Aspen精馏塔

合集下载

Aspen简捷法精馏塔设计计算

Aspen简捷法精馏塔设计计算

例5-2 简捷法精馏设计计算
5)DSTWU模型设置
这里轻关键组分为NC4, 重关键组分为I-C5。
对于轻关键组分NC4
Recov=29.7248/30=0.9908
重关键组分为I-C5 Recov=0.2247/20=0.01124
第27页
例5-2 简捷法精馏设计计算
5) DSTWU模型设置
回流比的输入可随便输入一个值,该值如果小于Rmin,则系统安装 2Rmin作为回流比进行计算;如大于Rmin,就按照实际的值进行计 算。
第6页
5 塔Columns模块---简捷蒸馏模块
Distl(简捷法精馏核算)
Distl模型可以模拟一个带有一股进料和两种 产品的多级多组分的蒸馏塔,塔可带有分凝 器或全凝器。模型假定恒摩尔流和恒相对挥 发度。用Edimister法进行产品组成。
第7页
5 塔Columns模块---简捷蒸馏模块
Distl(简捷法精馏核算)
第2页
5 塔Columns模块
进行简捷蒸馏的模型有DSTWU, Distl和
SCFrac
进行严格的多级分离的模块有RadFrac,
MultiFrac, PetroFrac, RateFrac
用于液-液萃取塔的严格模型有Extract
第3页
5 塔Columns模块---简捷蒸馏模块 DSTWU(简捷法精馏设计) Distl(简捷法精馏核算)
第5页
5 塔Columns模块---简捷蒸馏模块
DSTWU(简捷法精馏设计)
采用Winn法估算最小级数,Underwood法估算 最小回流比,Gilliland法规定级数所必需的回 流比或规定回流比所必需的级数。
可确定最小回流比、最小级数或实际回流比、 实际级数。模型也估算最适宜的进料位置、冷 凝器和再沸器负荷。可生成回流比对于级数的 表和曲线。

aspen plus 讲义 精馏解析

aspen plus 讲义 精馏解析


1、精馏原理 2、精馏塔 3、精馏过程的节能


进行气相和液相或液相和液相间物质 传递的设备。按结构分板式塔和填料塔 两大类。板式塔内设有一定数量的塔板, 气体以鼓泡或喷射形式与塔板上液层相 接触进行物质传递。填料塔内装有一定 高度的填料,液体沿填料自上向下流动, 气体由下向上同液膜逆流接触,进行物 质传递。常应用于蒸馏、吸水、萃取等 操作中。
2、精馏塔
穿流式塔板:塔板间没有降液管,气、液 两相同时由塔板上的板上液层高度靠气体 速度维持。这种塔板结构简单,生产能力 较大,但板效率及操作弹性不及溢流塔板。
液相
穿流式塔板常见的板型有筛孔式、栅板式、 波纹板式等。
气相
2、精馏塔

2.1.2.1
泡罩塔板
( Bubble-cap Tray )
泡罩塔板1813年在工业上开始应用, 其主要元件由升气管和泡罩构成,泡 罩安装在升气管顶部,泡罩底缘开有 若干齿缝,升气管顶部应高于泡罩齿 缝的上沿,以防止液体从中漏下。 液体横向通过塔板经溢流堰流入降液 管。气体则沿升气管上升折流经泡罩 齿缝分散进入液层,形成两相混合的 鼓泡区。由于有升气管,泡罩塔板即 使在低气速下操作也不致产生严重的 漏液。泡罩塔板操作稳定,弹性大, 缺点是结构复杂,造价高,塔板压降 大,生产强度低,近几十年逐渐被筛 孔塔板、浮阀塔板等所取代。
(Jet Co-flow Valve Tray)
JCV浮阀塔板:阀笼与塔板固定,阀片在阀笼内上下浮动。它的一部分为鼓泡、 另一部分为喷射湍动传质,使分离效率和生产能力大大提高。JCV浮阀塔板具 有结构简单、阀片开启灵活、高效、高通量、寿命长、耐堵塞的特点。
JCV浮阀 (改进型双流喷射浮阀)
普通型JCV浮阀

aspen共沸精馏塔

aspen共沸精馏塔

MM "11.1" FLAVOR "NO" VERSION "11.1" DATETIME "Tue Nov 29 08:46:25 2005" MACHINE "WIN-NT/VC" ;startlibraryversion1NumLibs = 1Built-InNumCats = 9Mixers/SplittersactiveSeparatorsactiveHeat ExchangersactiveColumnsactiveReactorsactivePressure ChangersactiveManipulatorsactiveSolidsactiveUser Modelsactiveendlibrary;8>VERSION 0YT-501RadFracBuilt-InRADFRAC>VERSION 0YD-501DecanterBuilt-InDECANTER>VERSION 0YT-511RadFracBuilt-InRADFRAC>VERSION 0YE-500HeaterBuilt-InHEATER>VERSION 0YE-513HeaterBuilt-InHEATER>VERSION 0M1FSplitBuilt-InFSPLIT>VERSION 0M2FSplitBuilt-InFSPLIT>VERSION 0M3FSplitBuilt-InFSPLIT? SETUP MAIN ? \ "RUN-CLASS" RUN-CLASS = FLOWSHEET \ \ SIMULATE INTERACTIVE= NO MOLEFLOW = MOLEFLOW MASSFLOW = MASSFLOW MOLEFRAC = MOLEFRAC MASSFRAC =MASSFRAC TFFFILE = "GAS_E" VISITED = 1 \ ? SETUP GLOBAL ? \ "IN-UNITS" INSET= METCBAR \ \ "STREAM-CLASS" SCLASS = CONVEN \ ? SETUP DIAGNOSTICS ? ? SETUP"SIM-OPTIONS" ? ; "METCBAR_MOLE" ; ? SETUP "UNITS-SET" METCBAR ? \ DESCRIPTION DESCRIPTION = "Metric Units with C, BAR, MMKCAL/HR, and CUM" \ \MMLOCAL \ \ UNITSET BASESET = MET ( 3 3 3 3 3 3 3 3 3 3 3 7 7 3 3 53 3 3 5 34 3 3 3 3 1 3 3 3 4 3 7 3 3 3 1 1 4 4 3 3 3 3 3 3 3 3 3 3 3 35 3 3 3 3 3 3 33 3 34 3 3 3 3 3 3 3 3 3 35 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ) \ ? SETUP "UNITS-SET" METCKGCM ? \DESCRIPTION DESCRIPTION = "Metric Units with C, KG/SQCM, MMKCAL/HR,and CUM"\ \ MMLOCAL \ \ UNITSET BASESET = MET ( 3 3 3 3 3 3 3 3 3 3 3 7 7 3 3 5 3 3 38 3 4 3 3 3 3 1 3 3 3 4 3 7 3 3 3 3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 33 3 3 3 34 3 3 3 3 3 3 3 3 3 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ) \ ? SETUP "UNITS-SET" "SI-CBAR" ? \ DESCRIPTION DESCRIPTION = "International System Units with C, BAR, and /HR"\ \ MMLOCAL \ \ UNITSET BASESET = SI ( 1 1 1 1 1 1 1 1 1 3 3 7 1 1 1 1 1 1 15 1 4 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) \ ? SETUP "SYS-OPTIONS" ? ? SETUP"ACCOUNT-INFO" ? \ ACCOUNT USER-NAME = "LEE" \ ? SETUP "RUN-CONTROL" ? ? SETUP DESCRIPTION ? \ DESCRIP DESCRIP = ("General Simulation with Metric Units :""C, bar, kg/hr, kmol/hr, MMKcal/hr, cum/hr." " " "Property Method: None" " ""Flow basis for input: Mole" " " "Stream report composition: Mole flow" ) \ ?DATABANKS ? \ DATABANKS \ ? COMPONENTS MAIN ? \ COMPONENTS CID = H2O ANAME =H2O OUTNAME = H2O TYPE = CONV DBNAME1 = "WATER" ANAME1 = "H2O" / CID = NBAANAME = C6H12O2-1 OUTNAME = NBA TYPE = CONV DBNAME1 = "N-BUTYL-ACETATE" ANAME1 = "C6H12O2-1" / CID = HAC ANAME = C2H4O2-1 OUTNAME = HAC TYPE = CONVDBNAME1 = "ACETIC-ACID" ANAME1 = "C2H4O2-1" / CID = MA ANAME = C3H6O2-3 OUTNAME = MA TYPE = CONV DBNAME1 = "METHYL-ACETATE" ANAME1 = "C3H6O2-3" /CID = PX ANAME = C8H10-3 OUTNAME = PX TYPE = CONV DBNAME1 = "P-XYLENE" ANAME1= "C8H10-3" \ ? COMPONENTS "COMP-LIST" GLOBAL ? ? SOLVE ? ? FLOWSHEET GLOBAL? \ BLOCK BLKID = "YT-501" BLKTYPE = RADFRAC IN = ( 45A M0-1 45B M0-1 142M0-1 143 M0-1 139 M0-1 ) OUT = ( 120 M0-1 121 M2-3 ) \ \ BLOCK BLKID = "YE-513"BLKTYPE = HEATER IN = ( 126 M0-1 ) OUT = ( 140 M0-1 ) \ \ BLOCK BLKID="YE-500" BLKTYPE = HEATER IN = ( 120 M0-1 ) OUT = ( 138 M0-1 ) \ \ BLOCK BLKID = "YT-511" BLKTYPE = RADFRAC IN = ( 140 M0-1 ) OUT = ( 145 M2-3 130M3-4 131 M1-2 ) \ \ BLOCK BLKID = "YD-501" BLKTYPE = DECANTER IN = ( 138 M0-1130 M0-1 129 M0-1 ) OUT = ( "126+139" M1-2 "142+143" M0-1 ) \ \ BLOCK BLKID= M1 BLKTYPE = FSPLIT IN = ( 45 M0-1 ) OUT = ( 45A M0-1 45B M0-1 ) \ \ BLOCKBLKID = M2 BLKTYPE = FSPLIT IN = ( "142+143" M0-1 ) OUT = ( 142 M0-1 143 M0-1) \ \ BLOCK BLKID = M3 BLKTYPE = FSPLIT IN = ( "126+139" M0-1 ) OUT = ( 126M0-1 139 M0-1 ) \ \ "DEF-STREAM" SCLASS = CONVEN \ ? PROPERTIES MAIN ? \GPROPERTIES GBASEOPSET = "NRTL-HOC" GOPSETNAME = "NRTL-HOC" PARCON = -2 \ ?PROPERTIES COMPARE ? ? PROPERTIES "OPTION-SETS" NRTL ? \ PARAM BASE = NRTL \? PROPERTIES "OPTION-SETS" "NRTL-2" ? \ PARAM BASE = "NRTL-2" \ ? PROPERTIES"OPTION-SETS" "NRTL-HOC" ? \ PARAM BASE = "NRTL-HOC" \ ? PROPERTIES "MOLEC-STRUCT" H2O ? ? PROPERTIES "MOLEC-STRUCT" HAC ? ? PROPERTIES "MOLEC-STRUCT" MA ? ? PROPERTIES "MOLEC-STRUCT" NBA ? ? PROPERTIES "MOLEC-STRUCT" PX ? ? PROPERTIES REGPAR ? \ FRED REGCASE = "R-R-1" PARNAME ="NRTL" COMPI = "H2O" COMPJ = "HAC" VALUE = ( "0.E0" "0.E0" "-2.42273094E+02""4.74523263E+02" "3.00000000E-01" "0.E0" "0.E0" "0.E0" "0.E0" "0.E0" "0.E0""1.00000000E+03" ) \ ? PROPERTIES ESTIMATION ? ; "METCBAR_MOLE" ; \ DIRECTORALLONLY = NONE UNCHOICE = NO TCHOICE = NO GRPCHOICE = NO \ ? PROPERTIES PARAMETERS BINARY SCALAR "HOCETA-1" ? ; "METCBAR_MOLE" ; \ PROP-LIST PARAMNAME = HOCETA SETNO = 1 UNITROW = 0 BDBANK = ( "EOS-LIT" ) \ \ BPVALPARAMNAME2 = HOCETA CID1 = H2O CID2 = H2O VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = H2O CID2 = NBA VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = H2O CID2 = HAC VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = H2O CID2 = MA VALUE = EOS-LIT \ \ BPVAL PARAMNAME2= HOCETA CID1 = NBA CID2 = H2O VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETACID1 = NBA CID2 = NBA VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 =NBA CID2 = HAC VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = NBA