴AD=1,CD= 3, S 阴影=S 梯形 OCDA-S 扇形 AOC=12(1+2)× 3-60·3π60·22= 323-2π3 .
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
圆与类似三角形的综合运用 (1)证明圆的切线的常用辅助线是作过切点的半径,证明 直线与这条半径垂直; (2)运用切线的性质时,常连结切点和圆心.
CD=235.
又∵CF=FD,∴CF=12CD=12×235=265,
∴EF=CF-CE=265-3=76,
7
∴在 Rt△AFE 中,sin∠EAF=EAFE=63=178.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
2.如图6-20-4,在△ABC中,BA= BC,以AB为直径作半圆O,交AC于点D.连 结DB,过点D作DE⊥BC,垂足为点E.
∴AD=3,BD=
3.∴B2E=
33,∴BE=23
3 .
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
(3)如答图②,当 E 与 A 重合时,∵AB 是直径,AD⊥CD, ∴∠ADB=∠ADC=90°,∴C,D,B 共线.
∵AC⊥AB,∴在 Rt△ABC 中,AB=2 3,AC=2, ∴tan∠ABC=AACB= 33,∴∠ABC=30°, ∴α=∠DAB=90°-∠ABC=60°, 当E′在BA的延长线上时,可得∠D′AB>∠DAB=60°, ∵0°<α<90°,∴α的取值范围是60°<α<90°.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
判定圆中的类似三角形 例1 如图6-20-1,AC是⊙O的直径, 弦BD交AC于点E. (1)求证:△ADE∽△BCE; (2)如果AD2=AE•AC,求证:CD=CB.

最新圆中的相似三角形ppt课件

最新圆中的相似三角形ppt课件
供) 5、药品说明书、起草说明及相关参考文献。
26
1号资料:
▪ A:包括通用名、商品名、化学名、英文名、 汉语拼音,并注明其化学结构式、分子量、 分子式等(见药审中心要求)。如果是新剂 型、新命名、应附上药典委员会的复函
18
B(临床结束后报生产)、申报资料项目:
▪ (一)综述资料 1、药品名称。 2、证明性文件。 3、立题目的与依据。 4、对主要研究结果的总结及评价。 5、药品说明书、起草说明及相关参考文献。 6、包装、标签设计样稿。
19
▪ (二)药学研究资料
11、药审中心为便于审评作对比,要求提供。 一般情况下,报临床用质量标准后,药检所对
料;制剂处方及工艺的研究资料及文献资料。 9、确证化学结构或者组份的试验资料及
文献资料。
23
11、药品标准及起草说明,并提供标准品 或者对照品。
12、样品的检验报告书。 13、原料药、辅料的来源及质量标准、检 验报告书。 14、药物稳定性研究的试验资料及文献资 料。 15、直接接触药品的包装材料和容器的选 择依据及质量标准 。
又CB是 F 公共角,
CF∽ B GCB BC BF
BG BC
BC 2BG BF
练习5 △ABC内接于⊙O,D是⊙O
上一点,连结BD、CD、AC、BD,交
于点E。
(1)请找出图中的相似三角形,并加以证
明;
A
(2)若∠D=45°,
BC=2,求⊙O的 面积。
O
B
ED
C
新药注册申报资料 讲解
《药品注册管理办法》法规要求:
▪ 申请注册新药: 按照《申报资料项目表》的要求报送资料 项目1~30(资料项目6除外) 临床试验完成后报送的资料项目包括重新 整理的综述资料1~6、资料项目12和14、

《相似三角形》ppt课件PPT课件

《相似三角形》ppt课件PPT课件
A.AB2=BC·BD B.AB2=AD·BD C.AB·AD=BD·BC D.AB·AD=AD·CD
6.(4分)在△ABC中,BC=54,CA=45,AB=63,另一个和
它相似的三角形的最短边为15,则最长边一定是( B ) PPT模板:./moban/
PPT素材:./sucai/
PPT背景:./beijing/
英语课件:./kejian/yingyu/ 美术课件:./kejian/meishu/
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./kejian/dili/
历史课件:./kejian/lishi/
1.(4分)若△AED∽△ABC,AD=6 cm,AC=12 cm,则 △AED与△ABC的相似比为________.
2.(4分)△ABC与△A′B′C′的相似比AB∶ A′B′=1,则△ABC 与△A′B′C′的关系是________; 全等
若△ABC与△A′B′C′的相似比是2∶ 5,则△A′B′C′与△ABC的 相似比为________. 5∶ 2
25.3 相似三角形
PPT教学课件
1.对应角相等、对应边成比例的两个三角形叫做相__似__三__角__形_. 相似三角形对应边的比叫做_相__似__比___, 全等三角形是相似比为___1_____的相似三角形.
2.平行于三角形一边的直线和其他两边(或它们的延长线)相 交,所截得的三角形与原三角形__相__似____.
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/

相似三角形与圆的综合题

相似三角形与圆的综合题

相似三角形与圆的综合考题1、已知:如图,AB是⊙O的直径,E是AB延长线上一点,过E作⊙O的切线ED,切点为C,AD⊥ED交ED于点D,交⊙O于点F,CG⊥AB交AB于点G.求证:BG•AG=DF•DA.2、已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)求证:AB:AC=BF:DF.3、(南通)已知:如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC,E为垂足.(1)求证:∠ADE=∠B;(2)过点O作OF∥AD,与ED的延长线相交于点F,求证:FD•DA=FO•DE.4、如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.5、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.6、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.7、如是⊙O的直径,CB、CD分别切⊙O于B、D两点,点E在CD的延长线上,且CE=AE+BC;(1)求证:AE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BE交DF于点M,求证:DM=MF.8、已知:如图,AB是⊙O的直径,D是⊙O上一点,连结BD并延长,使CD=BD,连结AC。

