水力学:泄水建筑物下游的水流衔接与消能共37页
泄水建筑物下游水流衔接与消能
第九章泄水建筑物下游水流衔接与消能本章要求掌握底流式衔接与消能的水力计算思路、步骤;计算收缩断面水深h c及其共轭水深h c〃,判断水跃衔接形式,计算消力池池深S、池长L k。
理解坎式消力池及挑流消能的水力计算原理和方法。
为了控制、利用水流,在河、渠中修建了堰、闸、跌坎等泄水建筑物,泄水建筑物的泄流宽度一般都小于原河渠宽度,使建筑物上游水位升高,因此经建筑物下泄的水流,大都具有较大的动能,特别是对于上游为高水头的泄流建筑物来说,下泄水流的流速可达每秒几十米,若不采取有效工程措施消除下泄水流能量,会冲刷紧接泄水建筑物的河槽,危及建筑物的安全。
如瑞士某大坝,上、下游水位差5m,河床冲刷深度却达12m。
所以,需在泄水建筑物下游设置消能工程,以消除下泄水流能量,保护建筑物的安全。
目前,实际工程中常采用的水流衔接与消能形式主要有三种。
1、底流式衔接与消能水流自闸、坝下泄时,势能逐渐转化为动能,流速增大,水深减小,到达C-C断面,水深最小,称该断面为收缩断面,其水深以h c表示,h c一般都小于临界水深,水流属于急流,而下游河渠中的水深h t常大于临界水深,属于缓流。
由急流向缓流过渡,必然要发生水跃,如图9-1a所示。
底流式衔接与消能就是在建筑物下游修建消力池(即水池图9-1b、c),控制水跃在消力池内发生,利用水跃消能(可消耗大部分下泄水流能量),同时可以减小急流范围,使水流安全地与下游缓流衔接。
在这种衔接与消能过程中,因为水流主流靠近河床底部,因此称这种衔接消能为底流式衔接与消能。
底流式衔接与消能多用于中、低水头及下游地质条件较差的泄水建筑物的消能。
图9-12、挑流式衔接与消能这种消能方式是利用在泄水建筑物末端修建的反弧坎,将下泄的水流挑离建筑物,使之落入下游较远的河道中,如图9-2所示。
挑射的水流在空中受到空气阻力,水舌扩散,消耗一部分能量。
落入下游水流中后,与下游水体碰撞,产生剧烈的混掺紊动,又消耗大量的能量,从而达到消能目的。
水工建筑物下游水流衔接与消能
目 录
• 水工建筑物下游水流衔接的重要性 • 水工建筑物下游水流衔接方式 • 水工建筑物下游消能技术 • 水工建筑物下游水流衔接与消能案例分析 • 水工建筑物下游水流衔接与消能技术发展趋势
01
水工建筑物下游水流 衔接的重要性
保护河岸和河床的稳定性
河岸和河床的稳定性对于河流生态系统和水资源利用至关重 要。水工建筑物下游的水流衔接不当可能导致河岸和河床的 冲刷、坍塌和变形,进而影响河流的行洪能力、水资源利用 和生态环境。
05
水工建筑物下游水流 衔接与消能技术发展 趋势
新型消能技术的研发和应用
第一季度
第二季度
第三季度
第四季度Biblioteka 总结词随着科技的不断进步, 新型消能技术在水工建 筑物下游水流衔接与消 能领域的应用越来越广 泛。
详细描述
近年来,一些新型的消 能技术如挑流消能、底 流消能、面流消能等不 断被研发出来,这些技 术具有更高的消能效率 ,能够更好地保护下游
根据不同的水流条件和消能需求, 消能墩有多种类型,如柱状消能 墩、块状消能墩、排柱式消能墩 等。
