STM32的PWM控制

合集下载

STM32 TIM的PMW模式

STM32 TIM的PMW模式

STM32 TIM的PMW模式STM32开发板学习日记-[5]TIM的PMW模式脉冲宽度调制模式可以产生一个由TIMx_ARR寄存器确定频率、由TIMx_CCRx寄存器确定占空比的信号。

在TIMx_CCMRx寄存器中的OCxM位写入’110’(PWM模式1)或’111’(PWM模式2),能够独立地设置每个OCx输出通道产生一路PWM。

必须设置TIMx_CCMRx寄存器OCxPE位以使能相应的预装载寄存器,最后还要设置TIMx_CR1寄存器的ARPE位使能自动重装载的预装载寄存器(在向上计数或中心对称模式中)。

因为仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置TIMx_EGR寄存器中的UG位来初始化所有的寄存器。

OCx的极性可以通过软件在TIMx_CCER寄存器中的CCxP 位设置,它可以设置为高电平有效活或低电平有效。

TIMx_CCER寄存器中的CCxE位控制OCx输出使能。

在PWM模式(模式1或模式2)下,TIMx_CNT和TIM1_CCRx 始终在进行比较,(依据计数器的计数方向)以确定是否符合TIM1_CCRx≤TIM1_CNT或者TIM1_CNT≤TIM1_CCRx。

然而为了与OCREF_CLR的功能(在下一个PWM周期之前,ETR信号上的一个外部事件能够清除OCxREF)一致,OCxREF信号只能在下述条件下产生:●当比较的结果改变●当输出比较模式(TIMx_CCMRx寄存器中的OCxM位)从“冻结”(无比较,OCxM=’000’)切换到某个PWM模式(OCxM=’110’或’111’)。

stm32pwm原理

stm32pwm原理

stm32pwm原理STM32是一款高性能、低功耗的微控制器,它具有丰富的外设和强大的处理能力。

其中,PWM(Pulse Width Modulation)是STM32中常用的一种外设,它可以用来控制电机、LED灯等设备的亮度或速度。

本文将介绍STM32中PWM的原理和使用方法。

一、PWM原理PWM是一种通过改变信号占空比来控制电机、LED灯等设备的亮度或速度的技术。

在STM32中,PWM的实现是通过定时器和比较器来完成的。

具体来说,STM32中的定时器可以产生一个周期性的计数器值,而比较器可以将计数器值与预设的比较值进行比较,从而产生PWM信号。

在STM32中,PWM信号的占空比可以通过改变比较器的预设值来实现。

例如,如果比较器的预设值为50,那么当计数器值小于50时,PWM信号为高电平,当计数器值大于等于50时,PWM信号为低电平。

因此,通过改变比较器的预设值,可以改变PWM信号的占空比,从而控制设备的亮度或速度。

二、PWM使用方法在STM32中,使用PWM需要进行以下步骤:1. 初始化定时器和比较器:首先需要初始化定时器和比较器,设置它们的工作模式、时钟源等参数。

2. 设置PWM输出引脚:将定时器和比较器的输出引脚与设备的控制引脚相连,从而将PWM信号输出到设备上。

3. 设置比较器的预设值:根据需要控制设备的亮度或速度,设置比较器的预设值,从而改变PWM信号的占空比。

4. 启动定时器:启动定时器,让它开始产生周期性的计数器值。

5. 控制设备:根据PWM信号的占空比,控制设备的亮度或速度。

下面是一个简单的PWM控制LED灯的例子:```c#include "stm32f10x.h"void PWM_Init(void){GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_AFIO, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);TIM_TimeBaseStructure.TIM_Period = 999;TIM_TimeBaseStructure.TIM_Prescaler = 71;TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode =TIM_CounterMode_Up;TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState =TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = 500;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM2, &TIM_OCInitStructure);TIM_Cmd(TIM2, ENABLE);}int main(void){PWM_Init();while (1){}}```在上面的例子中,我们使用了TIM2定时器和PA0引脚来控制LED灯的亮度。

