河源市中考数学压轴题总复习题解析版

合集下载

广东省河源市中考数学考试压轴试卷(一)

广东省河源市中考数学考试压轴试卷(一)

广东省河源市中考数学考试压轴试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)(2019·无锡) 5的相反数是()A . -5B . 5C .D .2. (2分) (2020八上·丹东期中) 如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边QR在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP的长为半径画弧交数轴负半轴于点P1 ,则P1表示的数是()A . -2B . -2C . 1-2D . 2 -13. (2分)(2017·北海) 下列运算正确的是()A . (﹣2x2)3=﹣6x6B . x4÷x2=x2C . 2x+2y=4xyD . (x+y)(﹣y+x)=y2﹣x24. (2分)(2018·亭湖模拟) 下列图形中,是中心对称图形的是()A .B .C .D .5. (2分)下列说法不正确的是()A . 16的平方根是±4B . -3是的一个平方根C . 0.25的算术平方根是0.5D . -8的立方根是-26. (2分) (2020八上·科尔沁期末) 若分式有意义,则应满足的条件是()A .B .C .D .7. (2分)要反映宝应县一周内气温的变化情况宜采用()A . 条形统计图B . 折线统计图C . 扇形统计图D . 频数分布直方图8. (2分)如图,把一张长方形纸片对折,折痕为AB,以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠的图形剪出一个以O为顶点的等腰三角形,那么剪出的平面图形一定是()A . 正三角形B . 正方形C . 正五边形D . 正六边形9. (2分) (2017七上·官渡期末) 如图所示的几何体,从正面看到所得的图形是()A .B .C .D .10. (2分) (2017七下·宜兴期中) 下列各式从左到右的变形中,因式分解正确的是()A . x2﹣7x+12=x(x﹣7)+12B . x2﹣7x+12=(x﹣3)(x+4)C . x2﹣7x+12=(x﹣3)(x﹣4)D . x2﹣7x+12=(x+3)(x+4)11. (2分)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A . 1:2B . 1:4C . 1:5D . 1:612. (2分)对于非零的两个实数a、b,规定a⊗b=.若1⊗(x+1)=1,则x的值为()A .B .C .D . -13. (2分)(2020·怀化) 如图,已知直线a,b被直线c所截,且,若,则的度数为()A .B .C .D .14. (2分)(2016·河南) 如图,过反比例函数y= (x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A . 2B . 3C . 4D . 515. (2分)(2017·越秀模拟) 如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A . 2B .C .D .16. (2分)如图,河提横断面迎水坡AB的斜坡坡度i=1:是指破面的铅直高度BC与水平宽度AC的比,若堤高BC=5m,则坡面AB的长度是()A . mB . 5mC . 15mD . 10m二、填空题 (共3题;共4分)17. (1分) (2019八上·兖州月考) 当x________时,(x-3)0=1.18. (1分)(2017·平顶山模拟) 如图,将半径为6的圆形纸片,分别沿AB、BC折叠,若弧AB和弧BC折后都经过圆心O,则阴影部分的面积是________(结果保留π)19. (2分)(2019·花都模拟) 正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 ,…按如图所示的方式放置.点A1 , A2 ,A3…和点C1 , C2 , C3 ,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B3的坐标是________,B10的坐标是________.三、解答题 (共7题;共64分)20. (10分)(2018·成华模拟)(1)计算:(2)解不等式组,并写出该不等式组的最大整数解.21. (5分) (2020八下·偃师期中) 先化简,再求值:,其中 .22. (10分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?23. (8分)如图,在平面直角坐标系xOy中,定义直线x=m与双曲线yn=的交点Am , n(m、n为正整数)为“双曲格点”,双曲线yn=在第一象限内的部分沿着竖直方向平移或以平行于x轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”A2 , 1的坐标为________ ;②若线段A4 , 3A4 , n的长为1个单位长度,则n=________ ;(2)图中的曲线f是双曲线y1=的一条“派生曲线”,且经过点A2 , 3 ,则f的解析式为y=________ (3)画出双曲线y3=的“派生曲线”g(g与双曲线y3=不重合),使其经过“双曲格点”A2 , a、A3 ,3、A4 , b .24. (10分) (2018九上·汨罗期中) 如图,在△ABC中,DE∥BC,EF∥AB.(1)求证:△ADE∽△EFC;(2)如果AB=6,AD=4,求的值.25. (11分) (2018九上·顺义期末) 综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=________;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.26. (10分) (2019·锦州) 已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.参考答案一、选择题 (共16题;共32分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:二、填空题 (共3题;共4分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:三、解答题 (共7题;共64分)答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、考点:解析:。

广东省河源市2019-2020学年中考数学第一次押题试卷含解析

广东省河源市2019-2020学年中考数学第一次押题试卷含解析

广东省河源市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程2240x x++=的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.2003米C.2203米D.100(31)+米3.不等式组310xx<⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A.B.C.D.4.下列几何体是棱锥的是( )A.B.C.D.5.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A .24B .18C .12D .96.如果2(2)2a a -=-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥7.下列说法中,正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定是全等的C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形8.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元9.如图,PB 切⊙O 于点B ,PO 交⊙O 于点E ,延长PO 交⊙O 于点A ,连结AB ,⊙O 的半径OD ⊥AB 于点C ,BP=6,∠P=30°,则CD 的长度是( )A .33B .32C 3D .310.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .98132 C .82432 D .8813211.已知一元二次方程2310x x --= 的两个实数根分别是 x 1 、 x 2 则 x 12 x 2 + x 1 x 22 的值为( ) A .-6 B .- 3 C .3 D .612.下列二次根式,最简二次根式是( )A .8B .12C .13D .0.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC 中,点D 在边BC 上,且BD :DC=1:2,如果设AB u u u r =a r ,AC u u u r =b r ,那么BD u u u r 等于__(结果用a r 、b r的线性组合表示). 14.如图,四边形ABCD 与四边形EFGH 位似,位似中心点是点O ,OE 3=OA 5,则EFGH ABCD S S 四边形四边形=_____.15.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____.16.分解因式:a 2-2ab+b 2-1=______.17.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为__________步.18.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)化简:()()2a b a 2b a -+-.20.(6分)计算:2cos30°+27-33--(12)-2 21.(6分)如图,在△ABC 中,∠ACB=90°,O 是AB 上一点,以OA 为半径的⊙O 与BC 相切于点D ,与AB 交于点E ,连接ED 并延长交AC 的延长线于点F .(1)求证:AE=AF ;(2)若DE=3,sin ∠BDE=13,求AC 的长.22.(8分)如图,在平面直角坐标系中,点O 为坐标原点,已知△ABC 三个定点坐标分别为A (﹣4,1),B (﹣3,3),C (﹣1,2).画出△ABC 关于x 轴对称的△A 1B 1C 1,点A ,B ,C 的对称点分别是点A 1、B 1、C 1,直接写出点A 1,B 1,C 1的坐标:A 1( , ),B 1( , ),C 1( , );画出点C 关于y 轴的对称点C 2,连接C 1C 2,CC 2,C 1C ,并直接写出△CC 1C 2的面积是 .23.(8分)如图,AB 是O e 的直径,AF 是O e 切线,CD 是垂直于AB 的弦,垂足为点E ,过点C 作DA 的平行线与AF 相交于点F ,已知CD 23=,BE 1=.()1求AD 的长;()2求证:FC 是O e 的切线.24.(10分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.25.(10分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO 可以绕点O 旋转一定的角度.研究表明:显示屏顶端A 与底座B 的连线AB 与水平线BC 垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO =15°,AO =30 cm ,∠OBC =45°,求AB 的长度.(结果精确到0.1 cm)26.(12分)某手机店销售10部A 型和20部B 型手机的利润为4000元,销售20部A 型和10部B 型手机的利润为3500元.(1)求每部A 型手机和B 型手机的销售利润;(2)该手机店计划一次购进A ,B 两种型号的手机共100部,其中B 型手机的进货量不超过A 型手机的2倍,设购进A 型手机x 部,这100部手机的销售总利润为y 元.①求y 关于x 的函数关系式;②该手机店购进A 型、B 型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对A 型手机出厂价下调()0100m m <<元,且限定手机店最多购进A 型手机70部,若手机店保持同种手机的售价不变,设计出使这100部手机销售总利润最大的进货方案.27.(12分)如图所示,AB 是⊙O 的一条弦,DB 切⊙O 于点B ,过点D 作DC ⊥OA 于点C ,DC 与AB 相交于点E .(1)求证:DB=DE ;(2)若∠BDE=70°,求∠AOB 的大小.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:△=22-4×4=-12<0,故没有实数根; 故选D .考点:根的判别式.2.D【解析】【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD=22=1003米,200100∴AB=AD+BD=100+1003=100(1+3)米,故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.B【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B.4.D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.5.A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 6.B【解析】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩可求解.7.B【解析】根据轴对称图形的概念对各选项分析判断即可得解.解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B. 两个轴对称的三角形,一定全等,正确;C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.故选B.8.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.C【解析】【分析】连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=23,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.【详解】解:如图,连接OB,∵PB切⊙O于点B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×333∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,则OC=123∴3故选:C.【点睛】本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.10.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=3E1D1=3×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=3×2,同理可得正六边形A3B3C3D3E3F3的边长=(3)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(3)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD231D132,∴正六边形A2B2C2D2E2F2的边长32,同理可得正六边形A3B3C3D3E3F3的边长=32×2,则正六边形A11B11C11D11E11F11的边长=(32)10×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.11.B【解析】【分析】根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.【详解】根据题意得:x 1+x 2=1,x 1•x 2=﹣1,所以原式=x 1•x 2(x 1+x 2)=﹣1×1=-1. 故选B .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2b a =-,x 1•x 2c a =. 12.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A .822=,不是最简二次根式,故本选项不符合题意;B .122=,不是最简二次根式,故本选项不符合题意;C .13是最简二次根式,故本选项符合题意;D .100.1=,不是最简二次根式,故本选项不符合题意. 故选C .【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1133b a -r r 【解析】【分析】根据三角形法则求出BC uuu v即可解决问题;【详解】如图,∵AB u u u v =a v ,AC u u u v =b v,∴BC uuu v =BA u u u v +AC u u uv =b v -a v , ∵BD=13BC , ∴BD u u u v =1133b a -v v . 故答案为1133b a -v v . 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.14.925【解析】试题分析:∵四边形ABCD 与四边形EFGH 位似,位似中心点是点O , ∴EF AB =OE OA =35, 则EFGH ABCD S S 四边形四边形=2()OE OA =23()5=925. 故答案为925. 点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.15.1260︒【解析】【分析】根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:多边形的边数是:360°÷40°=9, 则内角和是:(9-2)•180°=1260°.故答案为1260°.【点睛】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.16. (a -b +1)(a -b -1)【解析】【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a 2-2ab+b 2可组成完全平方公式,再和最后一项用平方差公式分解.【详解】a2-2ab+b2-1,=(a-b)2-1,=(a-b+1)(a-b-1).【点睛】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.17.2000 3【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=20003.故答案为:20003.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.18.12n1+【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=11n+,∵1111AB BM nD E ME n+==,∴1121BM nBE n+=+,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S △ABM :11n +=(n+1):(2n+1), ∴S n =121n +. 故答案为121n +. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.2b【解析】【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.20.7【解析】【分析】根据实数的计算,先把各数化简,再进行合并即可.【详解】原式=2342⨯+-7【点睛】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.21.(1)证明见解析;(2)1.【解析】【分析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD ,∵OD=OE ,∴∠ODE=∠OED .∵直线BC 为⊙O 的切线,∴OD ⊥BC .∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.22.(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.【解析】【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【详解】(1)如图所示,△A 1B 1C 1即为所求.A 1(﹣1,﹣1)B 1(﹣3,﹣3),C 1(﹣1,﹣2).故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如图所示,△CC 1C 2的面积是12⨯2×1=1. 故答案为:1.【点睛】本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.23.(1)AD 23=;(2)证明见解析.【解析】【分析】(1)首先连接OD ,由垂径定理,可求得DE 的长,又由勾股定理,可求得半径OD 的长,然后由勾股定理求得AD 的长;(2)连接OF 、OC ,先证明四边形AFCD 是菱形,易证得△AFO ≌△CFO ,继而可证得FC 是⊙O 的切线.【详解】证明:()1连接OD ,AB Q 是O e 的直径,CD AB ⊥,11CE DE CD 22∴===⨯= 设OD x =, BE 1=Q ,OE x 1∴=-,在Rt ODE V 中,222OD OE DE =+,222x (x 1)∴=-+,解得:x 2=,OA OD 2∴==,OE 1=,AE 3∴=,在Rt AED V 中,AD ===()2连接OF 、OC ,AF Q 是O e 切线,AF AB ∴⊥,CD AB ⊥Q ,AF//CD ∴,CF//AD Q ,∴四边形FADC 是平行四边形,AB CD ⊥QAC AD ∴=n nAD CD ∴=,∴平行四边形FADC 是菱形FA FC ∴=,FAC FCA ∠∠∴=,AO CO =Q ,OAC OCA ∠∠∴=,FAC OAC FCA OCA ∠∠∠∠∴+=+,即OCF OAF 90∠∠==o ,即OC FC ⊥,Q 点C 在O e 上,FC ∴是O e 的切线.【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.共有7人,这个物品的价格是53元.【解析】【分析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩ 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.25.37【解析】试题分析:过O 点作⊥OD AB 交AB 于D 点.构造直角三角形,在Rt ADO △中,计算出,OD AD ,在Rt BDO V 中, 计算出BD .试题解析:如图所示:过O 点作⊥OD AB 交AB 于D 点.在Rt ADO △中,15,30A AO ∠=︒=Q ,sin15300.2597.77(cm).OD AO ∴=⋅︒=⨯=cos15300.96628.98(cm).AD AO =⋅︒=⨯=又∵在Rt BDO V 中,45.OBC ∠=︒7.77(cm)BD OD ∴==,36.7537(cm)AB AD BD ∴=+=≈.答:AB 的长度为37cm .26. (1)每部A 型手机的销售利润为100元,每部B 型手机的销售利润为150元;(2)①5015000y x =-+;②手机店购进34部A 型手机和66部B 型手机的销售利润最大;(3)手机店购进70部A 型手机和30部B 型手机的销售利润最大.【解析】【分析】(1)设每部A 型手机的销售利润为a 元,每部B 型手机的销售利润为b 元,根据题意列出方程组求解即可;(2)①根据总利润=销售A 型手机的利润+销售B 型手机的利润即可列出函数关系式;②根据题意,得1002x x -≤,解得1003x ≥,根据一次函数的增减性可得当当34x =时,y 取最大值; (3)根据题意,()5015000y m x =-+,100703x ≤≤,然后分①当050m <<时,②当50m =时,③当50100m <<时,三种情况进行讨论求解即可.【详解】解:(1)设每部A 型手机的销售利润为a 元,每部B 型手机的销售利润为b 元.根据题意,得1020400020103500a b a b +=⎧⎨+=⎩, 解得100150a b =⎧⎨=⎩答:每部A 型手机的销售利润为100元,每部B 型手机的销售利润为150元.(2)①根据题意,得()100150100y x x =+-,即5015000y x =-+.②根据题意,得1002x x -≤,解得1003x ≥. 5015000y x =-+Q ,500-<,y ∴随x 的增大而减小.x Q 为正整数,∴当34x =时,y 取最大值,10066x -=.即手机店购进34部A 型手机和66部B 型手机的销售利润最大.(3)根据题意,得()()100150100y m x x =++-.即()5015000y m x =-+,100703x ≤≤. ①当050m <<时,y 随x 的增大而减小,∴当34x =时,y 取最大值,即手机店购进34部A 型手机和66部B 型手机的销售利润最大;②当50m =时,500m -=,15000y =,即手机店购进A 型手机的数量为满足100703x ≤≤的整数时,获得利润相同;③当50100m <<时,500m ->,y 随x 的增大而增大, ∴当70x =时,y 取得最大值,即手机店购进70部A 型手机和30部B 型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性. 27.(1)证明见解析;(2)110°.【解析】分析:(1)欲证明DB=DE ,只要证明∠BED=∠ABD 即可;(2)因为△OAB 是等腰三角形,属于只要求出∠OBA 即可解决问题;详解:(1)证明:∵DC ⊥OA ,∴∠OAB+∠CEA=90°,∵BD 为切线,∴OB ⊥BD ,∴∠OBA+∠ABD=90°,∵OA=OB ,∴∠OAB=∠OBA ,∴∠CEA=∠ABD ,∵∠CEA=∠BED ,∴∠BED=∠ABD ,∴DE=DB .(2)∵DE=DB ,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD 为切线,∴OB ⊥BD ,∴∠OBA=35°,∵OA=OB ,∴∠OBA=180°-2×35°=110°.点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