消能墩的设计需要考虑多个因素, 如水流的流量、流速、落差等, 以及河床的地质条件、材料选择、 施工方法等。同时,还需要考虑 消能墩的稳定性、耐久性和安全 性。
04
水工建筑物下游水流 衔接与消能案例分析
某水电站下游消能工程案例
03
水工建筑物下游消能 技术
消力池
01 02
消力池概述
消力池是一种通过改变水流的流动方式,降低水流能量的设施。它通常 设置在水工建筑物(如溢洪道、坝、闸等)的下游,以减小水流对下游 河床或岸坡的冲刷。
消力池类型
根据不同的水流条件和消能需求,消力池有多种类型,如平底消力池、 斜底消力池、台阶式消力池等。
泄水建筑物下游水流的衔接与消能
第九章泄水建筑物下游水流的衔接与消能9-1 概述一、泄水建筑物下游的水流特征为控制水流,合理开发利用水资源等目的,在河,渠上修建水闸,堰等建筑物。
修建后,往往改变水流的特征,抬高上游水位,下泄水流具有较高的速度,动能大,但由于建筑物缩了河道,增大,能量集中的总流,而下游一般为缓流,存在两种流态如何衔接,如果处理不当将会带来严重后果。
因此,必须对泄水建筑物下游水流的衔接进行判断和处理,选择适当的消能方式。
在下游较短距离内消除余能。
下游水流衔接与消能的方式。
衔接小的措施有多种,常见的为:1、底流式衔接消能当水流从急流向缓流过渡时,产生水跃,产生的表面旋滚和强烈的紊动消除大量的余能,使速度急剧下降,与下游水流能良好的衔接,由于余流在底部。
2、挑流式衔接与消能利用建筑物末端的跃坎,利用高进下泄水流的动能,将水流挑射到远离建筑物的下游河床中,与下设水衔接。
消能分为三个部分,坝面摩擦——空中扩散——水垫。
适用于中高水头,q 大,下游基岩完整坚硬。
3. 面流式衔接与消能利用建筑物末端的坎,将高速水流送入下游河道的水流表层,坎后形成尺度很大的底部漩滚,将主流与河床隔开。
另外,戽流式消能,孔板式消能,竖井涡流式消能,数轴式效能。
以上几种是由三种基本消能型式的结合或发展。
ξ9-2 底流式衔接与消能一、底流式衔接型式在泄水建筑物下游的水流一般为急流,存在一个收缩断面,水深为最小,为h c 。
且一般h c < h k ,则根据下游河道水深h t 与h c"的相对大小,水流存在有三种水跃型式产生。
(h c "= h t ) 临界式水跃h c ">h t运驱式水跃h c "< h t 淹没式水跃 三种水跃型式,运驱式对工程最不利,因其 急流段长,加固河段长,工程量大。
临界式水跃位置不稳定。
一般采用稍有淹没式水跃进行消能较理想。
二、下游水流衔接形式判断及h c 的计算。
泄水建筑物下水流消能及衔接方式
• 当ht <hc" :这时下游水深 ht 与 hc" 构不成共 轭水深, 水跃不能发生在收缩断面。称为远驱式 水跃衔接。
2
c h1 hc L c
(b)
1
ht hc"
L1
1
2
ht < hc"
• 当 ht > hc" : 这种情况与 (2) 正好相反。水跃 被水深较大的下游水流向上推移,收缩断面被淹 没,从而形成了淹没水跃衔接,如图(c)所示。
3、如何将下泄水流多余的动能转化 成热能、声能等,而耗散掉呢?
4、归纳几种常用消能方式的消能原 理、适用条件及优缺点?