stm32 pwm调节转速原理

stm32 pwm调节转速原理

STM32的PWM调节转速原理主要基于PWM(Pulse Width Modulation)脉冲宽度调制。

通过编程控制输出方波的频率和占空比(高低电平的比例),可以实现对电机转速的控制。

在直流电机驱动中,PWM调速的基本原理是通过控制电机通电的电压来实现转速的调节。

当提高电压时,反电势升高,进而转速升高。

因此,通过控制PWM信号的占空比,可以实现对电机通电电压的调节,从而控制电机的转速。

在STM32中,可以通过定时器产生PWM信号,并通过调节占空比来控制电机的转速。

具体实现方式如下:
1.设置定时器工作模式为PWM模式,并配置相应的PWM通道和占空比。

2.根据需要调节占空比的值,以控制电机通电的电压。

3.将PWM信号输出到电机驱动器,从而实现对电机转速的控制。

需要注意的是,具体的PWM调速实现方式可能会因电机的类型、驱动器的型号等因素而有所不同。

因此,在实际应用中,需要根据具体情况进行相应的调整和配置。

STM32使用HAL库输出连续可调的PWM信号

STM32使用HAL库输出连续可调的PWM信号

STM32使用HAL库输出连续可调的PWM信号1.配置GPIO引脚作为PWM输出。

选择一个合适的GPIO引脚,并将其配置为复用模式,用于PWM输出。

例如,若使用TIM1作为PWM输出定时器,则可以选择GPIO引脚PA8,其复用功能为TIM1_CH12.配置定时器。

使用HAL库初始化和配置所选定的定时器(例如TIM1)作为PWM输出的时基。

设置定时器的时钟源、预分频因子和计数周期。

可以通过修改这些参数来调整PWM信号的频率。

3.配置PWM输出通道。

使用HAL库初始化和配置所选定的PWM输出通道(例如TIM1_CH1)。

设置通道的输出模式和占空比。

可以通过修改占空比来调整PWM信号的高电平时间,从而改变输出电压。

4.启动定时器。

通过调用HAL库中的相关函数,启动所选定的定时器开始计数。

定时器计数到达设定的计数周期后,将会产生一个PWM信号。

5.调整PWM信号的占空比。

通过修改PWM输出通道的占空比,可以改变PWM信号的高电平时间。

通过调整占空比的大小,可以控制PWM信号的输出电压。

6.实时调整PWM信号的频率和占空比。

通过修改定时器的预分频因子和计数周期,可以调整PWM信号的频率。

通过修改PWM输出通道的占空比,可以调整PWM信号的占空比。

可以根据特定的应用需求,实时调整这些参数,来实现连续可调的PWM信号输出。

下面是一个示例代码,演示如何利用HAL库配置和控制STM32的PWM输出:```c#include "stm32f4xx_hal.h"TIM_HandleTypeDef htim1;void SystemClock_Config(void);static void MX_GPIO_Init(void);static void MX_TIM1_Init(void);int main(void)HAL_Init(;SystemClock_Config(;MX_GPIO_Init(;MX_TIM1_Init(;HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);while (1)uint16_t dutyCycle = 500; // 设置占空比为50%__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, dutyCycle); HAL_Delay(1000); // 延时1sdutyCycle = 1000; // 设置占空比为100%__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, dutyCycle); HAL_Delay(1000); // 延时1s}void SystemClock_Config(void)RCC_OscInitTypeDef RCC_OscInitStruct;RCC_ClkInitTypeDef RCC_ClkInitStruct;__HAL_RCC_PWR_CLK_ENABLE(;__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1 );RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)Error_Handler(;}RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK ,RCC_CLOCKTYPE_PCLK1RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct,FLASH_LATENCY_5) != HAL_OK)Error_Handler(;}void MX_GPIO_Init(void)GPIO_InitTypeDef GPIO_InitStruct;__HAL_RCC_GPIOA_CLK_ENABLE(;GPIO_InitStruct.Pin = GPIO_PIN_8;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);void MX_TIM1_Init(void)TIM_MasterConfigTypeDef sMasterConfig;TIM_OC_InitTypeDef sConfigOC;htim1.Instance = TIM1;htim1.Init.Prescaler = 0;htim1.Init.CounterMode = TIM_COUNTERMODE_UP;htim1.Init.Period = 1000; // 设置计数周期为1000htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)Error_Handler(;}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim1,&sMasterConfig) != HAL_OK)Error_Handler(;}sConfigOC.OCMode = TIM_OCMODE_PWM1;sConfigOC.Pulse = 0; // 初始化占空比为0sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC,TIM_CHANNEL_1) != HAL_OK)Error_Handler(;}```这是一个基本的示例,演示了如何使用HAL库配置和控制STM32的PWM输出。

stm32 中pwm频率计算公式

stm32 中pwm频率计算公式

一、概述在嵌入式系统开发中,PWM(脉冲宽度调制)是一种重要的控制技术,常用于电机驱动、灯光控制、无线通讯和其他类似应用领域。

对于STM32系列的微控制器来说,如何准确地计算PWM的频率是一个关键问题。

本文将介绍STM32中PWM频率的计算公式,希望对开发者们有所帮助。

二、PWM频率计算公式在STM32系列微控制器中,PWM的频率计算可以使用以下公式:\[PWM频率 = \frac{定时器时钟频率}{预分频系数 * 定时器自动重载值}\]其中,各参数的含义如下:1. 定时器时钟频率:定时器的时钟频率取决于系统时钟的频率以及定时器的分频系数。

一般情况下,定时器的时钟频率可以表示为:\[定时器时钟频率 = 系统时钟频率 / 分频系数\]如果系统时钟频率为72MHz,定时器的分频系数为72,那么定时器时钟频率为1MHz。

