飞机结构和组成

合集下载

飞机基础知识—飞机结构

飞机基础知识—飞机结构

起落架
起落架的作用是在地面停放,滑跑、运动过程中支撑飞机,并能在 飞前三点式和后三点式起落架。
起落架 前三点式
起落架 后三点式
起落架
起落架系统主要用于起落架的 收放、前轮转弯以及地面刹车, 以保证飞机在地面滑行、滑跑、 减速及起落架收放的需要。
动力装置
活塞式发动机
四冲程 :进气冲程、压 缩冲程、膨胀、排气冲程。 在低速飞行时,活塞发动 机的经济性能很好,目前 在小型飞机和轻型直升机 上广为应用。
动力装置
涡轮喷气发动机
第一代涡轮喷气机噪音很大,如 今大多用于军用飞机; 涡轮风扇发动机的优点是:耗油 率低,因而经济性能好、噪音低; 因此现代商务亚音速飞机多采用 涡轮风扇发动机。
飞机结构
飞机的主要组成部分为:机身、机翼、尾翼、起落架、动力装置。
机身 驾驶舱、存放行李、邮件、货物的货舱、客舱。
机翼和尾翼
机翼的主要作用是产生升 力,现代民航客机机翼的 内部还可以作为结构油箱 来储存燃油,和安装起落 架及发动机。
机翼和尾翼
机翼装在机身上的角度,称为安装角,是机翼与水平线所成的角度。安 装角向上或向下就称为机翼具有上反角或下反角。
机翼
飞机的机翼由许多可以活 动的部分组成。这些部分 可以用来改变机翼的位置 和形状,也可以用来增大 或减小翼面。
前缘襟翼
外侧(低 速)副翼
后缘内侧襟翼
地面扰流板
飞行扰流板 内侧(高
后缘外侧
速)副翼
襟翼
机翼
襟翼,是飞机机翼上可以 活动的翼片,用于起飞和 降落。它们可以用来帮助 控制飞机的速度及机翼所 产生的升力。
转动驾驶盘可控制副翼的偏转,前推或后拉驾驶盘可控制升降舵的 偏转。脚操纵机构用于控制方向舵。