• 消能原理:从加强水流的紊动出发, 在建筑物下游采取一定的工程措施, 控制水跃发生的位置,通过水跃产 生的表面漩滚和强烈的紊动以达到 消能的目的。
按照泄出水流与尾水及河床的相对位置, 可以将常见的衔接消能方式分为如下三 种基本形式:
c
2 ht hc"
c
(c)
2
ht > hc"
(1)底流消能
☻ 就是在建筑物下游采取一定的
工程措施,控制水跃发生的位 置,通过水跃产生的表面旋滚
和强烈的紊动以达到消能的目
的。
• • • 实质:水跃 特点:主流位于底部 消能机理:通过水跃产生的表面漩 滚和强烈的紊动来消能。 应用:各种地质条件的泄水建筑物
(2)挑流式消能
• 利用下泄水流所挟带的巨 大动能,因势利导将水流 挑射至远离建筑物的下游,
挑流水舌 急流 漩 滚
漩滚
使下落水舌对河床的冲刷
不会危及建筑物的安全。
挑流鼻坎
坝 址
水垫
»两个消能过程:
泄水建筑物下游的水流衔接与消能
第13章 泄水建筑物下游的水流衔接与消能13.1知识要点13.1.1泄水建筑物下游水流的特点及消能形式泄水建筑物下游水流衔接与消能的形式一般有三种,即底流消能、挑流消能和面流消能。
1.底流消能所谓底流消能,就是在建筑物下游采取一定的人工措施,控制水跃发生的位置,通过水跃产生的表面旋滚和强烈紊动以达到消能的目的。
这种水流衔接形式由于高速水流的主流在底部,故称为底流式消能。
2.挑流消能利用出流部分的挑流鼻坎和水流所挟带的巨大动能,将下泄的急流挑射至远离建筑物的下游,使射流对河床造成的冲刷坑不致影响建筑物的安全,下泄水流的余能一部分在空中消散,大部分则在水股跌入下游水垫后通过两侧形成水滚而消除。
3.面流消能当下游水位较高,而且比较稳定时,可采取一定的工程措施,将下泄的高速水流导向下游水流的上层,主流与河床之间由巨大的底流旋滚隔开,可避免高速水流对河床的冲刷,余能主要通过水舌扩散、流速分布调整及底部旋滚与主流的相互作用而消除。
由于衔接段中高流速的主流位于表层,故称为面流消能。
此外,还可以将上述三种基本类型的消能方式结合起来应用,如消力戽就是一种底流和面流结合应用的消能形式。
低于下游水位的消力戽斗,将出泄的急流挑射到下游水面形成涌浪,在涌浪的上游形成戽旋滚,在涌浪的下游形成表面旋滚,主流之下形成底部旋滚。
13.1.2底流消能的衔接形式和收缩断面水深的计算1.底流消能的三种衔接形式底流消能就是借助于一定的工程措施控制水跃的位置,水跃的位置决定于坝址收缩断面水深c h 的共轭水深ch ''与下游水深t h 的相对大小,可能出现下列三种衔接形式: 1)当t ch h =''时,产生临界水跃; 2)当t ch h >''时,产生远驱水跃; 3)当t ch h <''时,产生淹没水跃。
工程中,一般用ct h h ''/表示水跃的淹没程度,该比值称为水跃的淹没系数或淹没度,用j σ表示, c t j h h ''=/σ (13.1)当1>j σ时为淹没水跃;1=j σ时为临界水跃;1<j σ时为淹没水跃。
10 泄水建筑物下游水流衔接和消能
αv02
2g
下图给出了一个溢流坝下游收缩断面水深计算的示意
H
v0
P1
0
基准面
E
Ec
c hc
c
判断下游水面衔接形式
0
考虑上游0-0断面和c-c 断面的总水头
αv02
2g
E0hc2cvgc22vgc2hc(c)v2cg2
H
E0
P2
H0v02
2g
E
Ec
v0
P1
c
hc
基准面
0
c
判断下游水面衔接形式
0
αv02
考虑上游0-0断面和c-c 断面的总水头
2g
E0hc2 cvgc22vgc2hc(c)v2cg2
H
E0
P2
H0v02
2g
E