2. 预分频系数:预分频系数决定了定时器时钟频率的除数。

通过修改预分频系数,可以改变PWM信号的频率。

在STM32系列微控制器中,通常有多个预分频系数可以选择,开发者可以根据具体应用需求进行选择。

3. 定时器自动重载值:定时器的自动重载值决定了PWM周期的长度。

一般情况下,定时器的计数范围为0到定时器自动重载值,当定时器计数达到自动重载值时,定时器会自动清零并产生中断。

通过以上公式,开发者可以根据具体的系统时钟频率、预分频系数和定时器自动重载值来计算出所需的PWM频率。

三、实例分析为了更直观地理解PWM频率的计算方法,接下来将通过一个实例来演示具体的计算过程。

假设我们需要设计一个PWM信号,其频率为1kHz,系统的时钟频率为72MHz。

我们可以根据需要的PWM频率来确定定时器的自动重载值。

由于所需的PWM频率为1kHz,因此PWM周期为1ms。

根据PWM的工作原理,我们知道PWM信号的周期T与频率f的关系为:\[T = \frac{1}{f}\]PWM周期T为1ms。

我们需要根据系统时钟频率来确定定时器的分频系数。

STM32 PWM控制步进电机的学习和问题

STM32 PWM控制步进电机的学习和问题
TIM1_TimeBaseStructure.TIM1_RepetitionCounter = 0x0;
TIM1_TimeBaseInit(&TIM1_TimeBaseStructure);
/* TIM1 Channel 3 and 4 Configuration in PWM mode */
TIM1_OCInitStructure.TIM1_OCPolarity = TIM1_OCPolarity_Low;
TIM1_OCInitStructure.TIM1_OCIdleState = TIM1_OCIdleState_Set;
TIM1_OC3Init(&TIM1_OCInitStructure);
{
Prescale_value = Prescale_value - (u16)0x05;
TIM1_PrescalerConfig(Prescale_value, TIM1_PSCReloadMode_Update);
TIM1_GenerateEvent(TIM1_EventSource_Update);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOE, &GPIO_InitStructure);
....
....
}
下面是main函数里面的死循环,变量的定义在这里省略了。
while(1)
{
u16 Prescale_value = (u16) 0x44A0 ; //对应PWM的输出频率的1Hz左右

stm32中定时器产生不同PWM的基本思路

stm32中定时器产生不同PWM的基本思路

在stm32中利用定时器TIM调制PWM的几种方法:说说我的学习经历:从开始接触到现在有好几个月了,但是学习还是比较的费劲,而且速度也比较的缓慢,当然相比之前还是有很大的进步,记得刚刚学习的时候,建工程都是大四学长手把手教的。

废话不多说先来讲讲定时器的配置:STM32F10系列最少3个、做多有8个定时器,都是16位定时器,且相互之间是独立的,计数范围为0x0000-0xffff,最大计数值为65535.可以用于测量输入信号的脉冲长度或者产生输出波形(输出比较和PWM)分为通用定时器,高级定时器,以及看门狗定时器下面主要讲通用定时器的配置问题:以定时器TIM1为例:先进行函数的配置void timer1_config(){TIM_TimeBaseInitTypDef TIM_TimeBaseStructure;//开定时器1外设时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM1,ENABLE);//计时50000次时间为50000/10M=500msTIM_TimeBaseStructure.TIM_Period=50000 ;TIM_TimeBaseStructure.TIM_Prescaler = 720-1;//720分频TIM_TimeBaseStructure.TIM_ClockDivision =0;//时钟分割为0;//计数模式向上计数TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure)//初始化TIM1TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE);//开启定时器中断TIM_Cmd(TIM1,ENABLE); //使能定时器}关于时间的计算问题:外设系统时钟的频率为72M,进行720分频以后,频率f=72M/720=100khz. 如果要定时0.1s则计数值为10000,计算公式为:时间(t)=计数值(n)/频率(f).注意计数值n介于0到65535之间有定时器则一定会有中断发生,所以要配置中断优先级,对于中断优先级函数配置如下:V oid nvic_config(){NVIC_InitTypDef NVIC_InitStructure;//抢占优先级为1位,从优先级为3位NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1) ;NVIC_InitStructure.NVIC_IRQChannel=TIM1_IRQn; //定义定时器1为请求通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; //抢占式优先级为0NVIC_InitStructure.NVIC_IRQChannelSubPriority=2; //从优先级为2NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断优先级NVIC_Init(&NVIC_InitStructure); //初始化中断}对于优先级中的抢占式和从优先级做如下解释:抢占式优先级:是可以抢占的中断,比如正在执行的优先级为10的中断,突然来了一个优先级为5的中断,此时cpu会转向优先级为5的中断;从优先级:从优先级不会抢占正在执行的中断程序,但是如果两个事件同时发生,那么cpu 会执行优先级高的事件,但是已经执行就不会再更改了,即使优先级比正在执行的高,这正好和抢占式优先级不同,抢占式优先级不论程序是否在执行,只要现在发生的中断优先级比正在执行的要高,就会更改。

stm32的pwm输出及频率计算方法

stm32的pwm输出及频率计算方法

stm32的pwm输出及频率计算方法
一、stm32的pwm输出引脚是使用的IO口的复用功能。

二、T2~T5这4个通用定时器均可输出4路PWM——CH1~CH4。

三、我们以tim3的CH1路pwm输出为例来进行图文讲解(其它类似),并在最后给出tim3的ch1和ch2两路pwm输出的c代码(已在STM32F103RBT6上测试成功,大家放心使用!)。

四、给出了PWM频率和占空比的计算公式。

步骤如下:
1、使能TIM3时钟
RCC->APB1ENR |= 1 2、配置对应引脚(PA6)的复用输出功能
GPIOA->CRL //PA6清0GPIOA->CRL |= 0X0B000000;//复用功能输出(推挽50MHz输出)GPIOA->ODR |= 1
3、设定计数器自动重装值及是否分频
TIM3->ARR = arr;//设定计数器自动重装值(决定PWM的频率)TIM3->PSC = psc;//预分频器,0为不分频
4、设置PWM的模式(有1和2两种模式,区别在于输出电平极性相反),根据需求选一种即可
注:TIMX_CCMR1决定CH1~CH2路,TIMX_CCMR2决定CH3~CH4路。