飞行知识点总结

飞行知识点总结

飞行知识点总结一、飞机的结构和原理1. 飞机的结构飞机通常由机身、机翼、尾翼、发动机和起落架等组成。

机身是飞机的主体部分,承载机翼、尾翼和发动机。

机翼是飞机的承载面,能够产生升力。

尾翼主要起到平衡和操纵的作用。

发动机提供动力,并驱动飞机进行飞行。

起落架用于飞机的起降。

2. 飞机的原理飞机飞行的物理原理包括:升力原理、推力原理、阻力原理和重力原理。

升力原理是指通过机翼产生气动升力,使飞机能够离地飞行。

推力原理是指飞机需要足够的推力来克服阻力,使飞机能够飞行。

阻力原理是指在飞行过程中,飞机会受到来自风阻的阻力。

重力原理是指飞机需要克服重力才能够飞行。

二、飞机的操作和操纵1. 飞机的操作飞机的操作主要包括起飞、飞行、下降、着陆和停机等环节。

在这些环节中,飞行员需要掌握飞机的操纵技术,包括使用油门、方向舵、升降舵、副翼和襟翼等,以确保飞机的安全飞行。

2. 飞机的操纵飞机的操纵是通过操纵杆和脚蹬来进行的。

操纵杆主要用于控制飞机的俯仰和翻滚,脚蹬主要用于控制飞机的方向。

飞机的操纵需要飞行员密切配合,以确保飞机的平稳飞行。

三、气象知识1. 气象的影响气象对飞行有着重要的影响,包括天气、气压和风向等因素。

飞行员需要根据气象情况来决定飞行计划,以确保飞机的安全飞行。

2. 气象知识飞行员需要掌握气象知识,包括天气图、气象雷达、气象站报告、风切变、雷暴、大气透镜效应等内容。

这些知识可以帮助飞行员正确判断气象情况,从而做出正确的飞行决策。

四、航行和飞行规则1. 航行知识航行知识包括航线规划、航路选取、航向计算、风速和风向计算、飞行高度计算等内容。

飞行员需要根据实际情况,制定合理的航行计划,确保飞机的安全飞行。

2. 飞行规则飞行规则是为了确保飞机的飞行安全而制定的一系列规定,包括VFR规则和IFR规则。

VFR规则是根据视觉飞行规则进行飞行,飞行员需要依靠视觉进行导航;IFR规则是根据仪表飞行规则进行飞行,飞行员需要依靠飞行仪表进行导航。

飞机各个系统的组成及原理

飞机各个系统的组成及原理

一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。

在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。

2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。

机翼通常有平直翼、后掠翼、三角翼等。

机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。

近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。

即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。

为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。

襟翼平时处于收上位置,起飞着陆时放下。

3)尾翼尾翼分垂直尾翼和水平尾翼两部分。

1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。

通常垂直尾翼后缘设有方向舵。

飞行员利用方向舵进行方向操纵。

当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。

同样,蹬左舵时,方向舵左偏,机头左偏。

某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。

2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。

低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。

即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。

飞机结构

飞机结构

飞机组成示意图(二)飞机的基本组成飞机有四个基本组成部分:机体、推进装置、飞机系统和机载设备。

1、机体飞机机体由机翼、机身、尾翼(组)起落架等组成,如图:机翼是为飞机飞行提供举力的部件,同时,它还作为油箱和起落架舱的安放位置。

机翼的翼型是流线型的,上表面凸起弯曲大,下表面弯曲小或是平面.机翼的前缘和后缘加装了很多改善或控制飞机气动性能的装置,这些装置包括副翼、襟翼、缝翼和扰流板等。

如图所示副翼是飞机的主操纵面之一,位于机翼后缘外侧(远离机身),一对副翼总是以相反的方向偏转,使一侧机翼的升力增加而另一侧机翼的升力减小,从而使飞机滚转(见图)。

襟翼和前缘缝翼都是增加飞机起飞降落时的升力的装置,以缩短飞机的起降滑跑距离。

扰流板是铰接于机翼上表面的金属薄板,打开时分离上翼面的气流,造成机翼上的升力下降、阻力增加。

在空中扰流板可以协助副翼使飞机滚转,在地面扰流板可起减速板的作用。

民用飞机的燃油箱大多位于机翼内。

机身是飞机的主体,它是左右对称并呈流线型。

机身用来装载人员、货物、安装设备,并将飞机的各部件连接为整体。

大型客机机身由机头、前段、中段、后段和尾锥组成。

机头主要是雷达天线和整流罩;前段和中段为气密增压舱,空间被地板分成上、下两部分,上部为驾驶舱和客舱,下部为货舱、设备舱和起落架舱;后段主要安装尾翼及部分设备;尾锥主要是辅助动力装置的排气管。

尾翼组由垂直尾翼和水平尾翼组成。

垂直尾翼包括垂直安定面和方向舵,提供方向(航向)稳定性和操纵性;水平尾翼包括水平安定面和升降舵,提供俯仰稳定性和操纵性.飞机起落架的主要部件有支柱、机轮、减震装置和收放机构等,其功用主要是使飞机起降时能在地面滑跑和滑行、以及使飞机能在地面移动和停放。

现代飞机的起落架都是可以放的,可以大大减小飞机阻力,也有利于飞机姿态的控制。

2、推进装置发动机是飞机飞行的推进装置,主要有活塞式发动机和燃气涡轮发动机两种。

目前,活塞式发动机仍是时速小于300k m轻型飞机最经济的推进系统。

飞机机体结构组成部分和作用

飞机机体结构组成部分和作用

飞机机体结构组成部分和作用
飞机机体结构由机翼、机头、机尾和机身4部分组成,这些部件具有不同的结构特征
和功能,在飞行中发挥着不同的作用,保证飞机飞行中的正常工作。