Ec
v0
P1
l et: 1
c
c
E0
hc
vc 2
2g 2
hc
基准面
0
c
αv02 2g
要求下游水位变幅不要大,这种消能方式有利于漂木、 泄冰。
漩滚
主流
典型的面流
以下请看消力池中流态转变过程
底流
这是典型的底流,从挑流鼻孔中 下泄的水流在消力池中形成水跃,主流 和鼻坎之间的漩涡有助于消能。
自由面流 下泄的主流
从鼻坎下泄的主流,在消力
池中抬高,水流漩涡把主流与
消力池底板隔开。
自由混合流
略去流速水头,不计水头损失
则单位宽度河床上每秒应消除的能量为 N = γq ΔE = 9800×80×60= 47000000 N-m/s = 47000 kW
这样巨大的能量,若不采取有效措施 淘刷河床 冲毁河堤 甚至建筑物遭到破坏
第九章 泄水建筑物下游水流的衔接与消能
第九章泄水建筑物下游水流的衔接与消能第一节概述一、问题的提出为了达到灌溉、发电、防洪等兴利目标,往往要在河渠上建造水闸、挡水坝等水工建筑物,用来调节河渠的水位和流量。
但这些水工建筑物的兴建,必然会改变天然河流原有的水流状态,主要表现在以下两个方面:①修建挡水建筑物之后,必然壅高上游水位,使挡水建筑物上游积聚了较大的水流能量(主要是势能),而挡水建筑物又不可能将上游源源不断的来水全部拦蓄在水库以内,必然要从溢洪道、泄洪洞、坝身泄水孔等泄水建筑物泄出一部分水流,在泄水工程中,上游水流积聚的势能必将转化为动能,使下泄水流具有较高的流速。
②由于水利工程枢纽布置的要求和为了节省工程造价,建筑物泄水宽度总是小于原有河床宽度,这就使得下泄流量相对集中,单宽流量较大。
而下游河道对同样流量有其与原河床的断面形状、尺寸、底坡、粗糙系数及其它地形地质条件相适应的正常流动情况,一般来讲,这种正常流动情况下,水流分布比较均匀,流速较小。
如此一来,就产生了从泄水建筑物泄出的高速集中水流如何顺利地衔接过渡到下游正常流动情况这一问题,即泄水建筑物下泄水流的衔接过渡问题。
如果对水流的衔接过渡不加控制,或者控制措施不当,都可能给工程建设造成严重的后果。
概括起来讲,会产生这样两个问题:第一,集中泄出的水流可能严重冲刷河床、河岸,甚至危害建筑物的安全。
第二,水流集中泄出,可能使下游水流在平面上形成不良的流动情况,影响枢纽的正常运行。
水力学中泄水建筑物下游水流衔接与消能的主要任务就是在确保闸坝安全、工程费用较省而又合乎流态要求的条件下,研究消除余能的具体方式。
通过采取一定的工程措施,利用有效的衔接方式,使下泄水流挟带的余能在较短的距离内转化为热能、声能逸散于空气之中,避免冲刷河床岸坡,保证水工建筑物的安全。
而实现消能的唯一方式就是依靠水流内部的相互摩擦和碰撞,促使水流分散掺气。
因为水流内部相对运动越是急剧紊乱,消能效果就越好。
因此,工程实际中常常利用下泄水流形成的大的漩滚来消能。
泄水建筑物出流与下游衔接和消能
泄水建筑物出流与下游 衔接和消能
(水流衔接,简答题)
MF2Hs0b2***
题
目
试叙述泄水建筑物下游的水流衔接形式及其产 生的条件 答: 泄水建筑物下游水流的衔接形式,即水跃发生 的位臵取决于建筑物下游收缩断面水深 hc的共轭水 深 hc与下游水深 ht 的相对关系。存在 3 种情况: (1) 当下游水深 ht= hc: 这时水跃发生在收缩断面, 如图(a)所示,这种衔接 为临界水跃衔接。
(4) 查图计算 hc 及 h'' c
E0 33.2 m 13.248 及参变量 0.95 由 0 hk 2.506 m
查矩形断面渠道收缩水深及其共轭水深求解图得
c 0.207
c 3.0
解题步骤
于是收缩水深 hc c hk 0.207 2.506m 0.519m