真题汇总:2022年广东省河源市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)

真题汇总:2022年广东省河源市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)

2022年广东省河源市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,E F ,下列结论中,错误的是( )A .AE OE FC OF =B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF = 2、已知2250x x --=的两个根为1x 、2x ,则12x x +的值为( ) A .-2 B .2 C .-5 D .5 3、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( ) A .548510⨯ B .648.510⨯ C .74.8510⨯ D .0.48510⨯ ·线○封○密○外4 )AB C D 5、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )A .雷B .锋C .精D .神6、等腰三角形的一个内角是100︒,则它的一个底角的度数是( )A .40︒B .80︒C .40︒或80︒D .40︒或100︒7、下列几何体中,俯视图为三角形的是( )A .B .C .D .8、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( )A .①B .②C .③D .②③9、如图,O 是ABC ∆的外接圆,40OCB ∠=︒,则A ∠的度数是( ) A .40︒B .80︒C .50︒D .45︒ 10、如图,线段8AB =,延长AB 到点C ,使2BC AB =,若点M 是线段AC 的中点,则线段BM 的长为( ) A .3B .4C .5D .12第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、如图,晚上小亮在路灯下散步,在由A 点处走到B 点处这一过程中,他在点A ,B ,C 三处对应的在地上的影子,其中影子最短的是在 _____点处(填A ,B ,C ). ·线○封○密○外2、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在RR △RRR 中,∠RRR =90°,点A 在边BP 上,点D 在边CP 上,如果RR =11,RRR ∠RRR =125,13AB ,四边形ABCD 为“对等四边形”,那么CD 的长为_____________.3、直接写出计算结果:(1)(−1)2021+(−0.1)−1−(3−R )0=____;(2)(−512)101×(225)101=____;(3)(R R −1)2⋅R R +1÷R 2R −1=____;(4)102×98=____.4、写出一个比1大且比2小的无理数______.5、在平面直角坐标系中,直线l :R =R −1与x 轴交于点R 1,如图所示依次作正方形R 1R 1R 1R 、正方形R 2R 2R 2R 1、…、正方形R R R R R R R R −1,使得点R 1、2A 、R 3、…在直线1上,点R 1、R 2、3C 、…在y 轴正半轴上,则点R R 的坐标是________.三、解答题(5小题,每小题10分,共计50分)1、 “双减”政策实施以来,我校积极探寻更为合理的学生评价方案.班主任石老师对班级学生的学习生活等采取的是量化积分制.下面统计的是博学组和笃行组连续八周的量化积分,并将得到的数据制成如下的统计表:量化积分统计表(单位:分)(1)请根据表中的数据完成下表(2)根据量化积分统计表中的数据,请在下图中画出笃行组量化积分的折线统计图. (3)根据折线统计图中的信息,请你对这两个小组连续八周的学习生活情况作出一条简要评价. 2、作图题:(尺规作图,保留作图痕迹)已知:线段a 、b ,求作:线段AB ,使2AB a b =-. ·线○封○密·○外3、在平面直角坐标系中,点A (a ,0),点B (0,b ),已知a ,b 满足248160a b b ++++=.(1)求点A 和点B 的坐标;(2)如图1,点E 为线段OB 的中点,连接AE ,过点A 在第二象限作AF AE ⊥,且AF AE =,连接BF 交x 轴于点D ,求点D 和点F 的坐标;:(3)在(2)的条件下,如图2,过点E 作EP OB ⊥交AB 于点P ,M 是EP 延长线上一点,且2ME PE OA ==,连接MO ,作45MON ∠=︒,ON 交BA 的延长线于点N ,连接MN ,求点N 的坐标.4、阅读下面材料:小钟遇到这样一个问题:如图1,()090AOB αα∠=︒<<︒,请画一个AOC ∠,使AOC ∠与BOC ∠互补.小钟是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠;因此,小钟找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)请参考小钟的画法;在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.并简要介绍你的作法; (2)已知()4560EPQ EPQ ∠︒<∠<︒和FPQ ∠互余,射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠且EPA ∠比APQ ∠大β,请用β表示APQ ∠的度数. 5、小明根据学习函数的经验,对函数y =﹣|x |+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题. (1)如表y 与x 的几组对应值:①a = ;②若A (b ,﹣7)为该函数图象上的点,则b = ;(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:·线○封○密○外①该函数有(填“最大值”或“最小值”),并写出这个值为;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.-参考答案-一、单选题1、B【分析】根据AD∥BC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵AD∥BC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴AE AO OE FC CO OF ==,故A 正确,不符合题意; ∵AD ∥BC , ∴△DOE ∽△BOF , ∴DE OE DO BF OF BO==, ∴AE DE FC BF =, ∴AE FC DE BF =,故B 错误,符合题意; ∵AD ∥BC , ∴△AOD ∽△COB , ∴AD AO DO BC CO BO ==, ∴AD OE BC OF =,故C 正确,不符合题意; ∴DE AD BF BC = , ∴AD BC DE BF =,故D 正确,不符合题意; 故选:B 【点睛】 本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键. 2、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】·线○封○密·○外解:∵2250x x --=的两个根为1x 、2x , ∴122=()21x x -+-= 故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若1x 、2x 为一元二次方程20ax bx c ++=的两个实数根,则有12=b x x a +-,12=c x x a. 3、C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:48500000科学记数法表示为:48500000=74.8510⨯.故答案为:74.8510⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4、B【分析】相同就不能合并,从而可得答案.【详解】=故A不符合题意;=B不符合题意;=故C不符合题意;=故D不符合题意;故选B【点睛】本题考查的是同类二次根式的概念,掌握“同类二次根式的概念进而判断两个二次根式能否合并”是解本题的关键.5、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D.【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.6、A【分析】由题意知,100°的内角为等腰三角形的顶角,进而可求底角.【详解】·线○封○密·○外解:∵在一个内角是100°的等腰三角形中,该内角必为顶角∴底角的度数为180100402︒-︒=︒故选A.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.7、C【分析】依题意,对各个图形的三视图进行分析,即可;【详解】由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;故选:C【点睛】本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;8、B【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点M(a,b)在抛物线y=x(2-x)上,()2b a a ∴=-当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0,∵△=4-4×(-3)>0,∴有两个不相等的值, ∴点M 的个数为2,故①错误; 当b =1时,1=a (2-a ),整理得a 2-2a +1=0, ∵△=4-4×1=0, ∴a 有两个相同的值, ∴点M 的个数为1,故②正确; 当b =3时,3=a (2-a ),整理得a 2-2a +3=0, ∵△=4-4×3<0, ∴点M 的个数为0,故③错误; 故选:B . 【点睛】 本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键. 9、C 【分析】 在等腰三角形OCB 中,求得两个底角∠OBC 、∠OCB 的度数,然后根据三角形的内角和求得∠COB =100°;最后由圆周角定理求得∠A 的度数并作出选择. 【详解】 解:在OCB ∆中,OB OC =, OBC OCB ∴∠=∠;·线○封○密·○外40OCB ∠=︒,180COB OBC OCB ∠=︒-∠-∠,100COB ∴∠=︒; 又12A COB ∠=∠, 50A ∴∠=︒,故选:C .【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.10、B【分析】先求出24AC =,再根据中点求出12AM =,即可求出BM 的长.【详解】解:∵8AB =,∴216BC AB ==,16824AC BC AB =+=+=, ∵点M 是线段AC 的中点,∴1122AM AC ==,4BM AM AB =-=, 故选:B .【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.二、填空题1、C【分析】如图所示,RR 、 RR 、RR 分别为点A ,B ,C 三处对应的在地上的影子,通过三角形相似,比较长度的大小,进而求得影子最短的值的点. 【详解】 解:如图RR 、RR 、RR 分别为点A ,B ,C 三处对应的在地上的影子由三角形相似可得RR RR =RR RR =RR RR =R ∵RR >RR ,RR >RR ∴RR 值最小 ∴RR 值最小 由题意可知,离路灯越近,影子越短 故答案为:C . 【点睛】 本题考查了相似三角形.解题的关键是建立比较长度的关系式. 2、13或12-√85或12+√85 【分析】 根据对等四边形的定义,分两种情况:①若CD =AB ,此时点D 在D 1的位置,CD 1=AB =13;②若AD =BC =11,此时点D 在D 2、D 3的位置,AD 2=AD 3=BC =11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答. ·线○封○密·○外【详解】解:如图,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,,∵RRR∠RRR=125x,∴AE=125在Rt△ABE中,AE2+BE2=AB2,x)2=132,即x2+(125解得:x1=5,x2=-5(舍去),∴BE=5,AE=12,∴CE=BC-BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,FD2∴CD2=CF-FD2=12-√85,CD3=CF+FD2=12+√85,综上所述,CD的长度为13、12-√85或12+√85.