//TIM3->CCMR1 |= 6 TIM3->CCMR1 |= 7 TIM3->CCMR1 |= 1
5、输出使能设置
TIM3->CCER |= 1。

基于STM32的直流电机PWM调速控制

基于STM32的直流电机PWM调速控制

(《嵌入式系统及接口技术》课程大作业)课程名称:嵌入式系统及接口技术班级专业:姓名学号:指导老师:电动摩托车控制器中的电机PWM调速摘要:随着“低碳”社会理念的深入,新型的电动摩托车发展迅速,逐渐成为人们主要的代步工具之一,由于直流无刷电机的种种优点,在电动摩托车中也得到了广泛应用,因此,本文控制部分主要介绍一种基于STM32F103芯片的新型直流无刷电机调速控制系统,这里主要通过PWM技术来进行电机的调速控制,且运行稳定,安全可靠,成本低,具有深远的意义。

1.总体设计概述1.1 直流无刷电机及工作原理直流无刷电机(简称BLDCM),由于利用电子换向取代了传统的机械电刷和换向器,使得其电磁性能可靠,结构简单,易于维护,既保持了直流电机的优点又避免了直流电机因电刷而引起的缺陷,因此,被广泛应用。

另外,由于直流无刷电机专用控制芯片价格昂贵,本文介绍了一种基于STM32的新型直流无刷电机控制系统,既可降低直流无刷电机的应用成本,又弥补了专用处理器功能单一的缺点,具有重要的现实意义和发展前景。

工作原理:直流无刷电机是同步电机的一种,其转子为永磁体,而定子则为三个按照星形连接方式连接起来的线圈,根据同步电机的原理,如果电子线圈产生一个旋转的磁场,则永磁体的转子也会随着这个磁场转动因此,驱动直流无刷电机的根本是产生旋转的磁场,而这个旋转的磁场可以通过调整A、B、C三相的电流来实现,其需要的电流如图1所示随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。

1.2 总体设计方案总体设计方案的硬件部分详细框图如图1所示。

图1 总体方案系统框图该方案主要运行状况如下:通过摩托车车把的转动来改变其机械位置,然后这个变量通过ADC 转换后,传送其调速信号给STM32F103,另外,霍尔传感器将其对电机速度的检测信号也传送给STM32,在STM32中,首先根据ADC 的值改变PWM 波形,并且与霍尔传感器的检测信号进行叠加,最终输出叠加后的PWM 波形给功率驱动电路,从而驱动电机并对其进行速度的控制和调节。

stm32中pwm的发送数据缓冲区

stm32中pwm的发送数据缓冲区

STM32中PWM的发送数据缓冲区1. 简介PWM(Pulse Width Modulation)即脉宽调制技术,是一种通过控制脉冲信号的宽度来调节电压或功率的技术。

在嵌入式系统中,通常会使用PWM来控制电机的转速、控制LED的亮度等。

2. STM32中的PWMSTM32是一款由意法半导体推出的32位嵌入式微控制器系列产品。

在STM32系列中,PWM模块被广泛应用于各种工业控制、电机驱动、照明等领域。

STM32的PWM模块支持多通道输出、定时器中断等功能,可灵活实现各种PWM控制需求。

3. PWM的发送数据缓冲区在STM32中,PWM数据的发送需要通过定时器中断来实现。

为了提高系统的稳定性和实时性,通常会使用缓冲区来存储PWM输出的数据。

在PWM输出的过程中,如果中断频率很高或者计算量很大,可能会出现数据丢失或者错误的情况。

使用缓冲区能够有效地解决这一问题。

4. 实现方法在STM32中,可以通过以下步骤来实现PWM发送数据的缓冲区:1. 初始化缓冲区:在程序中定义一个数组作为PWM发送数据的缓冲区,在初始化时将其清零。