一、机翼:机翼是飞机机体的主要部分,也是浮力、翼型面积、机翼形状定位和机头
形状和机尾形状有关系的主要位置,它将空气分割为上下两部分,自上而下分别形成了上
流和下流,机翼可以生成提供正向推力的升力,也可以通过改变机翼表面的形状来调整飞
机的航向。

二、机头:机头是飞机机身的前端部分,主要起到阻力的作用,较高的阻力可降低飞
机的飞行特性,较低的阻力可提高飞机的加速度,同时也是改变飞机行进方向的关键部分,一般采用较窄、较短的结构。

三、机尾:机尾位于飞机机身的后部,由机叶、垂尾及垂尾减流装置组成,主要调节
飞机的姿态、控制飞机行进方向和稳定空气流。

四、机身:机身是飞机重要的结构,是飞机飞行的主要部分,机身包括主翼梁、机翼梁、分量、驾驶舱、燃料筒以及许多连接机翼、机头、机尾的部件,它不仅负责连接各个
结构部分,主要用作空气流动和阻力的传输,也是飞机携带燃料、装备和乘员的地方。

飞机的结构(精)

飞机的结构(精)

作用:尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
四、起落架
起落装置——飞机的起落架大都由减震支柱和机轮组成,起落架是 飞机停放,滑行,起飞或者着陆时的主要支撑部分。大多数普通类型的 起落架由轮子组成,但是飞机也可以装备浮筒以便在水上运作,或者用
于雪上着陆的雪橇。
起落架由三个轮子组成,两个主轮子,以及一个可以在飞机后面或者前 面的第三个轮子。使用后面安装第三个轮子的起落架称为传统起落架。传统 起落架的飞机有时候是指后三点式飞机。当第三个轮子位于飞机头部位置时 称为前三点式飞机,相应的这种设计叫三轮车式起落架。可操控的前轮或者 尾轮允许在地面上对飞机的全部控制。
现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、 涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。
作用:动力装置主要用来产生拉力和推力,使飞机前进,其次还可为飞 机上的其他用电设备提供电源等。
飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还 装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
飞机的结构
要了解飞机的飞行原理就必须先知道飞机的组成以 及功用 。不同的飞机,有不同的性能,其用途也各不 同,尽管飞机可以设计用于很多不同的目的,大多数还是 有相同的主要结构。它的总体特性大部分由最初的设计目 标确定。大部分飞机的结构包含机身、机翼、尾翼、起落 架和动力装置五个基本结构。
一、机身 机身包含驾驶舱和/或客舱,其中有供乘客使用的坐位和飞机 的控制装置。另外,机身还提供货舱和其他主要飞机部件的挂载 点。
功能:主要是装载乘员、旅客、武器、货物和各种设备,将 飞机的其他部件如:机翼、尾翼及发动机——机翼是连接到机身两边的翅膀,也是支持飞机飞行的主 要升力表面。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚 转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱 等。不同用途的飞机其机翼形状、大小也各有不同。