故答案为:13、12-√85或12+√85.【点睛】本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.3、-12 -1 a x 9996【分析】(1)先乘方,再加减即可;(2)逆用积的乘方法则进行计算;(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;(4)运用平方差公式计算即可.【详解】解:(1)(−1)2021+(−0.1)−1−(3−R)0=﹣1+(﹣10)﹣1=﹣1﹣10﹣1=﹣12.故答案为:﹣12.(2)(−512)101×(225)101=·线○封○密·○外=(−512)101×(125)101=−(512)101×(125)101 =﹣(512×125)101=﹣1.故答案为:﹣1.(3)(R R −1)2⋅R R +1÷R 2R −1=a 2x ﹣2•a x +1÷a 2x ﹣1=a 2x ﹣2+x +1﹣(2x ﹣1)=a x .故答案为:a x .(4)102×98=(100+2)×(100﹣2)=100²﹣2²=9996.故答案为:9996.【点睛】本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.4、故答案为:【点睛】本题以程序为背景考查了求代数式的值,关键是弄清楚图示给出的计算程序.3.答案不唯一,如√2、√3等【分析】根据无理数的大小比较和无理数的定义写出范围内的一个数即可.【详解】解:一个比1大且比2小的无理数有√2,√3等,故答案为:答案不唯一,如√2、√3等.【点睛】本题考查了对估算无理数和无理数的定义的应用,注意:答案不唯一. 5、(2R −1,2R −1) 【分析】 根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“B n (2n -1,2n -1)(n 为正整数)”,依此规律即可得出结论. 【详解】 解:当y =0时,有x -1=0, 解得:x =1, ∴点A 1的坐标为(1,0). ∵四边形A 1B 1C 1O 为正方形, ∴点B 1的坐标为(1,1). 同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…, ∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…, ∴B n (2n -1,2n -1)(n 为正整数), ·线○封○密○外故答案为:(2R −1,2R −1)【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“B n (2n -1,2n -1)(n 为正整数)”是解题的关键.三、解答题1、(1)见解析(2)见解析(3)博学组的学生学习生活更好【分析】(1)根据平均数,中位数,众数,方差的定义求解即可;(2)根据题目所给数据画出对应的折线统计图即可;(3)可从众数和方差的角度作评价即可.(1) 解:由题意得博学组的平均数12131441516==148++⨯++, ∴博学组的方差()()()()()222221=121413144141415141614=1.258⎡⎤-+-+⨯-+-+-⎣⎦ 把笃行组的积分从小到大排列为:9、11、13、13、15、16、17、18, ∴笃行组的中位数1315==142+, ∵笃行组中13出现的次数最多,∴笃行组的众数为13,∴填表如下:在线段DA 上顺次截取DC =CB =b ,∴AB =AD -BC-CD =a -b-b=a-2b线段AB 为所作.【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.3、(1)()4,0A -,()0,4B -;(2)D (-1,0),F (-2,4);(3)N (-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得40a +=,40b +=,通过求解一元一次方程,得4a =-,4b =-;结合坐标的性质分析,即可得到答案;(2)如图,过点F 作FH ⊥AO 于点H ,根据全等三角形的性质,通过证明AFH EAO ≌△△,得AH =EO =2,FH =AO =4,从而得OH =2,即可得点F 坐标;通过证明FDH BDO ≌△△,推导得HD =OD =1,即可得到答案;(3)过点N 分别作NQ ⊥ON 交OM 的延长线于点Q ,NG ⊥PN 交EM 的延长线于点G ,再分别过点Q 和点N 作QR ⊥EG 于点R ,NS ⊥EG 于点S ,根据余角和等腰三角形的性质,通过证明等腰Rt NOQ △和等腰Rt NPG △,推导得QNG ONP ≌△△,再根据全等三角形的性质,通过证明RMQ EMO ≌△△,得等腰Rt MON △,再通过证明NSM MEO ≌△△,得NS =EM =4,MS =OE =2,即可完成求解.【详解】(1)∵248160a b b ++++=, ∴()2440a b +++=.∵40a +≥,()240b +≥ ∴40a +=,()240b += ∴40a +=,40b += ∴4a =-,4b =-∴()4,0A -,()0,4B -. (2)如图,过点F 作FH ⊥AO 于点H ∵AF ⊥AE ∴∠FHA =∠AOE =90°, ∵AFH OAE EAO OAE ∠+∠=∠+∠ ∴∠AFH =∠EAO 又∵AF =AE , 在AFH 和EAO 中 90FHA AOE AFH EAO AF AE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴AFH EAO ≌△△ ·线○封○密○外∴AH =EO =2,FH =AO =4∴OH =AO -AH =2∴F (-2,4)∵OA =BO ,∴FH =BO在FDH △和BDO △中90FHD BOD FDH BDO FH BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴FDH BDO ≌△△∴HD =OD∵2HD OD OH +==∴HD =OD =1∴D (-1,0)∴D (-1,0),F (-2,4);(3)如图,过点N 分别作NQ ⊥ON 交OM 的延长线于点Q ,NG ⊥PN 交EM 的延长线于点G ,再分别过点Q 和点N 作QR ⊥EG 于点R ,NS ⊥EG 于点S∴90OMN ONQ ∠=∠=︒∴90QNM ONM ∠+∠=︒,90MON ONM ∠+∠=︒∴45QNM MON ∠=∠=︒∴9045NQM QNM ∠=︒-∠=︒∴45NQM MON ∠=∠=︒∴等腰Rt NOQ △ ∴NQ =NO , ∵NG ⊥PN , NS ⊥EG ∴90GNP NSP ∠=∠=︒ ∴90GNS PNS ∠+∠=︒,90NPS PNS ∠+∠=︒ ∴GNS NPS ∠=∠ ∵2ME PE OA ==, ∴2PE = ∵点E 为线段OB 的中点 ∴122BE OB == ∴PE BE = ∴45EPB ∠=︒ ∴45NPS EPB ∠=∠=︒ ∴45GNS NPS ∠=∠=︒ ∴9045NGS GNS ∠=︒-∠=︒ ∴45NGS NPS ∠=∠=︒ ∴等腰Rt NPG △ ∴NG =NP , ·线○封○密·○外∵90GNP ONQ ∠=∠=︒∴90QNG QNP ONP QNP ∠+∠=∠+∠=︒∴∠QNG =∠ONP在QNG △和ONP △中NQ NO QNG ONP NG NP =⎧⎪∠=∠⎨⎪=⎩∴QNG ONP ≌△△∴∠NGQ =∠NPO ,GQ =PO∵2PE BE OE ===,EP OB ⊥∴PO =PB∴∠POE =∠PBE =90EPB ︒-∠=45°∴∠NPO =90°∴∠NGQ =90°∴∠QGR =90NGP ︒-∠=45°.在QRG △和OEP 中9045QRG OEP QGR POE GQ PO ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩∴QRG OEP ≌△△.∴QR =OE在RMQ 和EMO 中90MRQ MEO RMQ EMO QR OE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ∴RMQ EMO ≌△△ ∴QM =OM . ∵NQ =NO , ∴NM ⊥OQ ∵45MON ∠=︒ ∴等腰Rt MON △ ∴MN MO = ∵90NMS MNS MNS OME ∠+∠=∠+∠=︒ ∴MNS OME ∠=∠在NSM △和MEO △中 90NSM MEO MNS OME MN MO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴NSM MEO ≌△△ ∴NS =EM =4,MS =OE =2 ∴N (-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 4、 (1)图见解析,作法见解析 ·线○封○密·○外(2)1452β︒-或122.54β︒-【分析】(1)先通过分析明确射线OH 在AOB ∠的外部,作OA (或OB )的垂线OC ,再利用量角器画出BOC ∠(或AOC ∠)的平分线OH 即可得; (2)分①射线PF 在EPQ ∠的外部,②射线PF 在EPQ ∠的内部两种情况,先根据互余的定义可得90EPQ FPQ ∠+∠=︒,再根据角平分线的定义可得12APQ APF FPQ ∠=∠=∠,然后根据角的和差即可得.(1)解:AOH ∠与BOH ∠互余,90BOH AOH ∴+∠=∠︒,()090AOB αα∠=︒<<︒,∴射线OH 在AOB ∠的外部,先作OA (或OB )的垂线OC ,再利用量角器画出BOC ∠(或AOC ∠)的平分线OH ,如图所示:或(2)解:由题意,分以下两种情况:①如图,当射线PF 在EPQ ∠的外部时,EPQ ∠和FPQ ∠互余,90EPQ FPQ ∴∠+∠=︒, EPA ∠比APQ ∠大β, AP EPA Q β∴∠-=∠,即EPQ β∠=, 9090FPQ EPQ β∴∠=︒-∠=︒-, 射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠, 114522APQ APF FPQ β∴∠=∠=∠=︒-; ②如图,当射线PF 在EPQ ∠的内部时,射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠, 12APQ APF FPQ ∴∠=∠=∠, EPQ ∠和FPQ ∠互余, 90EPQ FPQ ∴∠+∠=︒,90902EPQ FPQ APQ ∴∠=︒-∠=︒-∠,·线○封○密○外EPA ∠比APQ ∠大β,AP EPA Q β∴∠-=∠,APQ PQ P E A Q β∠--∴∠∠=,即2P EPQ A Q β=+∠∠,9022APQ APQ β∴︒-∠=+∠, 解得122.54APQ β∠=︒-,综上,APQ ∠的度数为1452β︒-或122.54β︒-.【点睛】本题考查了作垂线和角平分线、与角平分线有关的计算,较难的是题(2),正确分两种情况讨论是解题关键.5、(1)①0;②±10;(2)见解析;①最大值,3;②92【分析】(1)①根据表中对应值和对称性即可求解;②将点A 坐标代入函数解析式中求解即可;(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1)解:①由表可知,该函数图象关于y 轴对称,∵当x =-3时,y =0,∴当x =3时,a =0,故答案为:0;②将A (b ,-7)代入y =﹣|x |+3中,得:-7 =﹣|b |+3,即|b |=10,解得:b =±10,故答案为:±10;(2)解:函数y =﹣|x |+3的图象如图所示: ①由图象可知,该函数有最大值,最大值是3, 故答案为:最大值,3; ②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为193322⨯⨯=. 【点睛】 本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键. ·线○封○密·○外。