2. 中断处理函数:在定时器的中断处理函数中,将缓冲区中的数据送入PWM输出寄存器,并更新缓冲区的数据。

3. 数据更新:在程序中需要发送PWM数据时,将数据写入缓冲区,定时器中断会定时地将缓冲区中的数据送入PWM输出寄存器。

5. 注意事项在实现PWM发送数据缓冲区时,需要注意以下几点:1. 缓冲区大小:根据具体的PWM输出频率和系统运行速度,确定缓冲区的大小,避免数据溢出。

2. 数据同步:保证数据在缓冲区和PWM输出寄存器之间的同步,避免因数据不一致导致的输出错误。

3. 中断优先级:合理设置定时器中断的优先级,确保中断的及时响应和处理。

6. 总结使用缓冲区可以有效提高STM32中PWM发送数据的稳定性和实时性,避免数据丢失和错误。

合理的缓冲区设计和数据更新策略能够有效减少系统的负荷,保证PWM输出的准确性和稳定性。

STM32的PWM精讲

STM32的PWM精讲
PWM 是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使 用, 方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM 信号仍 然是数字 的,因为在给定的任何时刻,满幅值的直流供电要么完全有(0N),要么 完全无(OFF)。 电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模 拟负载上去的。通的 时候即是直流供电被加到负载上的时候,断的时候即是供电 被断开的时候。只要带宽足 够,任何模拟值都可以使用 PWM 进行编码。
第 2 章 STM32 处理器概述 STM32F103xx 增强型系列产品中内置了多达 3 个同步的标准定时器。每个定 时
器都有一个 16 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个 独立的 通道,每个通道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出, 在最大的 封装配置中可提供最多 12 个输入捕获、输出比较或 PWM 通道。它们还 能通过定时器 链接功能与高级控制定时器共同工作,提供同步或事件链接功能。
它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术其控制简单灵活和动态响应好等优点而成为电力电子技术最广泛应用的控制方式其应用领域包括测量通信功率控制与变换电动机控制伺服控制调光开关电源甚至某些音频放大器因此研究基于pwm技术的正负脉宽数控调制信号发生器具有十分重要的现实意义
STM32 的 PWM 精讲
器中的计数器使能位(CEN)时,CK_CNT 才有效。(有关更多的计数器使能的 细节,请参见控制器的从模式描述)。
注:真正的计数器使能信号 CNT_EN 是在 CEN 后的一个时钟周期后被设置。 预分 频器描述 。
预分频器可以将计数器的时钟频率按 1 到 65536 之间的任意值分频。它是

stm32pwm初始化函数详解

stm32pwm初始化函数详解

stm32pwm初始化函数详解标题:STM32 PWM初始化函数详解摘要:本文将深入探讨STM32 PWM初始化函数的各个方面,包括工作原理、配置参数、常用的初始化函数和实际应用场景。

通过对这些内容的全面解析,读者将能够更好地理解和使用STM32 PWM模块,从而实现各种应用需求。

引言:作为嵌入式系统中常见的功能模块之一,PWM(脉宽调制)在许多电子设备和项目中起着至关重要的作用。

针对STM32系列微控制器,其具备强大的PWM功能,提供了灵活多样的配置选项。

本文将详细介绍STM32 PWM初始化函数的各个方面,包括工作原理、配置参数、相关函数和实际应用案例。

一、PWM工作原理在开始了解STM32 PWM初始化函数之前,我们先对PWM的工作原理进行简要说明。

PWM信号由周期性的脉冲构成,其脉冲宽度决定了信号的占空比。

通过改变占空比,可以调节输出信号的平均电平或功率。

在STM32微控制器上,PWM输出通常用于驱动电机、LED灯和产生音频信号等。

二、PWM初始化参数在配置STM32 PWM模块之前,我们需要了解一些常用的初始化参数。

这些参数包括:1. 定时器选择:选择相应的定时器单元,用于产生PWM信号。

2. PWM通道选择:选择使用哪些PWM通道作为输出。

3. 周期设置:设置PWM信号的周期长度。

4. 脉冲宽度设置:设置PWM信号的占空比。

5. 触发信号设置(可选):设置外部触发事件来控制PWM信号的开始和结束时间。

三、常用的PWM初始化函数以下是一些常用的STM32 PWM初始化函数:1. TIM_TimeBaseInit():用于配置定时器的基本参数,如时钟分频、计数模式和周期长度等。

2. TIM_OCInitStructure():用于配置PWM输出通道的工作模式和占空比等。

3. TIM_ARRPreloadConfig():用于使能或禁用周期寄存器预装载功能。

4. TIM_OCxPreloadConfig():用于使能或禁用PWM输出通道的预装载功能。

STM32中的PWM的频率和占空比的设置

STM32中的PWM的频率和占空比的设置

STM32 中的PWM 的频率和占空比的设置下面的这个是STM32 的定时器逻辑图,上来有助于理解:
TIM3 的ARR 寄存器和PSC 寄存器,确定PWM 频率。

这里配置的这两个定时器确定了PWM 的频率,我的理解是:PWM 的周期(频率)就是ARR 寄存器值与PSC 寄存器值相乘得来,但不是简单意义上的相乘,例如要设置PWM 的频率参考上次通用定时器中设置溢出时间的算法,例如输出100HZ 频率的PWM,首先,确定TIMx 的时钟,除非APB1 的时钟分频数设置为1,否则通用定时器TIMx 的时钟是APB1 时钟的2 倍,这时的TIMx 时钟为72MHz,用这个TIMx 时钟72MHz 除以(PSC+1),得到定时器每隔多少秒涨一次,这里给PSC 赋7199,计算得定时器每隔0.0001 秒涨一次,即此时频率为10KHz,再把这个值乘以(ARR+1)得出PWM 频率,假如ARR 值为0,即0.0001*(0+1),则输出PWM 频率为10KHz,再假如输出频率为100Hz 的PWM,则将ARR 寄存器设置为99 即可。

如果想调整PWM 占空比精度,则只需降低PSC 寄存器的值即可。

TIMx_CCRx 寄存器,确定PWM 的占空比。

TIMx_CCR1TIMx_CCR4 确定定时器的CH1CH4 四路PWM 的占空比。

直接给该寄存器赋065535 值即可确定占空比。

占空比计算方法:TIMx_CCRx 的值除以ARR 寄存器的值即为占空比,因为占空比在0100%之间,所以一。

STM32学习笔记(5):通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出1.TIMER输出PWM基本概念脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。

简单一点,就是对脉冲宽度的控制。

一般用来控制步进电机的速度等等。

STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM 输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。

1.1PWM输出模式STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。

模式1和模式2的区别如下:110:PWM模式1-在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为有效电平,否则为无效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。