飞机基本构造

飞机基本构造
硬壳式
硬壳式机身结构是由蒙皮与少数隔框组成。其特点是没有纵向构件,蒙皮厚。由厚蒙皮承受机身总体弯、剪、扭引起的全部轴力和剪力。隔框用于维持机身截面形状,支持蒙皮和承受、扩散框平面内的集中力。这种型式的机身实际上用得很少,其根本原因是因为机身的相对载荷较小.而且机身不可避免要大开口,会使蒙皮材料的利用率不高,开口补强增重较大。所以只在机身结构中某些气动载荷较大、要求蒙皮局部刚度较大的部位,如头部、机头罩、尾锥等处有采用。具体构造也有用夹层结构或整体旋压件等形式。
桁梁式
桁梁式机身结构特点是有几根(如四根)桁梁,桁梁的截面面积很大。在这类机身结构上长桁的数量较少而且较弱,甚至长桁可以不连续。蒙皮较薄。这种结构的机身,由弯曲引起的轴向力主要由桁梁承受,蒙皮和长桁只承受很小部分的轴力。剪力则全部由蒙皮承受。
桁条式
这种型式机身的特点是长桁较密、较强;蒙皮较厚。此时弯曲引起的轴向力将由许多桁条与较厚的蒙皮组成的壁板来承受;剪力仍全部由蒙皮承受。
(a)桁条式;(b)桁梁式;(c)硬壳式
1--长桁;2--桁梁;3--蒙皮;4--隔框
隔框
隔框分为普通框与加强框两大类。
普通框用来维持机身的截面形状。一般沿机身周边空气压力为对称分布,此时空气动力在框上自身平衡,不再传到机身别的结构去。
加强框,其主要功用是将装载的质量力和其他部件上的载荷经接头传到机身结构上的集中力加以扩散,然后以剪流的形式条弱得多,一般与长桁相近,纵墙与机身的连接为铰接,腹板即没有缘条。墙和腹板一般都不能承受弯矩,但与蒙皮组成封闭盒段以承受机翼的扭矩,后墙则还有封闭机翼内部容积的作用。
机身
机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

飞机的基本结构

飞机的基本结构
关的系数其的据两 同作个样用水事可物以是平,编对尾内辑部为飞翼机中进可行操俯纵仰的操翼纵面部分%,
文字来表达事物的内涵。
升降舵
29
第四部分 起落架
PART FOUR
30
四、起落架
起落架是飞机在地面停放、滑行、起飞着陆滑跑时用于支
撑飞机重力,承受相应载荷的装置。
输入题
这个页面适合放置对立 关系的两个事物,内部 的数据同样可以编辑为 文字来表达事物的内涵。
垂直尾翼
垂直安定面:
78 1、提供飞机横向静稳定性;
2、提供飞机横向动稳定性
%
-52 方向舵:
是对飞机进行偏航操纵
%
垂直安定面输入题 方向舵
28
三、尾 翼
2. 尾翼的组成 水平尾翼
水平安定面
输入题
水平安定面:
78 使飞机在俯仰方向上(即
飞机抬头或低头)具有静稳定 %
性。
-52 这个升页面降适舵合放:置对立
13 20
第三部分 尾 翼
PART THREE
25
三、尾 翼
1. 尾翼的功用
输入题
保证飞机三个轴的方向稳定性和操作性
78 控制飞机的俯仰、偏航和倾斜% 以改变其飞行姿态
尾翼是飞行控制系统的重要组成部分
这个页面适合放置对立 关系的两个事物,内部 的数据同样可以编辑为 文字来表达事物的内涵。
-52%
05
餐厅、厨房 驾驶舱
进出口 过道
客舱
洗手间
06
一、机 身
2. 机身的作用 连接机翼、尾翼、起落架及其它部件为一整体。 装载人员、货物。 安装飞机设备
07
一、机 身
3. 机身的结构形式 —机身结构由蒙皮、纵向和横向骨架组成

飞机结构和组成

飞机结构和组成

飞行的主要组成部分及功用到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:1.机翼一一机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。

在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。

机翼上还可安装发动机、起落架和油箱等。

不同用途的飞机其机翼形状、大小也各有不同。

2.机身一一机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。

3.尾翼一一尾翼包括水平尾翼和垂直尾翼。

水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。

垂直尾翼包括固定的垂直安定面和可动的方向舵。

尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。

4•起落装置一一飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。

5•动力装置一一动力装置主要用来产生拉力和推力,使飞机前进。

其次还可为飞机上的其他用电设备提供电源等。

现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。

除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

二、飞机的升力和阻力飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。

在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。

流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

c919飞机的结构组成

c919飞机的结构组成

c919飞机的结构组成结构主要包含机头、前机身、中机身/中央翼、外翼、副翼、中后机身、后机身、垂尾、平尾、活动面等部段和相关部件,由中国商飞公司设计研发中心进行设计,分别由中航工业成飞、洪都、西飞、沈飞、哈飞和航天特种材料及工艺技术研究所、浙江西子航空工业有限公司等单位制造,由中国商飞公司总装制造中心负责总装。