2021年河源市中考数学压轴题总复习题及答案解析

2021年河源市中考数学压轴题总复习题及答案解析

2021年广东省河源市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图,在平面直角坐标系中,已知A(﹣2,0),B(0,m)两点,且线段AB=2√5,以AB为边在第二象限内作正方形ABCD.
(1)求点B的坐标.
(2)在x轴上是否存在点Q,使△QAB是以AB为腰的等腰三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由;
(3)如果在坐标平面内有一点P(a,3),使得△ABP的面积与正方形ABCD的面积相等,求a的值.
2.已知,如图,E为BC延长线上一点,点D是线段AC上一点.
(1)如图1,DF∥BC,作DG平分∠BDF交AB于G,DH平分∠GDC交BC于H,且∠BDC比∠ACB大20°,求∠GDH的度数.
(2)如图2,连接DE,若∠ABC的平分线与∠ADE的平分线相交于点P,BP交AC于点K.
①设∠ABK=x,∠AKB=y,∠ADP=z,试用x,y,z表示∠E;
②求证:∠P=12(∠A﹣∠E).
3.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.
(1)求M点坐标;
(2)如图1,若⊙P经过点M.
①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;
(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.。

备考练习:2022年广东省河源市中考数学真题汇总 卷(Ⅱ)(含答案及解析)

备考练习:2022年广东省河源市中考数学真题汇总 卷(Ⅱ)(含答案及解析)

2022年广东省河源市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、方程20x x -=的解是( ). A .0x = B .1x = C .10x =,21x = D .10x =,21x =- 2、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( ) A .的 B .祖 C .国 D .我3、下列说法中,正确的是( ) A .东边日出西边雨是不可能事件. B .抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7. ·线○封○密○外C .投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次.D .小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.4、在 Rt ABC 中,90C =∠,如果,1A AC ∠α==,那么AB 等于( )A .sin αB .cos αC .1sin αD .1cos α52272π中无理数有( )A .4个B .3个C .2个D .1个6、若关于x 的方程()251x m +=-有两个实数根,则m 的取值范围是( )A .0m >B .m 1≥C .1mD .1m ≠7、已知正五边形的边长为1,则该正五边形的对角线长度为( ).A B C D8、下列问题中,两个变量成正比例的是( )A .圆的面积S 与它的半径rB .三角形面积一定时,某一边a 和该边上的高hC .正方形的周长C 与它的边长aD .周长不变的长方形的长a 与宽b9、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是()A.雷B.锋C.精D.神10、如图,ABC中,AB AC==8BC=,AD平分4B C∠交BC于点D,点E为AC的中点,连接DE,则ADE的面积是()A.20 B.16 C.12 D.10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知n<5,且关于x的方程x2﹣2x﹣2n=0两根都是整数,则n=___.2、程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,问大、小和尚各有多少人?设大和尚x人,小和尚x人,根据题意可列方程组为______.3、计算:√5÷√3×√3=___.4、若关于x的二次三项式x2−2(x+1)x+4是完全平方式,则k=____.5、单项式−x2x2的系数是______.·线○封○密○外三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,D 是边AB 的中点,过点B 作BE AC ∥交CD 的延长线于点E ,点N 是线段AC 上一点,连接BN 交CD 于点M ,且BM AC =.(1)若55E ∠=︒,65A ∠=︒,求CDB ∠的度数;(2)求证:CN MN =.2、解不等式组()41710853x x x x ⎧+≤+⎪⎨--⎪⎩<,并写出它的所有正整数解. 3、如图,已知△ABC .(1)请用尺规在图中补充完整以下作图,保留作图痕迹:作∠ACB 的角平分线,交AB 于点D ;作线段CD 的垂直平分线,分别交AC 于点E ,交BC 于点F ;连接DE ,DF ;(2)求证:四边形CEDF 是菱形.4、先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中a =,2b = 5、如图,在四边形ABCD 中,对角线BD 平分∠ABC ,∠A =120°,∠C =60°,AB =17,AD =12. (1)求证:AD =DC ;(2)求四边形ABCD 的周长.-参考答案- 一、单选题1、C【分析】先提取公因式x ,再因式分解可得x (x -1)=0,据此解之可得.【详解】 解:20x x -=, x (x -1)=0, 则x =0或x -1=0, 解得x 1=0,x 2=1, 故选:C . 【点睛】 本题考查了一元二次方程的解法,掌握用因式分解法解一元二次方程是关键. ·线○封○密○外2、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、D【分析】根据概率的意义进行判断即可得出答案.【详解】解:A、东边日出西边雨是随机事件,故此选项错误;.B、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C选项错误;C、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误;D、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确.故选:D【点睛】此题主要考查了概率的意义,正确理解概率的意义是解题关键.4、D【分析】直接利用锐角三角函数关系进而表示出AB 的长.【详解】解:如图所示:∠A =α,AC =1, cosα=1AC AB AB =, 故AB =1cos α. 故选:D 【点睛】 此题主要考查了锐角三角函数关系,正确得出边角关系是解题关键. 5、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. ·线○封○密·○外【详解】,是整数,属于有理数;227是分数,属于有理数;无理数有2π,共3个.故选:B .【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、B【分析】令该一元二次方程的判根公式240b ac =-≥,计算求解不等式即可.【详解】解:∵()251x m +=-∴2102510x x m ++-+=∴()2241042510b ac m =-=-⨯-+≥解得1m ≥故选B .【点睛】本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.7、C【分析】如图,五边形ABCDE 为正五边形, 证明,AB BCAE CD ,AF BF BG CG 1,AB AG 再证明,ABF ACB ∽可得:,ABBF AC CB 设AF =x ,则AC =1+x ,再解方程即可. 【详解】 解:如图,五边形ABCDE 为正五边形, ∴五边形的每个内角均为108°,,AB BC AE CD∴∠BAG =∠ABF =∠ACB =∠CBD = 36°, ∴∠BGF =∠BFG =72°,72,ABG AGB,,,AF BF BG GC BG BF ,AF BF BG CG 1,AB AG,,BAC FAB ABF ACB,ABF ACB ∽∴ ,AB BFACCB设AF =x ,则AC =1+x , 1,11xx210,x x ∴+-=解得:12x x ==经检验:x =·线○封○密○外15151.22AC故选C【点睛】本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明ABF ACB ∽△△是解本题的关键.8、C 【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.【详解】解:2,S r 所以圆的面积S 与它的半径r 不成正比例,故A 不符合题意;1,2S ah 2,S a h所以三角形面积一定时,某一边a 和该边上的高h 不成正比例,故B 不符合题意;=4,C a 所以正方形的周长C 与它的边长a 成正比例,故C 符合题意;22,C a b 长方形 2,2C b a 长方形 所以周长不变的长方形的长a 与宽b 不成正比例,故D 不符合题意;故选C【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.9、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D .【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.10、D【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,CD =BD ,再根据勾股定理得出AD 的长,从而求出三角形ABD 的面积,再根据三角形的中线性质即可得出答案; 【详解】 解:∵AB =AC ,AD 平分∠BAC ,BC =8, ∴AD ⊥BC ,142CD BD BC ===,∴10AD ,∴11·4102022ADCS CD BC ==⨯⨯=, ∵点E 为AC 的中点, ∴11201022ADE ADC S S ==⨯=, 故选:D 【点睛】 本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键. ·线○封○密○外二、填空题1、−12或0或32或4【分析】先利用方程有两根求解x ≥−12,结合已知条件可得−12≤x <5,再求解方程两根为x 1=1+√1+2x ,x 2=1−√1+2x ,结合两根为整数,可得1+2x 为完全平方数,从而可得答案.【详解】解:∵关于x 的方程x 2﹣2x ﹣2n =0有两根,∴△=(−2)2−4×1×(−2x )=4+8x ≥0,∴x ≥−12,∵x <5,∴−12≤x <5,∵x 2﹣2x ﹣2n =0,∴x =2±2√1+2x 2=1±√1+2x ,∴x 1=1+√1+2x ,x 2=1−√1+2x ,∵−12≤x <5,∴0≤2x +1<11,而两个根为整数,则1+2x 为完全平方数,∴2x +1=0或2x +1=1或2x +1=4或2x +1=9,解得:x =−12或x =0或x =32或x =4.故答案为:−12或0或32或4【点睛】本题考查的是一元二次方程根的判别式,利用公式法解一元二次方程,熟练的解一元二次方程是解本题的关键. 2、{x +x =1003x +13x =100 【分析】 根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可. 【详解】 解:设大和尚x 人,小和尚x 人, ∵共有大小和尚100人, ∴x +x =100; ∵大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,∴3x +13x =100. 联立两方程成方程组得{x +x =1003x +13x =100. 故答案为:{x +x =1003x +13x =100.【点睛】 本题考查二元一次方程组的应用,解决此类问题的关键就是认真对题,从题目中提取出等量关系,根据等量关系设未知数列方程组. 3、√53 【分析】 先把除法转化为乘法,再计算即可完成. ·线○封○密·○外【详解】√5÷√3×1√3=√51√31√3=√53 故答案为:√53 【点睛】本题考查了二次根式的乘除混合运算,注意运算顺序不要出错.4、﹣3或1【分析】根据x 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式x 2−2(x +1)x +4是完全平方式,∴x 2−2(x +1)x +4=22(2)44x x x -=-+或x 2−2(x +1)x +4=(x +2)2=x 2+4x +4, ∴−2(x +1)=4或−2(x +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键. 5、−12## 【分析】 单项式中的数字因数是单项式的系数,根据概念直接作答即可.【详解】·线○解:单项式−x 2x 2的系数是−12, 故答案为:−12【点睛】本题考查的是单项式的系数的概念,掌握“单项式的系数的概念求解单项式的系数”是解本题的关键.三、解答题1、(1)120︒(2)证明见解析【分析】(1)先根据平行线的性质可得65ABE A ∠=∠=︒,再根据三角形的外角性质即可得;(2)先根据三角形全等的判定定理证出B ADC DE ≅,再根据全等三角形的性质可得AC BE =,E ACD ∠=∠,从而可得BE BM =,然后根据等腰三角形的性质、对顶角相等可得E BME CMN ∠=∠=∠,从而可得ACD CMN ∠=∠,最后根据等腰三角形的判定即可得证.(1)解:∵AC BE ,65A ∠=︒,∴65ABE A ∠=∠=︒,∵55E ∠=︒,∴5565120CDB E ABE ∠=∠+∠=︒+︒=︒.(2)证明:∵AC BE ,∴A ABE ∠=∠,∵D 是边AB 的中点,∴AD BD =,在ADC 和BDE 中,A DBE AD BD ADC BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()BD ADC E ASA ≅,∴AC BE =,ACD E ∠=∠,∵BM AC =,∴BE BM =,∴E BME CMN ∠=∠=∠,∴ACD CMN ∠=∠,∴CN MN =.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.2、﹣2≤x <3.5,正整数解有:1、2、3【分析】分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分得到不等式组的解集,再写出范围内的正整数解即可.【详解】解:解不等式4(x +1)≤7x +10, 得:x ≥﹣2, 解不等式x ﹣583x -<,得:x <3.5, 故不等式组的解集为:﹣2≤x <3.5,·线○所以其正整数解有:1、2、3.【点睛】本题考查的是一元一次不等式组的解法,掌握“解不等式组的步骤及确定两个不等式的解集的公共部分”是解本题的关键.3、(1)见解析(2)见解析【分析】(1)根据要求的步骤作角平分线和垂直平分线即可,并连接DE ,DF ;(2)根据垂直平分线的性质可得,EC ED FC FD ==,进而证明ECO ≌FCO 即可得CE CF =,进而根据四边相等的四边形是菱形,即可证明四边形CEDF 是菱形.(1)如图所示,,CD EF 即为所求,(2)证明:如图,设,CD EF 交于点OEF 垂直平分CD,EC ED FC FD ∴==在ECO 与FCO 中ECO FCO CO COCOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ECO ≌FCOCE CF ∴=CE ED DF FC ∴===∴四边形CEDF 是菱形【点睛】本题考查了作角平分线和垂直平分线,菱形的判定,掌握基本作图和菱形的判定定理是解题的关键.4、ab ,1【分析】根据分式的减法和除法可以化简题目中的式子,然后将a ,b 的值代入化简后的式子即可解答本题.【详解】解:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭ 222+=a ab b a b a b ab --÷- 2()=a b ab a b a b ---=ab ;当a =2b ==(2431=-=【点睛】 本题考查分式的化简求值、分式的混合运算,需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握. 5、 (1)证明见解析; (2)70. 【分析】 (1)在BC 上取一点E ,使BE =AB ,连接DE ,证得△ABD ≌△EBD ,进一步得出∠BED =∠A ,利用等腰三角形的判定与性质与等量代换解决问题; (2)首先判定△DEC 为等边三角形,求得BC ,进一步结合(1)的结论解决问题. (1) 证明:在BC 上取一点E ,使BE =AB ,连结DE . ∵BD 平分∠ABC ,·线○·封○密○外∴∠ABD =∠CBD .在△ABD 和△EBD 中,AB BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBD (SAS );∴DE =AD =12,∠BED =∠A ,AB =BE =17.∵∠A =120°,∴∠DEC =60°.∵∠C =60°,∴∠DEC =∠C ,∴DE =DC ,∴AD =DC .(2)∵∠C =60°,DE =DC ,∴△DEC 为等边三角形,∴EC =CD =AD .∵AD =12,∴EC =CD =12,∴四边形ABCD 的周长=17+17+12+12+12=70.【点睛】此题考查全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质,结合图形,灵活解答.。