111:PWM模式2-在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为无效电平,否则为有效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为有效电平,否则为无效电平。

由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。

而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。

1.2PWM输出管脚PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7定时器复用功能重映射”一节。

在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。

stm32pwm工作原理

stm32pwm工作原理

stm32pwm工作原理
STM32是一款高性能微控制器,具有丰富的外设资源,其中包括PWM模块。

PWM技术是一种模拟信号输出技术,可以通过数字化手段模拟出模拟信号,从而控制输出的波形。

PWM技术的基本原理是通过不断变化的脉冲宽度来控制输出电压的大小,从而实现对电机、LED等设备的精确控制。

STM32的PWM输出采用的是定时器的方式,通过计数器产生周期性的脉冲信号,再通过预设的占空比来控制脉冲信号的宽度。

STM32的PWM输出可分为两种模式:单脉冲模式和双脉冲模式。

单脉冲模式下,PWM信号的占空比为0~100%,其中占空比为0%时输出低电平,占空比为100%时输出高电平;双脉冲模式下,PWM信号的占空比为0~50%,其中占空比为0%时输出低电平,占空比为50%时输出高电平,同时输出一个相反的信号。

在STM32中,通过设置定时器的计数器值和预设的占空比来调整PWM输出的频率和占空比。

由于STM32的定时器资源较为丰富,可以通过多种不同的定时器模式和计数器分频来实现不同的PWM输出方式。

总之,STM32的PWM模块可以灵活地控制输出波形的频率和占空比,是实现精准控制的重要工具。

- 1 -。

单相电压型双闭环pwm整流电路控制stm32

单相电压型双闭环pwm整流电路控制stm32

单相电压型双闭环pwm整流电路控制stm32【实用版】目录1.单相电压型双闭环 PWM 整流电路概述2.STM32 在双闭环 PWM 整流电路中的应用3.双闭环 PWM 整流电路的控制原理4.STM32 实现双闭环 PWM 整流电路的控制方法5.双闭环 PWM 整流电路的优点与应用场景正文一、单相电压型双闭环 PWM 整流电路概述单相电压型双闭环 PWM 整流电路是一种基于 PWM(脉宽调制)技术的电力电子装置,主要由电压环和电流环两个闭环控制部分组成。

该电路通过调整 PWM 信号的脉宽,实现对交流电压的有效控制,从而达到恒定输出电压的目的。

在双闭环控制策略下,该电路具有较强的稳定性和良好的动态响应性能。

二、STM32 在双闭环 PWM 整流电路中的应用STM32 是一种高性能、低功耗的微控制器,广泛应用于各种嵌入式系统中。

在双闭环 PWM 整流电路中,STM32 可以作为控制核心,实现对电路的精确控制。

借助其强大的计算能力和丰富的外设接口,STM32 能够轻松应对双闭环 PWM 整流电路的实时控制需求。

三、双闭环 PWM 整流电路的控制原理1.电压环控制:电压环主要负责控制输出电压的恒定。

通过采集输入电压和输出电压的误差信号,计算出所需的 PWM 脉宽,进而调整开关器件的占空比,实现对输出电压的控制。

2.电流环控制:电流环主要负责控制整流器的电流。

根据输出电压和电流的误差信号,通过内模解耦控制策略,计算出所需的电流控制信号,从而实现对整流器电流的控制。

四、STM32 实现双闭环 PWM 整流电路的控制方法基于 STM32 的双闭环 PWM 整流电路控制方法主要包括以下几个步骤:1.初始化 STM32 的硬件资源,包括定时器、PWM 输出等功能模块。

2.配置电压环和电流环的控制参数,如比例增益、积分时间常数等。

3.通过 ADC(模数转换器)等传感器采集输入电压、输出电压和电流等信号,计算出误差信号。

用STM32定时器中断产生PWM控制步进电机

用STM32定时器中断产生PWM控制步进电机

⽤STM32定时器中断产⽣PWM控制步进电机控制步进电机可以使⽤PWM、定时器中断、延时,这⾥⽤的就是定时器中断来让它转动。

⼀、硬件部分1.使⽤的硬件板⼦⽤的是正点原⼦的STM32F103 mini板,驱动器是DM420(DM420驱动器资料),⽤开关电源供电,电机就是普通的42步进电机,步距⾓为1.8°,虽然按照图⽚来看它是个蠕动泵。