解题步骤
H
Q q sm 2 g H 3 2 b
p1 ht
因下游水位低于堰顶,溢流堰为自由出流。取淹 没系数σs= 1.0 。 于是
q 1.0 0.49 2 (9.8 m s 2 ) ( 3.2m)3 2 12 .42m 2 s
解题步骤
(2)计算临界水深 hk
q 3 ,故 3 对于矩形断面有 hk g
大值时的相应流量,即
为消能池深d 的设计流
ht f (q )
量,见示意图。
q设 q
讨 论
池长 Lk 的设计流量根据理论计算与实验量测 可知,随着流量 Q 增加,池长 Lk 相应增大,故池
长 Lk 的设计流量往往取泄水建筑物所通过的最大
流量。
泄水建筑物出流与下游 衔接和消能
水力学 泄水建筑物下游水流衔接与消能
2
1
Байду номын сангаас
1
a ht
2S1 sin 2
ts ht
tan 2
a ht 2S1 cos2
冲刷坑深度估算用经验公式
坎型尺寸的选择:常用连续式挑坎,挑 坎尺寸包括挑角、反弧半径、及挑坎高 程,使用合理时可在同样的水力条件下 射程最大,冲刷坑深度较浅
9.3 面流及消能戽简介
主流在表面,旋涡在下游,对河床的冲 刷轻,有利于漂木、泄冰
应严格控制水下游水深,便其稳定并保 持在相应范围内
通过水工模型试验可比较准确确定尺寸
消能戽是结合底流面流的一种综合消能 方式
与底流比较:不需专门的消能池、工程 量小
与面流比较:适应水深变化范围广,流 态稳定
缺点:戽面戽端易被水流磨损,下游尾 水波动大,冲刷岸坡
Ch9 泄水建筑物下游的水流衔接与 消能
泄水建筑物下泄的高速水流对建筑物及 河道的破坏大,需要消能
衔接与消能措施大致有三种:
底流式消能、挑流式消能、面流式消能, 可结合使用或单独使用
9.1 底流消能的水力计算
应用面广,基本的消能型式
其水深计算公式从应用能量方程推导得
E0
hc
Q2
2gAc2 2
一般用试算法求解,也可借助于一些专 门的图表来简化计算
2、在护坦末端修建消能坎的消能池坎高 的计算
3、辅助消能工
4、护坦下游的河床保护
9.2 挑流消能的水力计算
优点是可以节省下游护坦,构造简单, 便于维修,缺点是雾气大,尾水波动大
水力计算内容:按已知的水力条件选定 适宜的挑坎型式、反弧半径、挑射角、 挑流射程及下游冲刷坑深度
挑流射程:
L
2
长沙理工大学水力学考研复习资料第十章 消能
1溢流坝、溢洪道、隧洞、水闸、……):上游的势能大部分转化为下游的动能>>下游天然水流的能量→对下游河床的冲刷,且威胁建筑物本身的安全底流型衔接消能(Energy dissipation by hydraulic jump 在泄水建筑物下游修建消能池(Stilling basin),池内形成水跃,其主流在底部,漩滚位于表层。
理论、技术比较成熟,适用于低水头的泄水建筑物,应用广泛。
漩滚在底部,主流在表层以免直接冲刷河床(有一定涌浪)。
由于衔接段主流在表层,故称为面流型衔接消能。
要求较高且比较稳定的下游水位.戽流型衔接消能(Energy dissipation by roller bucket )与面流型衔接消能相比,增加一消能戽斗,形成戽旋滚和下游次生的表面旋滚,兼有底流型和面流型的水流特点。
利用高于下游水位的挑流鼻坎将水流向空中抛射至远离建筑物的下游,通过冲刷坑水垫中形成的旋滚和水舌与空气摩擦消除余能。
适用于岩基上的中、高水头泄水建筑物,应用广泛。