CID2= MA VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = NBA CID2 = PXVALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = HAC CID2 = H2O VALUE =EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = HAC CID2 = NBA VALUE = EOS-LIT \\ BPVAL PARAMNAME2 = HOCETA CID1 = HAC CID2 = HAC VALUE = EOS-LIT \ \ BPVALPARAMNAME2 = HOCETA CID1 = HAC CID2 = MA VALUE = EOS-LIT \ \ BPVAL PARAMNAME2= HOCETA CID1 = HAC CID2 = PX VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETACID1 = MA CID2 = H2O VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = MACID2 = NBA VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = MA CID2 = HACVALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = MA CID2 = MA VALUE =EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = MA CID2 = PX VALUE = EOS-LIT \ \BPVAL PARAMNAME2 = HOCETA CID1 = PX CID2 = NBA VALUE = EOS-LIT \ \ BPVAL PARAMNAME2 = HOCETA CID1 = PX CID2 = HAC VALUE = EOS-LIT \ \ BPVAL PARAMNAME2= HOCETA CID1 = PX CID2 = MA VALUE = EOS-LIT \ ? PROPERTIES PARAMETERS BINARY SCALAR "RKTKIJ-1" ? ; "ENG_MOLE" ; \ PROP-LIST PARAMNAME = RKTKIJ SETNO = 1 UNITROW = 0 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "ANDKIJ-1"? ; "ENG_MOLE" ; \ PROP-LIST PARAMNAME = ANDKIJ SETNO = 1 UNITROW = 0TUNITROW = 22 TUNITLABEL = F NEL = 2 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "ANDMIJ-1" ? ; "ENG_MOLE" ; \ PROP-LIST PARAMNAME = ANDMIJ SETNO = 1 UNITROW = 0 TUNITROW = 22 TUNITLABEL = F NEL = 2 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "HENRY-1" ? ; "METCBAR_MOLE" ; \ PROP-LISTPARAMNAME = HENRY SETNO = 1 UNITROW = 20 UNITLABEL = bar TUNITROW = 22TUNITLABEL = C BDBANK = ( BINARY HENRY ) NEL = 6 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "NRTL-1" ? ; "METCBAR_MOLE" ; \ PROP-LIST PARAMNAME =NRTL SETNO = 1 UNITROW = 0 TUNITROW = 22 TUNITLABEL = C BDBANK = ( "VLE-IG""LLE-ASPEN" "VLE-LIT" "VLE-HOC" ) NEL = 12 \ \ BPVAL PARAMNAME2 = NRTL CID1= H2O CID2 = NBA UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = VLE-IGVAL2 = VLE-IG VAL3 = VLE-IG VAL4 = VLE-IG VAL5 = VLE-IG VAL6 = VLE-IG VAL7 =VLE-IG VAL8 = VLE-IG VAL9 = VLE-IG VAL10 = VLE-IG VAL11 = VLE-IG VAL12 =VLE-IG / PARAMNAME2 = NRTL CID1 = H2O CID2 = HAC UNITROW2 = 0 TUNITROW2 = 22TUNITLABEL2 = C VAL1 = VLE-HOC VAL2 = VLE-HOC VAL3 = VLE-HOC VAL4 = VLE-HOCVAL5 = VLE-HOC VAL6 = VLE-HOC VAL7 = VLE-HOC VAL8 = VLE-HOC VAL9 = VLE-HOC VAL10 = VLE-HOC VAL11 = VLE-HOC VAL12 = VLE-HOC / PARAMNAME2 = NRTL CID1 =NBA CID2 = HAC UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = VLE-HOC VAL2 = VLE-HOC VAL3 = VLE-HOC VAL4 = VLE-HOC VAL5 = VLE-HOC VAL6 = VLE-HOC VAL7 = VLE-HOC VAL8 = VLE-HOC VAL9 = VLE-HOC VAL10 = VLE-HOC VAL11 = VLE-HOCVAL12 = VLE-HOC / PARAMNAME2 = NRTL CID1 = H2O CID2 = MA UNITROW2 = 0TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = VLE-IG VAL2 = VLE-IG VAL3 = VLE-IG VAL4= VLE-IG VAL5 = VLE-IG VAL6 = VLE-IG VAL7 = VLE-IG VAL8 = VLE-IG VAL9 =VLE-IG VAL10 = VLE-IG VAL11 = VLE-IG VAL12 = VLE-IG / PARAMNAME2 = NRTL CID1= NBA CID2 = MA UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = VLE-IGVAL2 = VLE-IG VAL3 = VLE-IG VAL4 = VLE-IG VAL5 = VLE-IG VAL6 = VLE-IG VAL7 =VLE-IG VAL8 = VLE-IG VAL9 = VLE-IG VAL10 = VLE-IG VAL11 = VLE-IG VAL12 =VLE-IG / PARAMNAME2 = NRTL CID1 = HAC CID2 = MA UNITROW2 = 0 TUNITROW2 = 22TUNITLABEL2 = C VAL1 = VLE-HOC VAL2 = VLE-HOC VAL3 = VLE-HOC VAL4 = VLE-HOCVAL5 = VLE-HOC VAL6 = VLE-HOC VAL7 = VLE-HOC VAL8 = VLE-HOC VAL9 = VLE-HOC VAL10 = VLE-HOC VAL11 = VLE-HOC VAL12 = VLE-HOC / PARAMNAME2 = NRTL CID1 =H2O CID2 = PX UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = LLE-ASPEN VAL2 = LLE-ASPEN VAL3 = LLE-ASPEN VAL4 = LLE-ASPEN VAL5 = LLE-ASPEN VAL6 =LLE-ASPEN VAL7 = LLE-ASPEN VAL8 = LLE-ASPEN VAL9 = LLE-ASPEN VAL10 =LLE-ASPEN VAL11 = LLE-ASPEN VAL12 = LLE-ASPEN / PARAMNAME2 = NRTL CID1 = HACCID2 = PX UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = VLE-HOC VAL2 =VLE-HOC VAL3 = VLE-HOC VAL4 = VLE-HOC VAL5 = VLE-HOC VAL6 = VLE-HOC VAL7 =VLE-HOC VAL8 = VLE-HOC VAL9 = VLE-HOC VAL10 = VLE-HOC VAL11 = VLE-HOC VAL12 =VLE-HOC \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "NRTL-2" ? ; "METCBAR_MOLE" ; \ PROP-LIST PARAMNAME = NRTL SETNO = 2 UNITROW = 0 TUNITROW= 22 TUNITLABEL = C BDBANK = ( "VLE-IG" "LLE-ASPEN" "VLE-LIT" ) NEL = 12 \ \BPVAL PARAMNAME2 = NRTL CID1 = H2O CID2 = NBA UNITROW2 = 0 TUNITROW2 = 22TUNITLABEL2 = C VAL1 = VLE-IG VAL2 = VLE-IG VAL3 = VLE-IG VAL4 = VLE-IG VAL5= VLE-IG