如下图2.硬件连接PUL+——PB0,脉冲输⼊DIR+——PB1,⽅向使能ENA+——PB2,脱机使能,共阴极接法的话,输⼊低电平,让它⽆效。

这⾥连接驱动器采⽤共阴极接法,如图3.总硬件连接图⼆、控制步进电机转动 想让它转,简单的说就是⾼电平,低电平循环输⼊,产⽣脉冲,让它转动。

其转速与产⽣脉冲频率有关: arr:⾃动重装载寄存器的值 psc:定时器频率 α为步距⾓(1.8°),x为驱动器细分倍数(设置为2,也就是说转动⼀圈需要400个脉冲,每个脉冲转动0.9度) 脉冲频率 = Fck_int(72MHZ) / ((arr+1)*(psc+1)) 转速(r/min)= 脉冲频率 * 60 / ((360/α)*x)假如我将arr设置为100-1,psc设置为7200-1,则脉冲频率为100Hz,转速为15r/min.三、电机驱动代码 1.GPIO.h#ifndef __GPIO_H#define __GPIO_H#include "sys.h"#define LED0 PAout(8) // PA8,测试是否进⼊中断#define PUL PBout(0) //脉冲输出#define DIR PBout(1) //⽅向使能#define ENA PBout(2) //脱机使能void GPIO_Init(void);//端⼝初始化#endif 2.timer.c#include "timer.h"#include "led.h"void TIM3_Int_Init(u16 arr,u16 psc){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能TIM_TimeBaseStructure.TIM_Period = arr;TIM_TimeBaseStructure.TIM_Prescaler =psc;TIM_TimeBaseStructure.TIM_ClockDivision = 0;TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //初始化TIMx的时间基数单位TIM_ITConfig(TIM3,TIM_IT_Update ,ENABLE);NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM3中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能NVIC_Init(&NVIC_InitStructure); //初始化外设NVIC寄存器TIM_Cmd(TIM3, ENABLE); //使能TIMx外设}void TIM3_IRQHandler(void){if(TIM_GetITStatus(TIM3,TIM_IT_Update)!=RESET)//是否发⽣中断{PUL = !PUL;LED0 = !LED0;}TIM_ClearITPendingBit(TIM3,TIM_IT_Update); //清除TIMx的中断待处理位:TIM 中断源} 3.main.c#include "GPIO.h"#include "delay.h"#include "sys.h"#include "timer.h"int main(void){NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);// 设置中断优先级分组2GPIO_Init(); //初始化连接的硬件接⼝ENA = 0; //脱机使能失效TIM3_Int_Init(99,7199);//72MHz / ((99+1)*(7199+1)) =100Hz while(1) { ; }}如果想要完整代码,可以下⽅评论区留下邮箱,我看到就会发。