2023年广东省河源市中考数学试卷含答案解析

2023年广东省河源市中考数学试卷含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作( )A. −5元B. 0元C. +5元D. +10元2.下列出版社的商标图案中,是轴对称图形的为( )A. B.C. D.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A. 0.186×105B. 1.86×105C. 18.6×104D. 186×1034.如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=( )A. 43°B. 53°C. 107°D. 137°5.计算3a +2a的结果为( )A. 1a B. 6a2C. 5aD. 6a6.我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A. 黄金分割数B. 平均数C. 众数D. 中位数7.某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( ) A. 18B. 16C. 14D. 128.一元一次不等式组{x −2>1x <4的解集为( )A. −1<x <4B. x <4C. x <3D. 3<x <49.如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A. 20°B. 40°C. 50°D. 80°10.如图,抛物线y =ax 2+c 经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则ac 的值为( ) A. −1 B. −2 C. −3 D. −4二、填空题:本题共5小题,每小题3分,共15分。

广东省河源市2019-2020学年中考数学第三次押题试卷含解析

广东省河源市2019-2020学年中考数学第三次押题试卷含解析

广东省河源市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A(4,0),B (1,3),以OA 、OB 为边作□OACB ,反比例函数k y x=(k≠0)的图象经过点C .则下列结论不正确的是( )A .□OACB 的面积为12B .若y<3,则x>5C .将□OACB 向上平移12个单位长度,点B 落在反比例函数的图象上.D .将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上.2.如图,△ABC 纸片中,∠A =56,∠C =88°.沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD .则∠BDE 的度数为( )A .76°B .74°C .72°D .70°3.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40 B .45 C .51 D .564.把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则∠APG =( )A .141°B .144°C .147°D .150°5.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .346.下列关于x 的方程中一定没有实数根的是( )A .210x x --=B .24690x x -+=C .2x x =-D .220x mx --=7.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A .13B .17C .18D .258.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .9.下列各式:①a 0=1 ②a 2·a 3=a 5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x 2+x 2=2x 2,其中正确的是 ( ) A .①②③ B .①③⑤ C .②③④ D .②④⑤10.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD ,垂足为E ,AE=3,ED=3BE ,则AB 的值为( )A .6B .5C .23D .3311.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④12.如图所示,在平面直角坐标系中,点A 、B 、C 的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),则点A 1,C 1的坐标分别是 ( )A .A 1(4,4),C 1(3,2)B .A 1(3,3),C 1(2,1) C .A 1(4,3),C 1(2,3)D .A 1(3,4),C 1(2,2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为_________.14.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=o ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP =________.15.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.16.计算:18-2=________.17.如图为二次函数2y ax bx c =++图象的一部分,其对称轴为直线1x =.若其与x 轴一交点为A(3,0)则由图象可知,不等式20ax bx c ++<的解集是_______.18.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C ,乙船正好到达甲船正西方向的点B ,则乙船的航程为______海里(结果保留根号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,点G 是正方形ABCD 对角线CA 的延长线一点,对角线BD 与AC 交于点O ,以线段AG 为边作一个正方形AEFG ,连接EB 、GD .(1)求证:EB=GD ;(2)若AB=5,2,求EB 的长.20.(6分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.21.(6分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).22.(8分)解方程组:222232() x yx y x y ⎧-=⎨-=+⎩.23.(8分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.24.(10分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.25.(10分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A 型号的自行车比B 型号的自行车的单价低30元,买8辆A 型号的自行车与买7辆B 型号的自行车所花费用相同.(1)A,B 两种型号的自行车的单价分别是多少?(2)若购买A,B 两种自行车共600辆,且A 型号自行车的数量不多于B 型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.26.(12分)计算:01113(π3)3tan30()2----+-o .27.(12分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E 表示)和3位女生(分别用F,G ,H 表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】先根据平行四边形的性质得到点C 的坐标,再代入反比例函数k y x=(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.【详解】解:Q A(4,0),B (1,3),4BC OA ==, ∴ ()5,3C ,Q 反比例函数k y x=(k≠0)的图象经过点C , ∴5315k =⨯=,∴反比例函数解析式为15y x=. □OACB 的面积为4312b OA y ⨯=⨯=,正确;当0y <时,0x <,故错误;将□OACB 向上平移12个单位长度,点B 的坐标变为()1,15,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.2.B【解析】【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.【详解】解:∵∠A=56°,∠C=88°,∴∠ABC=180°-56°-88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,∴∠BDE=180°-18°-88°=74°.故选:B.【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.3.C【解析】【分析】【详解】解:根据定义,得x45<5110+≤+∴50x4<60≤+解得:46x<56≤.故选C.4.B【解析】【分析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).5.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,22223534AD AO OD∴=+=+=,∴正方形ABCD的面积是343434=,故选D.6.B【解析】【分析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 24x6x90-+=, △=36-144=-108<0,∴原方程没有实数根,C. 2x x=-, 2x x0+=, △=1>0,∴原方程有两个不相等的实数根,D. 2x mx20--=, △=m2+8>0,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.7.C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C. 8.B【解析】【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B.【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.9.D【解析】【分析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.10.C【解析】【分析】由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE ⊥BD ,AE=3,∴AB=30AE cos ︒, 故选C .【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB 是等边三角形是解题关键.11.B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a ,故①正确,因为b 点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a ,所以ab<0,故③错误,由①知a-b>a+b ,所以④正确.故选B.12.A【解析】分析:根据B 点的变化,确定平移的规律,将△ABC 向右移5个单位、上移1个单位,然后确定A 、C 平移后的坐标即可.详解:由点B (﹣4,1)的对应点B 1的坐标是(1,2)知,需将△ABC 向右移5个单位、上移1个单位,则点A (﹣1,3)的对应点A 1的坐标为(4,4)、点C (﹣2,1)的对应点C 1的坐标为(3,2), 故选A .点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【详解】设P (0,b ),∵直线APB ∥x 轴,∴A ,B 两点的纵坐标都为b ,而点A 在反比例函数y=4x -的图象上, ∴当y=b ,x=-4b ,即A 点坐标为(-4b,b ), 又∵点B 在反比例函数y=2x的图象上, ∴当y=b ,x=2b ,即B 点坐标为(2b,b ),∴AB=2b-(-4b)=6b,∴S△ABC=12•AB•OP=12•6b•b=1.14.1 【解析】【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出PQPR=PEPF=2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.【详解】如图,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴PQPR=PEPF=2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=35,∴AP=5x=1.故答案为:1.【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.15.1.【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.16.【解析】试题解析:原式==故答案为17.﹣1<x<1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)∴图象与x轴的另一个交点坐标为(-1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴-1<x<1.考点:二次函数与不等式(组).18.【解析】【分析】本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.【详解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B点,∴∠C=30°,∴答:乙船的路程为海里.故答案为【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2;【解析】【分析】(1)根据正方形的性质得到∠GAD=∠EAB ,证明△GAD ≌△EAB ,根据全等三角形的性质证明;(2)根据正方形的性质得到BD ⊥AC ,,根据勾股定理计算即可.【详解】(1)在△GAD 和△EAB 中,∠GAD=90°+∠EAD ,∠EAB=90°+∠EAD , ∴∠GAD=∠EAB ,在△GAD 和△EAB 中,GAD EAB AD AB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAD ≌△EAB ,∴EB=GD ;(2)∵四边形ABCD 是正方形,AB=5,∴BD ⊥AC ,∴∠DOG=90°,OA=OD=12BD=2, ∵,∴OG=OA+AG=2, 由勾股定理得,∴【点睛】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.20.详见解析【解析】【分析】由等边三角形的性质得出AB=BC ,BD=BE ,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD ,证明△ABE ≌△CBD (SAS ),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC ,即可得出结论.【详解】证明:∵△ABC ,△DEB 都是等边三角形,∴AB =BC ,BD =BE ,∠BAC =∠BCA =∠ABC =∠DBE =60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.21.CD的长度为17cm.【解析】【分析】在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案. 【详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=BE EC,∴BE=ECtan30°(cm);∴CF=AE=34+BE=(cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣﹣17,答:CD的长度为17cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.22.111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.23. (1)PM =PN , PM ⊥PN ;(2)△PMN 是等腰直角三角形,理由详见解析;(3)492. 【解析】【分析】(1)利用三角形的中位线得出PM =12CE ,PN =12BD ,进而判断出BD =CE ,即可得出结论,再利用三角形的中位线得出PM ∥CE 得出∠DPM =∠DCA ,最后用互余即可得出结论; (2)先判断出△ABD ≌△ACE ,得出BD =CE ,同(1)的方法得出PM =12BD ,PN =12BD ,即可得出PM =PN ,同(1)的方法即可得出结论;(3)方法1、先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM+AN ,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=22,在Rt△ABC中,AB=AC=10,AN=52,∴MN最大=22+52=72,∴S△PMN最大=12PM2=12×12MN2=14×(72)2=492.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=12 BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.24.(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【解析】【分析】(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【详解】(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.【点睛】此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键. 25.(1)A型自行车的单价为210元,B型自行车的单价为240元.(2) 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.【解析】分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题.(2)设购买A型自行车a辆,B型自行车的(600-a)辆.总费用为w元.构建一次函数,利用一次函数的性质即可解决问题.详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元,由题意,解得,型自行车的单价为210元,B型自行车的单价为240元.(2)设购买A型自行车a辆,B型自行车的辆.总费用为w元.由题意,,随a的增大而减小,,,∴当时,w有最小值,最小值,∴最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.点睛:本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型.26.234.【解析】【分析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【详解】解:原式3 31132 -+-=234.故答案为234.【点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.27.(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