(完整)相似三角形精品PPT资料精品PPT资料

(完整)相似三角形精品PPT资料精品PPT资料
倍 速 课 时 学 练
基础训练
口答: (4)如图,正方形的边长a=10,菱形的
边长b=5,它们相似吗?请说明理由.
倍 速 课 时 学 练
基础训练
6 65╰0
3
800
图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似.
• 练习: 成比例线段,并用比例式表示.
课 时 学 练
探索一
图中两个四边形是相似形,仔细观察这两 个图形,它们对应边之间存在怎样的关系? 对应角之间又有什么关系?
倍 速 课 时 学 练
探索二
再看看图中两个相似的五边形,是否 与你观察所得到的结果一样?
倍 速 课 时 学 练
形成认识:
1.相似多边形的特征:
对应边成比例,对应角相等.
符号语言(以四边形为例):
a =360°-(77°+83°+117°)=83° y的长度和角度a的大小.
800
x
5
• ⑴如图1,则x= 2.5,y 这些图形都有什么共同特征?
两个任意三角形是相似图形吗?
比是_________.
= 1,.5 α= ;90 这些图形都有什么共同特征?
0
相似图形:我们把这种形状相同的图形说成是相似图形
╮1250
y
图1
α╭ 3
用复印机把一个图形放大或缩小所所得的图形,也都与原来的图形相似.
• ⑵如图2,x= 22.5. 义务教育课程标准实验教科书
实际的建筑物和它的模型是相似的;
义务教育课程标准实验教科书
倍如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似.
30
15

圆中的相似三角形3课件

圆中的相似三角形3课件

(1) 证明:△ADP ∽△ABD
(2) 求线段AD2 的值等.
B
圆中的相似三角形3
基础练习2 (黄冈卷)如图,已知AB是⊙O的直径, 点C是⊙O上一点,连结BC,AC,过点C作直线 CD⊥AB于点D,点E是AB上一点,直线CE交⊙O 于点F,连结BF,与直线CD交于点G.
BCBM
CFBMC, B
又CBF是公共角, CF∽ B GCB BC BF
BG BC
BC 2BG BF
直径垂直于弦由垂径定理找等角.
圆中的相似三角形3
巩固练习
练习1
如图AD是△ABC的高,AE是△ABC的外接圆直径. 求证:AB·AC = AE·AD
证明:连结BE ∵ AE⊙O的直径,AD⊥BC ∴ ∠ABE =∠ADC=90° ∵ ∠E =∠C ∴ △ABE∽△ADC
专题学习: 圆中的相似三角形
圆中的相似三角形3
圆中的相似三角形3
思考与探索(一)
如图1,△APC∼△DPB吗?
• 思路:
圆中的相似三角形3
图1
思考与探索(二)
A
如图2,△ADE∼△ACB吗?
1E D
2
• 思路:四 边 形 B C E D 内 接 于 O
C 21800,
O
B
又 121800,从而1C
思路小结
在圆中寻找相似三角形思路如下:
在圆中经常运用定理 判定 “两角分别相等的两个
三角形相似”
三角形相似
在圆中找到相等角的方法: ① 同弧或等弧所对圆周角相等。 ② 圆内接四边形一个外角等于它的内对角
③ 直径垂直于弦,由垂径定理找等角。
圆中的相似三角形3
基础练习1
在⊙O中,弦AB,CD相交于点P, 点A为弧CD中点,连接AC,BD,AD,已知 AP=2,BP=4.

圆与相似三角形、解直角三角形及二次函数的综合(共14张PPT)

 圆与相似三角形、解直角三角形及二次函数的综合(共14张PPT)

4.(2015· 资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,
且⊙O与AC相交于点D,E为BC的中点,连结DE.
(1)求证:DE是⊙O的切线; (2)连结AE,若∠C=45°,求sin∠CAE的值.
解:(1)连结 OD,BD,∵OD=OB,∴∠ODB=∠OBD.∵AB 是直径, ∴∠ADB=90°,∴∠CDB=90°.∵E 为 BC 的中点,∴DE=BE,∴ ∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO= ∠EBO.∵BC 是以 AB 为直径的⊙O 的切线,∴AB⊥BC,∴∠EBO= 90°,∴∠ODE=90°,∴DE 是⊙O 的切线 (2)过点 E 作 EF⊥CD 于点 F,设 EF=x,∵∠C=45°,∴△CEF,△ABC 都是等腰直角三 角形, ∴CF=EF=x, ∴BE=CE= 2x, ∴AB=BC=2 2x.在 Rt△ABE EF 10 中,AE= AB +BE = 10x,∴sin∠CAE= = AE 10
7.如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于点C, 经过A,B,C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上, ⊙M的半径为.设⊙M与y轴交于点D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC=α,∠CBE=β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P,A,C为顶点的三角形与 △BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不 存在,请说明理由.
2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边 交于点D,过点D作⊙O的切线,交BC于点E. (1)求证:点E是边BC的中点; (2)求证:BC2=BD· BA; (3)当以点O,D,E,C为顶点的四边形是正方形时,求证:△ABC是 等腰直角三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档