单相电压型双闭环pwm整流电路控制stm32

单相电压型双闭环pwm整流电路控制stm32

单相电压型双闭环pwm整流电路控制stm32
单相电压型双闭环PWM整流电路控制可以实现对交流电源的
整流和调节输出电压的功能。

在STM32微控制器上实现该控制,可以通过对PWM波形的控制来实现整流电路的开关控制。

首先,需要配置STM32的定时器和PWM输出通道。

可选择
合适的定时器和输出通道,配置对应的GPIO引脚作为PWM
输出。

然后,需要编写控制算法来实现电压型双闭环控制。

这种控制方式一般包括两个闭环,一个外环用于调节输出电压,一个内环用于控制整流开关的开关周期。

首先,内环控制器根据输出电压的反馈信号,计算出开关周期的控制量,并根据该控制量控制PWM输出的波形。

然后,外环控制器根据期望输出电压和实际输出电压之间的误差,计算出PWM输出的占空比的控制量,并根据该控制量调
整PWM输出的占空比,进而实现输出电压的调节。

在编写控制算法时,可以使用PID控制器等常见的控制算法。

根据实际需求,可以调整控制算法的参数,以达到更好的控制效果。

最后,通过ADC模块实现对输出电压的采样,通过中断或定
时器触发更新控制算法的参数和控制量,从而实现闭环控制。

需要注意的是,具体的控制算法的实现会受到实际硬件电路的影响,因此需要根据具体的电路设计和参数进行相应的调整和优化。

另外,还需要考虑到过流、过压等保护机制的实现,以确保整流电路的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pwm输出最基本的调节就是频率和占空比。频率当然又和时钟信号扯上了关系。高级定时器是挂接到APB2上,而通用定时器是挂接到APB1上的。APB1和APB2的区别就要在于时钟频率不同。APB2最高频率允许72MH,而APB1最高频率为36MHZ。这样是不是通用定时器只最高36MHZ频率呢,不是的;通用定时器时钟信号完整的路线应该是下面这样的:
TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM2; //设置为pwm1输出模式
TIM_OCInitStructure.TIM_Pulse=500; //设置占空比时间
IState = TIM_OSSIState_Disable;//空闲模式下输出选择
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF; //锁定设置
我先用STM32的通用定时器用PWM模式产生四路相同占空比,不同频率的PWM波,配置如下:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//使能TIM2时钟
TIM_InternalClockConfig(TIM2);//使用内部时钟
TIM_BaseInitStructure.TIM_Prescaler=3; //设置TIM时钟频率除数的预分频值
先大致说下通用和高级定时器的区别。通用的可以输出四路pwm信号互不影响。高级定时器可以输出三对互补pwm信号外加ch4通道,也就是一共七路。
所以这样算下来stm32一共可以生成4*5+7*2=30路pwm信号。接下来还有功能上的区别:通用定时器的pwm信号比较简单,就是普通的调节占空比调节频率(别的不常用到的没去深究);高级定时器的还带有互补输出功能,同时互补信号可以插入死区,也可以使能刹车功能,从这些看来高级定时器的pwm天生就是用来控制电机的。
GPIO_InitStructure2.GPIO_Mode=GPIO_Mode_AF_PP; //设置为复用浮空输出
GPIO_Init(GPIOB,&amp;GPIO_InitStructure2);
//第三步,定时器基本配置
TIM_TimeBaseStructure.TIM_Period=1000-1; // 自动重装载寄存器的值
GPIO_Init(GPIOA,&amp;GPIO_InitStructure2);
/*********TIM1_CH1N 引脚配置********/
GPIO_InitStructure2.GPIO_Pin=GPIO_Pin_13;
GPIO_InitStructure2.GPIO_Speed=GPIO_Speed_50MHz;
AHB(72mhz)→APB1分频器(默认2)→APB1时钟信号(36mhz)→倍频器(*2倍)→通用定时器时钟信号(72mhz)。
在APB1和定时器中间的倍频器起到了巨大的作用,假如红色字体的“APB1分频器”假如不为1(默认是2),倍频器会自动将APB1时钟频率扩大2倍后作为定时器信号源,这个它内部自动控制的不用配置。设置这个倍频器的目的很简单就是在APB1是36mhz的情况下通用定时器的频率同样能达到72mhz。我用的库函数直接调用函数SystemInit(); 这个函数之后时钟配置好了:通用定时器和高级定时器的时钟现在都是72mhz(你也可以自己再配置一下RCC让他的频率更低,但是不能再高了)。定时器接下来还有一个分频寄存器:TIMX_PSC经过他的分频后,才是定时器计数的频率。所以真正的时钟频率应该是72mhz/(TIMX_PSC-1),我们设为tim_frepuency下面还会用到。
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;//刹车输入极性
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;//自动输出使能
stm32的时钟频率弄得确实是很饶人的,所以关键就是先要把思路理清楚。时钟的频率弄好了下面终于可以开说重点PWM了。当然还少不了频率:pwm主要就是控制频率和占空比的:这两个因素分别通过两个寄存器控制:TIMX_ARR和TIMX_CCRX。ARR寄存器就是自动重装寄存器,也就是计数器记到这个数以后清零再开始计,这样pwm的频率就是tim_frequency/(TIMX_ARR-1)。在计数时会不停的和CCRX寄存器中的数据进行比较,如果小于的话是高电平或者低电平,计数值大
于CCRX值的话电平极性反相。所以这也就控制了占空比。
下面是定时器1的配置代码:
GPIO_InitTypeDef GPIO_InitStructure2;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_SetCompare1()这两个函数就可以了。
STM32 定时器产生PWM彻底应用
这次的任务是:用STM32的一个定时器在四个通道上产生四路频率可调占空比可调的PWM波。
看到这个题,我先看STM32的数据手册,把STM32的定时器手册看完就花了一天,但是看了一遍任然不知道所云,就看库函数,略有点理解,就想一哈把这个程序调出来,于是就花了一天多时间仿照网上别人的程序来写,花了一天多写出来调试,结果行不通,做了无用功,于是静下心来想想,还是一步一步的来。
TIM_OC1PreloadConfig(),TIM_ARRPreloadConfig();这两个函数控制的是ccr1和arr的预装在使能,使能和失能的区别就是:使能的时候这两个局存期的读写需要等待有更新事件发生时才能被改变(比如计数溢出就是更新时间)。失能的时候可以直接进行读写而没有延迟。
另外在运行当中想要改变pwm的频率和占空比调用:TIM_SetAutoreload()
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
//第一步:配置时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_TIM1,ENABLE);
//第五步,死区和刹车功能配置,高级定时器才有的,通用定时器不用配置
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Disable;//运行模式下输出选择
TIM_BDTRInitStructure.TIM_OSS
//下面几个参数是高级定时器才会用到,通用定时器不用配置
TIM_OCInitStructure.TIM_OCNPolarity=TIM_OCNPolarity_High; //设置互补端输出极性
TIM_OCInitStructure.TIM_OutputNState=TIM_OutputNState_Enable;//使能互补端输出
TIM_Cmd(TIM1,ENABLE); //打开TIM2
//下面这句是高级定时器才有的,输出pwm必须打开
TIM_CtrlPWMOutputs(TIM1, ENABLE); //pwm输出使能,一定要记得打开
TIM_OCInitStructure.TIM_OCIdleState=TIM_OCIdleState_Reset; //死区后输出状态
TIM_OCInitStructure.TIM_OCNIdleState=TIM_OCNIdleState_Reset;//死区后互补端输出状态
TIM_OC1Init(TIM1,&amp;TIM_OCInitStructure); //按照指定参数初始化
TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_Low; //设置输出极性
TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable; //使能该通道输出
TIM_TimeBaseStructure.TIM_RepetitionCounter=0;//重复寄存器,用于自动更新pwm占空比 TIM_TimeBaseInit(TIM1, &amp;TIM_TimeBaseStructure);
//第四步pwm输出配置
学习后发现stm32的定时器功能确实很强大,小总结一下方便以后使用的时候做参考。Stm32定时器一共分为三种:tim1和tim8是高级定时器,6和7是基本定时器,2—5是通用定时器。从名字就可以看得出来主要功能上的差异。今天我主要是用定时器做pwm输出,所以总结也主要是针对pwm方面的。
TIM_BDTRConfig(TIM1,&amp;TIM_BDTRInitStructure);
//第六步,使能端的打开
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable); //使能TIMx在CCR1上的预装载寄存器
TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器
TIM_BDTRInitStructureБайду номын сангаасTIM_DeadTime = 0x90; //死区时间设置
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable; //刹车功能使能
//第二步,配置goio口
/********TIM1_CH1 引脚配置*********/
GPIO_InitStructure2.GPIO_Pin=GPIO_Pin_8;
相关文档
最新文档