目前,首架机前机身、中机身-中央翼、中后机身、副翼已经通过中国民航局的适航检查。

承担机体结构对接工作的部装厂房由中央翼装配、中机身装配、水平尾翼装配和全机对接4条生产线组成,采用了自动化制孔、钻铆设备、自动测量调姿对接系统、自动引导运输车(AGV)、飞机移动系统(AMS)等先进设备,是具有国际先进水平的民机部件自动化装配生产线,装配效率和质量大幅提升。

目前,C919大型客机除机体结构开始总装外,正在同步开展机载系统的研制,项目工程发展工作稳步推进。

飞机构造之结构

飞机构造之结构

飞机构造之结构 The manuscript was revised on the evening of 2021第一章飞机结构概述飞机载荷载荷、变形和应力的概机翼结构机身结构尾翼和副翼机体开口部位的构造和受力分析定位编码系统1.1.概述固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。

直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。

机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。

飞机各部件由不同构件构成。

飞机各构件用来传递载荷或承受应力。

单个构件可承受组合应力。

对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。

例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。

1.2.飞机载荷飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。

飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。

飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。

飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。

1.2.1.平飞中的受载情况飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。

为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。

则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。

即:Y = GP = X图 1 - 1 平飞时飞机的受载飞机作不稳定的平飞时,推力与阻力是不相等的。

推力大于阻力,飞机就要加速;反之,则减速。

由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。

平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。

飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。

第三章 飞机的一般介绍

第三章  飞机的一般介绍

第三章飞机的一般介绍第一节飞机构造飞机的基本结构部分可以分为机身、机翼、尾翼、起落架、动力装置和仪表设备等几个大部分,通常我们把机身、机翼、尾翼、起落架这几部分构成飞机外部形状的部分合称为机体。

一、机翼机翼是飞机升力的基本来源,因而它是飞机必不可缺少的部分。

飞机上用来产生升力的主要部件。

一般分为左右两个翼面,对称地布置在机身两边。

机翼的一些部位(主要是前缘和后缘)可以活动。

驾驶员操纵这些部分可以改变机翼的形状,控制机翼升力或阻力的分布,以达到增加升力或改变飞机姿态的目的。

机翼上常用的活动翼面(图1)有各种前后缘增升装置、副翼、扰流片、减速板、升降副翼等。

机翼分为四个部分:翼根、前缘、后缘、翼尖。

1)机翼外形描述机翼外形的主要几何参数有翼展、翼面积(机翼俯仰投影面积)、后掠角(主要有前缘后掠角、1/4弦后掠角等)、上反角、翼剖面形状(翼型)等(图2a)。

机翼的翼尖两点的距离称为翼展。

机翼的剖面称为翼型,翼型要符合飞机的飞行速度范围并产生足够升力。

机翼的平面形状多种多样,常用的有矩形翼、梯形翼、后掠翼、三角翼、双三角翼、箭形翼、边条翼等。

现代飞机一般都是单翼机,但历史上也曾流行过双翼机、三帆翼和多翼机。

(图2b)2)翼根翼根是机翼和机身的结合部分,这里承受着机身重力,和由升力和重力产生的弯矩,是机翼受力最大的部位。

翼根是结构强度最强的部位。

根据机翼在机身上安装的部位和形式,可以把飞机分为几种,安装在机身下方的称为下单翼飞机,安在机身中部的称为中单翼飞机,安在机身上部的称为上单翼飞机。

目前的民航运输机大部分为下单翼飞机,这是因为下单翼飞机的机翼离地面近,起落架可以做的短,两个主起落架之间距离较宽,增加了降落的稳定性。

收起落架时很容易放入翼下的起落架舱内,从而减轻了重量,此外发动机和机翼离地面较近,做维修工作方便,翼梁在飞机下部,机舱空间不受影响,但是下单翼飞机相对来说干挠阻力大,机身离地高,装运货物不方便。