2022年广东省河源市中考数学总复习:二次函数

2022年广东省河源市中考数学总复习:二次函数

2022年广东省河源市中考数学总复习:二次函数1.将抛物线y =﹣2x 2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为( )A .y =﹣2(x +2)2+2B .y =﹣2(x ﹣2)2﹣2C .y =﹣2(x +2)2﹣2D .y =﹣2(x ﹣2)2﹣5【解答】解:∵抛物线y =﹣2x 2﹣3向右平移2个单位长度,∴平移后解析式为:y =﹣2(x ﹣2)2﹣3,∴再向上平移1个单位长度所得的抛物线解析式为:y =﹣2(x ﹣2)2﹣3+1. 即y =﹣2(x ﹣2)2﹣2;故选:B .2.已知二次函数y =a (x +1)(x ﹣m )(a 为非零常数,1<m <2),当x <﹣1时,y 随x 的增大而增大,说法正确的是( )A .若图象经过点(0,1),则−12<a <0B .若x >−12时,则y 随x 的增大而增大C .若(﹣2020,y 1),(2020,y 2)是函数图象上的两点,则y 1<y 2D .若图象上两点(14,y 1),(14+n ,y 2)对一切正数n ,总有y 1>y 2,则32≤m <2【解答】解:∵二次函数y =a (x +1)(x ﹣m )(a 为非零常数,1<m <2),当x <﹣1时,y 随x 的增大而增大,∴a <0,若图象经过点(0,1),则1=a (0+1)(0﹣m ),得1=﹣am ,∵a <0,1<m <2,∴﹣1<a <−12,故选项A 错误;∵二次函数y =a (x +1)(x ﹣m )(a 为非零常数,1<m <2),a <0,∴该函数的对称轴为直线x =−1+m 2, ∴0<−1+m 2<12, ∴当x <−1+m 2时,y 随x 的增大而增大,故选项B 错误;∴若(﹣2020,y 1),(2020,y 2)是函数图象上的两点,则y 1<y 2,故选项C 正确; ∴若图象上两点(14,y 1),(14+n ,y 2)对一切正数n ,总有y 1>y 2,则1<m ≤32,故选项D 错误;故选:C .3.抛物线y =ax 2+bx +c (a ,b ,c 为常数,a <0)经过点(0,2),且关于直线x =﹣1对称,(x 1,0)是抛物线与x 轴的一个交点,有下列结论,其中结论错误的是( )A .方程ax 2+bx +c =2的一个根是x =﹣2B .若x 1=2,则抛物线与x 轴的另一个交点为(﹣4,0)C .若m =4时,方程ax 2+bx +c =m 有两个相等的实数根,则a =﹣2D .若−32≤x ≤0时,2≤y ≤3,则a =−12【解答】解:由已知可得,c =2,b =2a ,∴y =ax 2+2ax +2=a (x 2+2x )+2=a (x +1)2﹣a +2,①当x =﹣2时,y =2,∴方程ax 2+bx +c =2的一个根是x =﹣2;故①正确,不符合题意;②若x 1=2,函数的对称轴为直线x =﹣1,则抛物线与x 轴的另一个交点为(﹣4,0),正确,不符合题意;③ax 2+2ax +2=4时,△=4a 2+8a =0,∴a =0或a =﹣2,∴a =﹣2,正确,不符合题意;④若−32≤x ≤0时2≤y ≤3;在−32≤x ≤0时,当x =﹣1时,y 有最大值2﹣a ,当x =0时,有最最小值2;∴3=2﹣a ,∴a =﹣1,故④错误,符合题意;故选:D .4.对于抛物线y =ax 2+2ax ,当x =1时,y >0,则这条抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:当x=1时,y=a+2a=3a>0,函数的对称轴为:x=﹣1,顶点纵坐标为:0−4a24a=−a<0,故顶点的横坐标和纵坐标都为负数,故选:C.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①bc>0;②3a+c>0;③a+b+c≤ax2+bx+c;④a(k12+1)2+b(k12+1)>a(k12+2)2+b(k12+2).其中正确结论的个数是()A.1B.2C.3D.4【解答】解:①由图象可以看出,a<0,b>0,c>0,故bc>0,正确,符合题意;②函数的对称轴为x=1=−b2a,即b=﹣2a,根据函数的对称性可知x=﹣1时,y<0,即a﹣b+c<0,故3a+c<0,故②错误,不符合题意;③抛物线在x=1时,取得最大值,即a+b+c≥ax2+bx+c,故③错误,不符合题意;④x=k2+1≥1,而在对称轴右侧,y随x增大而减小,∵k12+1<k22+2,∴a(k12+1)2+b(k12+1)+c>a(k12+2)2+b(k12+2)+c,故a(k12+1)2+b(k12+1)>a(k12+2)2+b(k12+2)正确,符合题意;故选:B .6.已知函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +32=0的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根【解答】解:函数y =ax 2+bx +c 向上平移32个单位得到y ′=ax 2+bx +c +32,而y ′顶点的纵坐标为﹣2+32=−12,故y ′=ax 2+bx +c +32与x 轴有两个交点,且两个交点在x 轴的右侧,故ax 2+bx +c +32=0有两个同号不相等的实数根,故选:D .7.抛物线y =﹣x 2+bx +c 与x 轴的两个交点坐标如图所示,下列说法中错误的是()A .一元二次方程﹣x 2+bx +c =0的解是x 1=﹣2,x 2=1B .抛物线的对称轴是x =−12C .当x >1时,y 随x 的增大而增大D .抛物线的顶点坐标是(−12,94)【解答】解:A.抛物线与x轴的交点时(﹣2,0)、(1,0),故一元二次方程﹣x2+bx+c =0的解是x1=﹣2,x2=1,正确,不符合题意;B.函数的对称轴为x=12(﹣2+1)=−12,正确,不符合题意;C.从图象看,x>1时,y随x的增大而减小,错误,符合题意;D.设函数的表达式为:y=a(x﹣x1)(x﹣x2)=﹣(x+2)(x﹣1),当x=−12时,y=94,故顶点的坐标为(−12,94)正确,不符合题意;故选:C.8.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x =1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤【解答】解:①因为抛物线对称轴是直线x=1,则−b2a=1,2a+b=0,故①正确,符合题意;②∵抛物线开口向下,故a<0,∵对称轴在y轴右侧,故b>0,∵抛物线与y轴交于正半轴,故c>0,∴abc<0,故②错误,不符合题意;③从图象看,两个函数图象有两个交点,故方程ax 2+bx +c =mx +n 有两个不相等的实数根,正确,符合题意;④因为抛物线对称轴是:x =1,B (4,0),所以抛物线与x 轴的另一个交点是(﹣2,0),故④错误,不符合题意;⑤由图象得:当1<x <4时,有y 2<y 1,故⑤正确,符合题意;故正确的有:①③⑤;故选:B .9.已知函数y 1=ax 2﹣2ax +c (a >0),y 2=﹣ax 2+2ax +c ,当0≤x ≤2时,2≤y 1≤3,则当0≤x ≤2时,y 2的最大值是( )A .﹣3B .2C .3D .4【解答】解:由题意得:当0≤x ≤2时,函数y 1在对称轴x =1时取得最小值,即y 1=a ﹣2a +c =2①,函数y 1在x =2时,取得最大值,即y 1=4a ﹣4a +c =3②,联立①②并解得:{a =1c =3, 故y 2=﹣ax 2+2ax +c =﹣x 2+2x +3,当0≤x ≤2时,y 2在对称轴处取得最大值,∴当x =1时,y =4,故最大值是4,故选:D .10.如图,抛物线y =19x 2﹣1与x 轴交于A ,B 两点,D 是以点C (0,4)为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接OE ,BD ,则线段OE 的最小值是( )A .52B .3√22C .3D .2 【解答】解:令y =19x 2﹣1=0,则x =±3,故点B (3,0),设圆的半径为r ,则r =1,当B 、D 、C 三点共线,且点D 在BC 之间时,BD 最小,而点E 、O 分别为AD 、AB 的中点,故OE 是△ABD 的中位线, 则OE =12BD =12(BC ﹣r )=12(√32+42−1)=2, 故选:D .。