78第一节底流型衔接与消能一、底流型水流衔接与消能的原则1.泄水建筑物下游收缩断面的水深和流速图形ϕ0.85~0.9514二、泄水建筑物下游衔接形式h c 的跃后水深()⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=′′18121812322c c cccgh q h Frh h h t =h c ",临界式水跃衔接。
h t <h c ",远驱(离)式水跃衔接h t >h c ",淹没式水跃衔接远离式水跃要求过长的护坦临界水跃不稳定17降低护坦后的收缩断面水深为h c1,其相应的跃后水深为h c1″消能池末端水深h =σh ″h c1满足方程与d 有关21221002c c h g q h d E E φ+=+=′在升坎两侧列能量方程(以下游水面为基准面):gv g v z 2)1(22221ζ+=+Δ池的轮廓尺寸。
H = 5 m ,h t = 3 m 。
水力学:泄水建筑物下游的水流衔接与消能
9.2 底流消能
9.3 挑流消能 9.4 面流消能
9.1 概述
1
选用适当的措施,在下游较短 的距离内消除多余能量△E,并 使高速下泄的集中水流安全地 转变为下游的正常缓流。
1
如图所示一溢流坝,单宽流量 q=80m3/s m,上下游 水位差为△Z= 60m,若不计流速水头及坝面能量损耗,
查表得φ=0.95 试算收缩断面水深hc0
当T0=13 m时,hc0=0.768 m 利用共轭水深关系求hc02
hc02>ht=4 m,坝下游发生远离水跃,需做消能工
(ቤተ መጻሕፍቲ ባይዱ) 用试算法计算消力池池深
A ht 2 g 1ht q2
2
4.45 (m)
假设一个hc0,
2/3
q 2 2 g ( hc 02 ) 2
例10.2 按例10.1中所给的溢流坝,如下游采用消 力墙消能,试进行消力墙的水力计算(消力墙的 流量系数m=0.4)。 解:(1) 计算消力墙高度s 用 进行试算。例10.1已求得hc02=5.45m
2 q2 11 . 3 B hc02 1.05 5.45 5.92 (m) 2 2 2 g ( hc 02 ) 2 9.81 1.05 5.45
h 2 g ( z s cos ) v cos sin 2 L0 1 1 2 2 g v sin z为上下游水位差,s 为上游水面至坎顶的距离, h
为坝顶水股的厚度。
2. 水下挑距L1的计算
hp为冲坑水深,b 为水舌入水角。
如有实测的水文资料,可根据给定的流量查 得 否则,近似按明渠均匀流求正常水深的方法 计算
水力学——泄水建筑物下游的水流衔接与消能
k
j
L 为平底明渠中自由水跃长度 j
B、计算护坦高程降低后的收缩断面水深的跃后水深
h
h c1
(
18 q2
1)
c1
2
gh 3
c1
C、计算消能池出口处的水面跌落
q2 1
1
z [
]
2g (h )2 ( h)2
t
j c1
D、计算消能池的深度
d h (h z)
j c1
t
由以上四个公式联合求解
(2)消能池长度的计算
消能池长度必须保证水跃不越出池外。由于消能池末端对水 流产生反作用力,减小水跃长度,因此消能池内的水跃长度 仅为平底明渠中自由水跃的70~80%。
称为淹没式水跃衔接。
水跃的淹没程度用水跃淹没系数表示:
h t
j h
c
工程中常采用淹没系数为 1.05 ~ 1.10 的淹没水跃
j
三、消能池的水力计算
1.降低护坦高程所形成的消能池
(1)消能池深度d的计算:
A、计算护坦高程降低后的收缩断面水深
E E d h q2
0
0
2gh c1
2
2
c1
2.挑流式消能:利用下泄水流的动能,将水流挑射至远 离建筑物的下游,使下落水舌对河床的冲刷不会危及建 筑物的安全,余能一部分在空中消散,大部分在水舌落 入下游河道后消除。