飞机结构的五大组成部分

飞机结构的五大组成部分

飞机结构的五大组成部分
飞机的五大组成部分包括:
1. 机身:机身是飞机的主要结构部分,承载着机翼、发动机和其他的系统和部件。

机身通常由钢铝合金、复合材料等材料制成,包括机头、机身段和机尾等部分。

2. 机翼:机翼是飞机的承载部分,负责产生升力。

它由主翼和副翼组成,主翼通常呈梯形或矩形的平面形状,下面通常有弯曲的气动剖面,使得空气在上下两侧产生不同的压力。

3. 垂直尾翼:垂直尾翼是飞机的稳定器,通常位于机尾上方,由垂直安定面和方向舵组成。

它通过改变方向舵的偏转角度来改变飞机的方向。

4. 水平尾翼:水平尾翼也是飞机的稳定器,通常位于垂直尾翼下方,由水平安定面和升降舵组成。

它通过改变升降舵的偏转角度来改变飞机的升降姿态。

5. 发动机:发动机是飞机的动力来源,通常安装在机翼或机身前部。

发动机可以是涡喷发动机、螺旋桨发动机或喷气式发动机等,它们通过燃烧燃料产生推力,驱动飞机前进。

飞机各个系统的组成及原理

飞机各个系统的组成及原理

飞机各个系统的组成及原理一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。

在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。

2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。

机翼通常有平直翼、后掠翼、三角翼等。

机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。

近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。

即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。

为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。

襟翼平时处于收上位置,起飞着陆时放下。

3)尾翼尾翼分垂直尾翼和水平尾翼两部分。

1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。

通常垂直尾翼后缘设有方向舵。

飞行员利用方向舵进行方向操纵。

当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。

同样,蹬左舵时,方向舵左偏,机头左偏。

某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。

2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。

低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。

即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。

民航飞机的构造

民航飞机的构造
举例:气压升降速度表 转弯灯设计
分类:航空仪表 :驾驶导航、发动机、辅助仪表 航空无线电:无线电导航系统、无线电测距差系统、雷达设备等 机载电器:供电设备,用电设备,具体包括飞机电源,变压整流流器,灯光 照明系统、发动机点火装置
谢谢!
水平尾翼:安装在机身后部,主要用于保持飞机在飞行中的稳定性和控制飞机的飞行姿态。尾翼的内部结 构与机翼十分相似,通常都是由骨架和蒙皮构成。 垂直尾翼 :垂尾都能保持其航向平衡、稳定和操纵作用。 起落架:用于起飞降落或地面(或水面)滑行时支撑航空器并用于地面(或水面)移动的附件装置。唯一 一种支撑整架飞机的部件,没有它,飞机便不能在地面移动。当飞机起飞后,可以视飞机性能而收回起落 架。
民航飞机的构造
黄琰 20114546
民航飞机是一种体型较大、载客量较多的集体飞行运输工具,用于来往 国内及国际商业航班
客机构造图
基本组成:机体、推进装置、飞机系统和机载设备
机体
飞机机体由机翼、机身、尾翼(组)、起落架等

机翼:机翼安装在机身上,产生升力,机翼内 部置弹药仓和油箱,收藏起落架。
机身:包括梁式机身、半硬壳式、硬壳式机身 装载人员、货物、武器和机载设备 连接机翼、尾翼、起落架等为整体
飞机系统
飞机系统包括飞机操纵系统、液压传动系统、燃油系统、空调系统、防 冰系统等。
操纵系统:操纵系统分主操作系统和辅助操纵系统,主操作系统操作升降舵、方 向舵、副翼,实现俯仰、倾侧等。
液压传动系统:飞机上以油液为工作介质,靠油压驱动执行机构完成特定操纵动 作的整套装置。
燃油系统:飞机燃油系统又称外燃油系统。燃油系统是飞机能源的供应系统。另 外发动机上还有一套系统将燃油输送到燃烧室内,称为内燃油系统。飞机的发动 机依靠燃油燃烧产生热量作功,推动飞机飞行。