2022年广东省河源市中考数学总复习:二次函数

2022年广东省河源市中考数学总复习:二次函数

2022年广东省河源市中考数学总复习:二次函数1.抛掷一枚质地均匀的硬币,“反面朝上”的概率为12,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是( )A .每两次必有1次反面朝上B .可能有50次反面朝上C .必有50次反面朝上D .不可能有100次反面朝上【解答】解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为12,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:B .2.如图,某货船以24海里/时的速度从A 处向正东方向的D 处航行,在点A 处测得某岛C 在北偏东60°的方向.该货船航行30分钟后到达B 处,此时测得该岛在北偏东30°的方向上.则货船在航行中离小岛C 的最短距离是( )A .12海里B .6√3海里C .12√3海里D .24√3海里【解答】解:作CE ⊥AB 交AB 的延长线于E ,由题意得,AB =24×12=12,∠CBE =60°,∠CAE =30°,∴∠ACB =30°,∴∠CAE =∠ACB ,∴BC =AB =12,在Rt △CBE 中,sin ∠CBE =CE BC ,∴CE =BC ×sin ∠CBE =12×√32=6√3(海里),故选:B .3.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<12【解答】解:∵抛物线的对称轴x=−m2=2,∴m=﹣4,则方程x2+mx﹣n=0,即x2﹣4x﹣n=0的解相当于y=x2﹣4x与直线y=n的交点的横坐标,∵方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=6时,y=36﹣24=12,又∵y=x2﹣4x=(x﹣2)2﹣4,∴当﹣4≤n<12时,在﹣1<x<6的范围内有解.∴n的取值范围是﹣4≤n<12,故选:C.4.如图,在△ABC中,∠ACB=90°,将△ABC绕点C逆时针旋转θ角到△DEC的位置,这时点B恰好落在边DE的中点,则旋转角θ的度数为()A.60°B.45°C.30°D.55°【解答】解:∵∠ACB=90°,B为DE的中点,∴BC=BE=BD,∵将△ABC绕点C逆时针旋转θ角到△DEC的位置,∴CB=CE,∴CB=CE=BE,∴△ECB为等边三角形,∴∠ECB=60°,∴∠ACD=∠ECB=60°,故选:A.5.设a>0,则a与√a的大小关系为()A.a>√a B.a=√aC.a<√a D.以上结论都可能成立【解答】解:当0<a<1时a<√a,如a=0.01,√a=0.1;当a=1时,a=√a;当a>1时,a>√a,如a=100,√a=10.观察选项,选项D符合题意.故选:D.。

广东省河源市,2020~2021年中考数学压轴题精选解析

广东省河源市,2020~2021年中考数学压轴题精选解析

广东省河源市,2020~2021年中考数学压轴题精选解析广东省河源市中考数学压轴题精选~~第1题~~(2019紫金.中考模拟) 如图,已知抛物线的顶点为A (1,4),抛物线与y 轴交于点B (0,3),与x 轴交于C 、D 两点。

点P 是x 轴上的一个动点.(1) 求此抛物线的解析式;(2) 求C 、D 两点坐标及△BCD 的面积;(3) 若点P 在x 轴上方的抛物线上,满足S = S ,求点P 的坐标。

~~第2题~~(2018.中考模拟) 如图,抛物线 经过点 ,交y 轴于点C,如图1所示:(1) 求抛物线的解析式;(2) 点为 轴右侧抛物线上一点,是否存在点 使,若存在请直接写出点 坐标;若不存在请说明理由;(3) 如图2所示,直线BC 绕点B 顺时针旋转 ,与抛物线交于另一点E,与直线AC 交于点F ,求BE 的长度.( 提示:过点F 作FM 轴于点M).~~第3题~~(2017河源.中考模拟) 如图,在平面直角坐标系中,直角三角形AOB 的顶点A 、B 分别落在坐标轴上.O 为原点,点A 的坐标为(6,0),点B 的坐标为(0,8).动点M 从点O 出发.沿OA 向终点A 以每秒1个单位的速度运动,同时动点N 从点A 出发,沿AB 向终点B 以每秒 个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M 、N 运动的时间为t 秒(t >0).△PCD △BCD(1)当t=3秒时,直接写出点N的坐标;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?广东省河源市中考数学压轴题答案解析~~第1题~~答案:解析:答案:解析:~~第3题~~答案:解析:。

2025届河源市重点中学高考冲刺押题(最后一卷)数学试卷含解析

2025届河源市重点中学高考冲刺押题(最后一卷)数学试卷含解析

2025届河源市重点中学高考冲刺押题(最后一卷)数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2B .(]1,4C .[)2,+∞D .[)4,+∞ 2.设()y f x =是定义域为R 的偶函数,且在[)0,+∞单调递增,0.22log 0.3,log 0.3a b ==,则( ) A .()()(0)f a b f ab f +>> B .()(0)()f a b f f ab +>> C .()()(0)f ab f a b f >+>D .()(0)()f ab f f a b >>+3.已知集合{}{}22(,)4,(,)2xA x y x yB x y y =+===,则AB 元素个数为( )A .1B .2C .3D .44.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知点(25,310A 在双曲线()2221010x y b b-=>上,则该双曲线的离心率为( )A 10B 10C 10D .106.已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于( ) A .82B .8C .2D .47.斜率为1的直线l 与椭圆22x y 14+=相交于A 、B 两点,则AB 的最大值为( )A .2B 45C 410D 8108.设1k >,则关于,x y 的方程()22211k x y k -+=-所表示的曲线是( )C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线9.设i 是虚数单位,a R ∈,532aii a i+=-+,则a =( ) A .2-B .1-C .1D .210.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是( ) A .2B .3C .4D .111.已知i 为虚数单位,若复数12z i =+,15z z ⋅=,则||z = A .1 B .5 C .5D .5512.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为() A .b a c <<B .c b d <<C .b c a <<D .a b c <<二、填空题:本题共4小题,每小题5分,共20分。

中考专题2022年广东省河源市中考数学三年高频真题汇总卷(含详解)

中考专题2022年广东省河源市中考数学三年高频真题汇总卷(含详解)