3.面流式消能:采取一定的工程措施,将下泄的高速 水流导向下游水流的表面。通过水舌扩散、流速分布 的调整及底部旋滚与主流的相互作用消除余能。
第九章 泄水建筑物下游的水流衔接与消能 第一节 泄水建筑物下游的水流衔接
一、泄水建筑物下游的水流特征
水利讲义0泄水建筑物下游水流衔接以及消能
底流消能的水力计算任务:
分析建筑物下游的水流衔接形式 判定水跃发生的位置 确定必要的工程措施
10.1.1 泄水建筑物下游收缩断面水深的计算
0
判断下游水面衔接形式
淹没系数定义为 远驱式水跃
j
ht hc "
j
ht hc "
1
临界水跃
j
ht hc "
1
淹没水跃
j
ht hc "
1
工程设计中
j
ht hc "
1
淹没水跃
淹没水跃系数
j
ht hc "
1.05 ~ 1.10
水跃稳定、消能效果好、淹没程度也不大
j
ht hc "
1.2
随下游水深的升高,在主 流的下游,形成一个漩滚区,类 似底流,在鼻坎下部也有一个漩 涡,把主流与消力池底板隔离, 是面流。
淹没混合流
鼻坎附近形成有三个漩滚,鼻坎底下为 漩滚,上部为主流,漩滚将主流与底板隔离, 这部分属于面流。
最下游的漩滚为水跃漩滚,底流位于底 部,这部分为底流。
最上游的漩滚标志着淹没水跃。
hc
基准面
0
c
αv02 2g
H
P1
0
E0
hc
cvc2 2g
vc2
2g
hc
(c
) vc2 2g
E0
P2
水力学(7)
)
vc 2 2g
任意断面
Q2
Eo hc 2g 2 A2
矩形断面
Eo
hc
q2
2g 2hc 2
第九章 泄水建筑物下游的水流衔接与消能 第二节 底流式衔接与消能
坝的流速系数 1 ac
斯克列勃柯夫公式
1 0.0155 P
H
水科院公式
( P 30) H
q2/3 (
) 0.2
s
q为单宽流量,s 为坝前库水位与收缩断面底部的高程差
ht hc " 淹没式水跃
需要消能 不需要消能
工程中采常采用稍有淹没的水跃衔接消能,即
j
ht hc "
1.05
~ 1.1
第九章 泄水建筑物下游的水流衔接与消能 第二节 底流式衔接与消能
二、泄水建筑物下游收缩断面水深的计算
H
P1
ao vo 2 2g
hc
acvc 2 2g
Eo
hc
(ac
第九章 泄水建筑物下游的水流衔接与消能 第三节 挑流消能的水力计算
空中消耗了部分余能 水垫消能
下游局部冲刷 挑流引起的雾化水滴
第九章 泄水建筑物下游的水流衔接与消能 第三节 挑流消能的水力计算
一、挑距的计算 L LO L1
(一)空中挑距的计算
L0 12s1 sin 2 1
1
a
12 s1
ht sin 2
第九章 泄水建筑物下游的水流衔接与消能 第二节 底流式衔接与消能
三、消能池的水力计算 挖深式消能池
坎式消能池
综合消能池
第九章 泄水建筑物下游的水流衔接与消能 第二节 底流式衔接与消能
(一)挖深式消能池的水力计算
水力学-消能参考文档
0.72 5.6637875 1.631528 4.4499315 34.11213 27.28971
0.73 5.6178378 1.2630394 4.7723818 33.72608 26.98086
(2)用试算法计算消力池池深
' hc02
q2
2g( ' hc02 )2
d
ht
q2
2g(1ht )2
10.2 底流式衔接与消能
10.2.1 泄水建筑物下游收缩断面水深的计算
列坝前断面0-0及收缩断面c-c的能量方程:
H
a1
v02
2g
hc0
vc02
2g
vc
2 0
2g
令,T为有效水头,T0称为有效总水头,则有
H
a1
v02
2g
T
v02
2g
T0
T0
hc0
(
)
vc02 2g
令流速系数 1