飞机的构造与系统

飞机的构造与系统

飞机的构造与系统飞机的基本组成飞机的主要组成部分及其功能如下:1、推进系统:包括动力装置(发动机和保证其正常工作所需的附件)、能源及工质。

其主要功能是产生推动附件前进的推力(或拉力)。

2、操作系统:其主要功能是形成(自动或有驾驶员)与传递操纵指令,驱动舵面和其他机构,控制飞机按预定航线飞行。

3、机体:包括机身、机翼和尾翼等。

其主要功能是产生升力;装载有效载荷、燃油及机载设备;将其他系统和装置连成一个整体,构成适于稳定及操纵飞行的气动外形。

4、起落装置:其主要功用是飞机在地面停放、滑行、起降滑跑时,用以支持以及吸收撞击能量并操纵滑行方向。

5、机载设备:包括方向仪表、导航、通信、环境控制、生命保障、能源供给等设备以及客舱生活服务设施(对民用飞机)或武器和火控系统(对军用飞机)。

航空发动机为航空器(主要指飞机)提供所需动力的发动机。

目前,飞机常用的发动机主要有四类:1、活塞式航空发动机:早期在飞机和直升机上应用的发动机,用它带动螺旋浆或旋翼。

活塞式航空发动机的优点是省油,螺旋浆在低速飞行时推进效率高,在相同功率下能产生较大的拉力,有利于提高飞机的起飞性能。

缺点是结构复杂,重量大而输出功率小,螺旋浆在高速飞行时推进效率低,因此不适用于大型和高速飞机。

但是对低速飞机而言,它具有喷气式发动机不可比拟的优点,那就是耗油率低。

此外,由于燃烧较完全,对环境的污染相对较低,噪音也较小。

因此,小功率的活塞式航空发动机还广泛使用在轻型飞机、直升机以及超轻型飞机上。

2、涡轮螺旋浆发动机:燃气涡轮发动机构造简单、功率大、体积小和重量轻,可以用在大型飞机上。

但由于螺旋浆的限制,仍限用于速度低于800公里/小时的飞机上。

3、涡轮喷气发动机:具有重量轻、体积小和功率大的特点,适于超音速飞行。

但在高亚音速范围内推进效率较低,耗油也多。

在发动机涡轮后的喷管中补充燃油,构成加力燃烧室,可以大幅度提高推力,但是耗油量增加很多,只能用在短时间作超音速飞行的超音速歼击机和轰炸机上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞行的主要组成部分及功用
到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:
1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。

在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。

机翼上还可安装发动机、起落架和油箱等。

不同用途的飞机其机翼形状、大小也各有不同。

2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。

3. 尾翼——尾翼包括水平尾翼和垂直尾翼。

水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。

垂直尾翼包括固定的垂直安定面和可动的方向舵。

尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。

4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。

5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。

其次还可为飞机上的其他用电设备提供电源等。

现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。

除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

二、飞机的升力和阻力
飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。

在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。

流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:
流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

连续性定理阐述了流体在流动中流速和管道切面之间的关系。

流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。

伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。

伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力
大。

飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。

从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。

机翼上表面比较凸出,流管较细,说明流速加快,压力降低。

而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。

这里我们就引用到了上述两个定理。

于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。

这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。

机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。

飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。

按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。

1.摩擦阻力——空气的物理特性之一就是粘性。

当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。

摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。

空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。

2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。

这种由前后压力差形成的阻力叫压差阻力。

飞机的机身、尾翼等部件都会产生压差阻力。

3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。

这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。

其产生的过程较复杂这里就不在详诉。

4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。

这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。

以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。

三、影响升力和阻力的因素
升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。

影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。

1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。

在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。

在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。

迎角增大,阻力也越大,迎
角越大,阻力增加越多:超过临界迎角,阻力急剧增大。

2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。

升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。

空气密度大,空气动力大,升力和阻力自然也大。

空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。

3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。

升力和阻力都与机翼面积的大小成正比例。

机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。

还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大.。

相关文档
最新文档