2022年广东省河源市中考数学三年高频真题汇总卷 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,任意四边形ABCD 中,E ,F ,G ,H 分别是各边上的点,对于四边形E ,F ,G ,H 的形状,小聪进行了探索,下列结论错误的是( )A .E ,F ,G ,H 是各边中点.且AC =BD 时,四边形EFGH 是菱形B .E ,F ,G ,H 是各边中点.且AC ⊥BD 时,四边形EFGH 是矩形 C .E ,F ,G ,H 不是各边中点.四边形EFGH 可以是平行四边形 D .E ,F ,G ,H 不是各边中点.四边形EFGH 不可能是菱形 2、如图,已知△ABC 与△DEF 位似,位似中心为点O ,OA :OD =1:3,且△ABC 的周长为2,则△DEF 的周长为( ) ·线○封○密○外A .4B .6C .8D .183、一圆锥高为4cm ,底面半径为3cm ,则该圆锥的侧面积为( )A .29cm πB .212cm πC .215cm πD .216cm π4、如图,二次函数y =ax 2+bx +c (a >0)的图像经过点A (﹣1,0),点B (m ,0),点C (0,﹣m ),其中2<m <3,下列结论:①2a +b >0,②2a +c <0,③方程ax 2+bx +c =﹣m 有两个不相等的实数根,④不等式ax 2+(b ﹣1)x <0的解集为0<x <m ,其中正确结论的个数为( )A .1B .2C .3D .45、如图,ABC 与DEF 位似,点O 是位似中心,若3OD OA =,4ABCS =,则DEF S =△( )A .9B .12C .16D .366、某物体的三视图如图所示,那么该物体形状可能是( ) A .圆柱B .球C .正方体D .长方体 7、某优秀毕业生向我校赠送1080本课外书,现用A 、B 两种不同型号的纸箱包装运送,单独使用B 型纸箱比单独使用A 型纸箱可少用6个;已知每个B 型纸箱比每个A 型纸箱可多装15本.若设每个A 型纸箱可以装书x 本,则根据题意列得方程为( ) A .10801080615x x =+- B .10801080615x x =-- C .10801080615x x =-+ D .10801080615x x =++ 8、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( ) A .B .C .D . 9、同学们,我们是2022届学生,这个数字2022的相反数是( )·线○封○密·○外A .2022B .12022C .2022-D .12022- 10、若方程2210ax x ++=有实数根,则实数a 的取值范围是( )A .1a <B .1a ≤C .1a ≤且0a ≠D .1a <且0a ≠第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,A (6,0),A (−2,0),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为______.2、已知抛物线y =(x ﹣1)2有点A (0,y 1)和B (3,y 2),则y 1___y 2.(用“>”,“<”,“=”填写)3、如图,在△AAA 中,AA ∥AA ,∠AAA 和∠AAA 的平分线分别交AA 于点A 、A ,若AA =3,AA =4,AA =5,则AA 的长为__________.4、如图点O 在直线AA 上,∠AAA 与∠AAA 互为余角,则∠AAA 的大小为________.5、如图,已知点B 在线段CF 上,AB ∥CD ,AD ∥BC ,DF 交AB 于点E ,联结AF 、CE ,S △BCE :S △AEF 的比值为___. 三、解答题(5小题,每小题10分,共计50分) 1、已知二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点. (1)求a 和b 的值;(2)在坐标系xOy 中画出该二次函数的图象. 2、用若干个相同的小正方体摆成了右面的几何体,请画出这个几何体从正面、左面和上面看到的形状图. 3、观察并找出规律:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当m =8时,和S 的等式为_________·线○封○密○外(2)按此规律计算:①2+4+6+…+200值;②82+84+86+…+204值.4、先化简,再求值:2312(2)22x x x x x ++++÷--,其中4x =. 5、如图,有一块直角三角形纸片,两直角边6AC =cm ,8BC =cm ,现将直角边AC 沿直线AD 对折,使它落在斜边AB 上,且与AE 重合,求CD 的长.-参考答案-一、单选题1、D【分析】当E F G H ,,,为各边中点,EH BD FG EF AC GH ∥∥,∥∥,11====22EH BD FG EF AC GH ,,四边形EFGH 是平行四边形;A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形,进而可判断正误;B 中AC ⊥BD ,则EF FG ⊥,平行四边形EFGH 为矩形,进而可判断正误;E ,F ,G ,H 不是各边中点,C 中若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形,进而可判断正误;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形,进而可判断正误.【详解】解:如图,连接AC BD 、当E F G H ,,,为各边中点时,可知EH EF FG GH 、、、分别为ABD ABC BCD ACD 、、、的中位线 ∴11====22EH BD FG EF AC GH EH BD FG EF AC GH ∥∥,∥∥,, ∴四边形EFGH 是平行四边形A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形;正确,不符合题意;B 中AC ⊥BD ,则EF FG ⊥,平行四边形EFGH 为矩形;正确,不符合题意;C 中E ,F ,G ,H 不是各边中点,若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形;正确,不符合题意;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形;错误,符合题意; 故选D .【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.2、B【分析】由ABC 与DEF 是位似图形,且:1:3OA OD =知ABC 与DEF 的位似比是1:3,从而得出ABC 周长:DEF 周长1:3=,由此即可解答. 【详解】 解:∵ABC 与DEF 是位似图形,且:1:3OA OD =, ·线○封○密·○外ABC∴与DEF的位似比是1:3.则ABC周长:DEF周长1:3=,∵△ABC的周长为2,∴DEF周长236=⨯=故选:B.【点睛】本题考查了位似变换:位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比,位似是相似的特殊形式,位似比等于相似比,其对应的周长比等于相似比.3、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm,底面半径为3cm,∴圆锥母线5,∴圆锥的侧面积=1523152ππ⨯⨯⨯=(cm2).故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4、C【分析】利用二次函数的对称轴方程可判断①,结合二次函数过()1,0,- 可判断②,由y m =-与2y ax bx c =++有两个交点,可判断③,由21y ax b x 过原点,对称轴为1,2b x a 求解函数与x 轴的另一个交点的横坐标,结合原二次函数的对称轴及与x 轴的交点坐标,可判断④,从而可得答案. 【详解】 解: 二次函数y =ax 2+bx +c (a >0)的图像经过点A (﹣1,0),点B (m ,0), ∴ 抛物线的对称轴为:1,2m x 2<m <3,则111,22m 1,2b a 而图象开口向上0,a > 2,b a 即20,a b 故①符合题意; 二次函数y =ax 2+bx +c (a >0)的图像经过点A (﹣1,0),0,a b c ∴-+= 则,b a c 11,22b a 则2,a b a 0,a b ∴+< 20,a c 故②符合题意; 0,,23,C m m ∴ y m =-与2y ax bx c =++有两个交点, ∴ 方程ax 2+bx +c =﹣m 有两个不相等的实数根,故③符合题意; 1,0,,0A B m 关于2b x a =-对称, 1,22b b m a a ·线○封○密○外1,ba b m a a21y ax b x 过原点,对称轴为1,2b x a∴ 该函数与抛物线的另一个交点的横坐标为:11,b bm a a ∴ 不等式ax 2+(b ﹣1)x <0的解集不是0<x <m ,故④不符合题意;综上:符合题意的有①②③故选:C【点睛】本题考查的是二次函数的图象与性质,利用二次函数的图象判断,,a b c 及代数式的符号,二次函数与一元二次方程,不等式之间的关系,熟练的运用数形结合是解本题的关键.5、D【分析】根据位似变换的性质得到//AC DF ,得到OAC ODF ∆∆∽,求出AC DF ,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:ABC ∆与DEF ∆位似,//AC DF ∴, OAC ODF ∴∆∆∽,∴13AC OA DF OD ==, ∴21()9ABC DEF S AC S DF ∆∆==, 4ABC S ∆=,36DEF S ∆∴=,故选:D.【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.6、A【分析】根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱.【详解】解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,则该几何体是圆柱.故选:A.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.7、C【分析】由每个B型包装箱比每个A型包装箱可多装15本课外书可得出每个B型包装箱可以装书(x+15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x的分式方程,此题得解.【详解】解:∵每个A型包装箱可以装书x本,每个B型包装箱比每个A型包装箱可多装15本课外书,∴每个B型包装箱可以装书(x+15)本.依题意得:108010806 15x x=-+·线○封○密○外故选:C.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.8、A【分析】由平面图形的折叠及图形的对称性展开图解题.【详解】由第一次对折后中间有一个矩形,排除B、C;由第二次折叠矩形正在折痕上,排除D;故选:A.【点睛】本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答.9、C【分析】根据相反数的定义即可得出答案.【详解】解:2022的相反数是-2022.故选:C.【点睛】本题考查了相反数,解题的关键是掌握只有符号不同的两个数互为相反数.10、B【分析】若方程为一元二次方程,则有0a ≠,24440b ac a =-=-≥,求解;若0a =,方程为一元一次方程,判断210x +=有实数根,进而求解取值范围即可. 【详解】解:若方程为一元二次方程,则有0a ≠,24440b ac a =-=-≥ 解得1a ≤且0a ≠若0a =,方程为一元一次方程,210x +=有实数根故选B .【点睛】 本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑00a a =≠,的情况. 二、填空题 1、(0,2√7) 【分析】 先根据题意得出OA =6,OC =2,再根据勾股定理计算即可. 【详解】 解:由题意可知:AC =AB , ∵A(6,0),C (-2,0) ∴OA =6,OC =2, ∴AC =AB =8, 在Rt △OAB 中,AA =√AA 2−AA 2=√82−62=2√7, ∴B (0,2√7). 故答案为:(0,2√7). 【点睛】·线○封○密○外本题考查勾股定理、坐标与图形、熟练掌握勾股定理是解题的关键.2、<【分析】分别把A、B点的横坐标代入抛物线解析式求解即可.【详解】解:x=0时,y1=(0﹣1)2=1,x=3时,y3=(3﹣1)2=4,∴y1<y2.故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,求出相应的函数值是解题的关键.3、2【分析】利用角平分线以及平行线的性质,得到ABG EGB∠=∠和∠AAA=∠AAA,利用等边对等角得到AA=AA,AA=AA,最后通过边与边之间的关系即可求解.【详解】解:如下图所示:∵AA、AA分别是∠AAA与∠AAA的角平分线∴∠AAA=∠AAA,∠AAA=∠AAAED BC ∥EGB CBG ∴∠=∠,∠AAA =∠AAA ABG EGB ∴∠=∠,∠AAA =∠AAA 3BE EG ∴==,4CD DF ==2FG EG DF ED ∴=+-=故答案为:2.【点睛】 本题主要是考查了等角对等边以及角平分线和平行的性质,熟练根据角平分线和平行线的性质,得到相等角,这是解决该题的关键. 4、90° 【分析】 利用互余的定义,平角的定义,角的差计算即可. 【详解】 ∵∠AAA 与∠AAA 互为余角, ∴∠AOC +∠BOD =90°, ∴∠COD =180°-90°=90°, 故答案为:90°. 【点睛】 本题考查了互余即两个角的和是90°,角的和差,熟练记住互余的定义,灵活运用角的和差是解题的关键. 5、1 【分析】 ·线○封○密○外连接BD,利用平行线间距离相等得到同底等高的三角形面积相等即可解答.【详解】解:连接BD,如下图所示:∵BC∥AD,∴S△AFD= S△ABD,∴S△AFD- S△AED= S△ABD- S△AED,即S△AEF= S△BED,∵AB∥CD,∴S△BED=S△BEC,∴S△AEF=S△BEC,∴S△BCE:S△AEF=1.故答案为:1.【点睛】本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.三、解答题1、(1)12 ab=⎧⎨=-⎩(2)见解析【分析】 (1)利用待定系数法将()()1,4,1,0A B --两点代入抛物线求解即可得; (2)根据(1)中结论确定函数解析式,求出与x ,y 轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象. (1) 解:∵二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点, ∴3430a b a b +-=-⎧⎨--=⎩, 解得:12a b =⎧⎨=-⎩ . (2) 解:由(1)可得:函数解析式为:223y x x =--, 当0y =时,2230x x --=, 解得:11x =-,23x =, ∴抛物线与x 轴的交点坐标为:()1,0-,()3,0, 抛物线与y 轴的交点坐标为:()0,3-, 对称轴为:21221b x a -=-=-=⨯, 根据这些点及对称轴在直角坐标系中作图如下. ·线○封○密·○外【点睛】题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键.2、见解析【分析】观察图形可知,从正面看到的图形是3列,从左往右正方形的个数依次为1,1,2;从左面看到的图形是3列,从左往右正方形的个数依次为2,1,1;从上面看到的图形是3列,从左往右正方形的个数依次为1,1,3;由此分别画出即可.【详解】解:如图所示:【点睛】本题考查了从不同方向看几何体,做此类题时,应认真审题,根据看到的形状即可解答.3、(1)8×9=72(2)①10100 ②8866【分析】(1)仔细观察给出的等式可发现从2开始连续2个偶数和是2×3,连续3个,4个偶数和为3×4,4×5,当有m 个从2开始的连续偶数相加是,式子就应该表示成:2+4+6+…+2m =m (m +1),从而推出当m =8时,和的值; (2)①直接根据(1)中规律计算即可; ②用2+4+6+…+82+84+86+…+204的和减去2+4+6+…+80的和即可. (1) 解:∵2+2=2×2, 2+4=6=2×3=2×(2+1), 2+4+6=12=3×4=3×(3+1), 2+4+6+8=20=4×5=4×(4+1), …, ∴2+4+6+…+2m =m (m +1), ∴m =8时,和为:8×9=72; 故答案为:72; (2) ①2+4+6+…+200 =100×101, =10100; ②82+84+86+…+204 =(2+4+6+…+82+84+86+…+204)-(2+4+6+…+80) ·线○封○密○外=102×103-40×41=10506-1640=8866.【点睛】此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键.4、11xx-+,35【分析】先把所给分式化简,再把4x=代入计算.【详解】解:原式=22 432 ()2212x xx x x x--+⨯--++=22 12212x xx x x --⨯-++=()()()2 11221 x+x xx x+--⨯-=11xx-+,当4x=时,原式=413= 415 -+.【点睛】本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.5、CD长为3cm【分析】在Rt ABC中,由勾股定理得AB =,由折叠对称可知CD DE =,6AE AC ==cm ,90BED ∠=︒,BE AB AE =-,设DE CD x ==,则8BD x =-,在Rt BDE 中,由勾股定理得222BD DE BE =+,计算求解即可. 【详解】 解:∵6AC =cm ,8BC =cm ∴在Rt ABC 中,AB = 由折叠对称可知CD DE =,6AE AC ==cm ,90BED ∠=︒ ∴1064BE AB AE =-=-=cm设DE CD x ==,则8BD x =- ∴在Rt BDE 中,由勾股定理得222BD DE BE =+ 即()22284x x -=+ 解得3x = ∴CD 的长为3cm . 【点睛】 本题考查了轴对称,勾股定理等知识.解题的关键在于找出线段的数量关系.·线○封○密·○外。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年广东省河源市中考数学压轴题总复习解析版1.如图,在平面直角坐标系中,已知A(﹣2,0),B(0,m)两点,且线段AB=2√5,以AB为边在第二象限内作正方形ABCD.
(1)求点B的坐标.
(2)在x轴上是否存在点Q,使△QAB是以AB为腰的等腰三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由;
(3)如果在坐标平面内有一点P(a,3),使得△ABP的面积与正方形ABCD的面积相等,求a的值.
【解答】解:(1)∵A(﹣2,0),
∴OA=2,
∵AB=2√5,
由勾股定理得:OB=√(2√5)2−22=4,
∴B(0,4);
(2)分两种情况:
①以AB为腰,∠BAQ为顶角时,如图1,
AB=AQ=2√5,
∴Q 1(﹣2﹣2√5,0),Q 2(2√5−2,0), ②以AB 为腰,∠ABQ 为顶角时,如图1, A 与Q 3关于y 轴对称,
∴Q 3(2,0);
综上,点Q 的坐标是(﹣2﹣2√5,0)或(2√5−2,0)或(2,0),
(3)分两种情况:
①当P 在y 轴的右边时,如图2,
作直线l :y =3,直线l 交AB 于H ,交y 轴于E , ∵P (a ,3),
∴点P 在直线l 上,
过P 作PG ⊥AB 于G ,
∵S △ABP =S 正方形ABCD ,
∴12•AB •PG =AB 2, PG =2AB =4√5,
∵l ∥x 轴,
∴∠PHG =∠OAB ,
∴sin ∠PHG =sin ∠OAB ,即
PG PH =OB AB ,
∴4√5PH =2√5,PH =10, ∵EH ∥OA ,
∴EH OA =BE OB ,即EH 2=1
4, ∴EH =12,。

相关文档
最新文档