为
hj
,v则t2 有
2g
H1
v12
2g
ht
vt2
2g
hj
ht
(
) vt2
2g
H1
ht
(
)
vt2 2g
v12 2g
H1 ht z
1
12
• 上式可改写为
z vt2 v12 2g12 2g
•以
vt
q ht
,v1
代入q上式得
' hc02
z
q2 2g
1
(1ht
)2
(
' hco2 )2
2. 建坝时,为节省工程造价,使泄水建筑物的泄水宽度 比原河床宽度小,使泄水时的单宽流量加大,即水流集中。
水力学第九章泄水建筑物下游水流消能与衔接赵
Lk = (0.7 ~ 0.8)Lj
对闸孔出流下的消力池,池长可按下式计 算:
Lk = (0.5 ~ 1.0)e + (0.7 ~ 0.8)Lj
护坦末端修建消能坎所形成的消力池
坎高c的确定:
c = hT − H1 = σ jhc′′ − H1
H1
=
H10
−
v12 2g
=( q
σ sm
2g
下游水流波动大、挑流鼻坎易气蚀破坏及雾 化严重;当河床基岩破碎或河床狭窄岸坡陡 峻时,可能造成河床严重冲刷或岸坡塌滑。
选定鼻坎形式、确定反弧半径、坎顶高程和 挑射角,估算水股挑距、冲坑深度以及对建 筑物的影响等。
挑流射程的计算
挑流射程L应包括空中射程L0和水下射程L1, 即:
L = L0 + L1
hc′′ = ht 临界水跃
hc′′ > ht 远离水跃
hc′′ < ht 淹没水跃
收缩断面水深的计算
选通过下游收缩断面底
部水平面为基准面,列
堰上游断面0-0及下游
收缩断面c-c的能量方
程,得
P2
+H
+ α0v02
2g
= hc
+ αcvc2
2g
+ζ
vc2 2g
E0
=
P2
+
H
+
α0v02ຫໍສະໝຸດ )2 / 3−q2 2 ghT2
=
(
σ
q sm
2g
)2 / 3
−
q2
2g(σ jhc′′)2
消力坎式消力池设计注意事项
在开始计算时,由于坎高尚未确定,无法判别过坎 水流是否为淹没出流。因此,需试算求解坎高c。
泄水建筑物下游的水流衔接与消能
泄水建筑物下游的水流衔接与消能
1、问题:高速下泄水流对河床的冲刷 2、任务:消除下泄水流多余的能量 3、解决办法: 能量转化
底流式消能 常用消能措施: 挑流式消能 面流式消能
1、底流式消能(underflow energy dissipation)
——利用水跃消能
2、挑流式消能(ski-jump energy dissipation)
d j hc1 (ht z)
6、比较 d1 , d 2 ;
d d1 d 2 较大时,重新假设d进行 试算,重复步骤2~6,直到 d 满足要求。
粗略估算: d j hc ht
4、消能池长度Lk的确定:
Lk=(0.7~0.8)Lj
Lj 10.8h1 (Fr 1)0.93 1
1、坎高c的设计 1) 满足的条件: 消能要求:
hT j hc
几何要求:
hT c H1
出池能量条件: 看成折线型或曲线型实用堰
H10 H1
v
2 1 1
2g
q 1q 2/3 H1 ( ) s m1 2 g 2 g ( j hc ) 2
2
出池能量条件:
q 1q 2 H1 ( )2 / 3 s m1 2 g 2 g ( j hc ) 2
——利用挑流水舌 与水滚消能
3、面流式消能(surface flow energy dissipation)
——利用表面旋 滚消能
下图采用消能戽是一种底流和面流结合应用的实例。
9.1 底流消能的水力计算
主要内容:
1、控制断面水深hc的计算 2、水跃位置与形式的判别 3、消能池的设计
一、控制断面水深hc的计算 1、推导:利用能量方程(E.E)