VAL6 = VLE-IG VAL7 = VLE-IG VAL8 = VLE-IG VAL9 = VLE-IG VAL10 =VLE-IG VAL11 = VLE-IG VAL12 = VLE-IG / PARAMNAME2 = NRTL CID1 = H2O CID2 =MA UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = VLE-IG VAL2 = VLE-IGVAL3 = VLE-IG VAL4 = VLE-IG VAL5 = VLE-IG VAL6 = VLE-IG VAL7 = VLE-IG VAL8 =VLE-IG VAL9 = VLE-IG VAL10 = VLE-IG VAL11 = VLE-IG VAL12 = VLE-IG / PARAMNAME2 = NRTL CID1 = H2O CID2 = PX UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = LLE-ASPEN VAL2 = LLE-ASPEN VAL3 = LLE-ASPEN VAL4 =LLE-ASPEN VAL5 = LLE-ASPEN VAL6 = LLE-ASPEN VAL7 = LLE-ASPEN VAL8 = LLE-ASPENVAL9 = LLE-ASPEN VAL10 = LLE-ASPEN VAL11 = LLE-ASPEN VAL12 = LLE-ASPEN /PARAMNAME2 = NRTL CID1 = NBA CID2 = MA UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = VLE-IG VAL2 = VLE-IG VAL3 = VLE-IG VAL4 = VLE-IG VAL5= VLE-IG VAL6 = VLE-IG VAL7 = VLE-IG VAL8 = VLE-IG VAL9 = VLE-IG VAL10 =VLE-IG VAL11 = VLE-IG VAL12 = VLE-IG \ ? PROPERTIES REGRESSION "R-1" ? \DATA-GROUPS GROUPID = "D-1" \ \ PARAMSPEC TYPE = "BI-PARAMETER" NEL = 8PARAMNAME = NRTL CIDI = H2O CIDJ = HAC ELEMNO = 2 PINIT = -242.2730940 <0><0> SCALE = 1.0 <0> <0> / TYPE = "BI-PARAMETER" NEL = 8 PARAMNAME = NRTLCIDI = HAC CIDJ = H2O ELEMNO = 2 PINIT = 474.5232630 <0> <0> SCALE = 1.0 <0><0> / TYPE = "BI-PARAMETER" NEL = 8 PARAMNAME = NRTL CIDI = H2O CIDJ = HACELEMNO = 3 PINIT = .3000000000 <0> <0> USAGE = FIX \ \ REPORT \ ? PROPERTIESDATA MIXTURE "D-1" ? ; "METCBAR_MOLE" ; \ "SYSTEM-DEF" STATESPEC = TXY CIDS= ( H2O HAC ) PRES = 760. <20> <9> \ \ "PHASE-EQ1" PEQTYPE1 = VL VLECIDS1 =( H2O HAC ) \ \ USING USE = "STD-DEV" / USE = DATA / USE = DATA / USE =DATA / USE = DATA / USE = DATA / USE = DATA / USE = DATA / USE = DATA /USE = DATA / USE = DATA / USE = DATA / USE = DATA / USE = DATA \ \ DATA 1PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE = 0.1 <0> <0> / 1 PROPLIST ="X_H2O" PROPLABEL = H2O VALUE = "0.1%" <0> <0> / 1 PROPLIST = "Y_H2O" PROPLABEL = H2O VALUE = "1%" <0> <0> / 2 PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE = 118.5 <0> <0> / 2 PROPLIST = "X_H2O" PROPLABEL = H2OVALUE = 0 <0> <0> / 2 PROPLIST = "Y_H2O" PROPLABEL = H2O VALUE = 0 <0> <0>/ 3 PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE = 109.7 <0> <0> / 3PROPLIST = "X_H2O" PROPLABEL = H2O VALUE = 0.208 <0> <0> / 3 PROPLIST ="Y_H2O" PROPLABEL = H2O VALUE = 0.331 <0> <0> / 4 PROPLIST = "TEMPERATURE_C"PROPLABEL = C VALUE = 107.2 <0> <0> / 4 PROPLIST = "X_H2O" PROPLABEL = H2OVALUE = 0.327 <0> <0> / 4 PROPLIST = "Y_H2O" PROPLABEL = H2O VALUE = 0.441<0> <0> / 5 PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE = 105.4 <0> <0>/ 5 PROPLIST = "X_H2O" PROPLABEL = H2O VALUE = 0.468 <0> <0> / 5 PROPLIST ="Y_H2O" PROPLABEL = H2O VALUE = 0.602 <0> <0> / 6 PROPLIST = "TEMPERATURE_C"PROPLABEL = C VALUE = 104.0 <0> <0> / 6 PROPLIST = "X_H2O" PROPLABEL = H2OVALUE = 0.592 <0> <0> / 6 PROPLIST = "Y_H2O" PROPLABEL = H2O VALUE = 0.713<0> <0> / 7 PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE = 102.7 <0> <0>/ 7 PROPLIST = "X_H2O" PROPLABEL = H2O VALUE = 0.688 <0> <0> / 7 PROPLIST ="Y_H2O" PROPLABEL = H2O VALUE = 0.787 <0> <0> / 8 PROPLIST = "TEMPERATURE_C"PROPLABEL = C VALUE = 101.7 <0> <0> / 8 PROPLIST = "X_H2O" PROPLABEL = H2OVALUE = 0.779 <0> <0> / 8 PROPLIST = "Y_H2O" PROPLABEL = H2O VALUE = 0.852<0> <0> / 9 PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE = 101.5 <0> <0>/ 9 PROPLIST = "X_H2O" PROPLABEL = H2O VALUE = 0.845 <0> <0> / 9 PROPLIST ="Y_H2O" PROPLABEL = H2O VALUE = 0.895 <0> <0> / 10 PROPLIST = "TEMPERATURE_C"PROPLABEL = C VALUE = 100.9 <0> <0> / 10 PROPLIST = "X_H2O" PROPLABEL = H2OVALUE = 0.884 <0> <0> / 10 PROPLIST = "Y_H2O" PROPLABEL = H2O VALUE = 0.918<0> <0> / 11 PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE = 100.7 <0> <0>/ 11 PROPLIST = "X_H2O" PROPLABEL = H2O VALUE = 0.919 <0> <0> / 11 PROPLIST= "Y_H2O" PROPLABEL = H2O VALUE = 0.943 <0> <0> / 12 PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE = 100.3 <0> <0> / 12 PROPLIST = "X_H2O"PROPLABEL = H2O VALUE = 0.97 <0> <0> / 12 PROPLIST = "Y_H2O" PROPLABEL = H2OVALUE = 0.978 <0> <0> / 13 PROPLIST = "TEMPERATURE_C" PROPLABEL = C VALUE =100.2 <0> <0> / 13 PROPLIST = "X_H2O" PROPLABEL = H2O VALUE = 0.987 <0> <0>/ 13 PROPLIST = "Y_H2O" PROPLABEL = H2O VALUE = 0.991 <0> <0> / 14 PROPLIST= "TEMPERATURE_C" PROPLABEL = C VALUE = 100 <0> <0> / 14 PROPLIST = "X_H2O"PROPLABEL = H2O VALUE = 1 <0> <0> / 14 PROPLIST = "Y_H2O" PROPLABEL = H2OVALUE = 1 <0> <0> \ ? "PROP-SET" MAIN HXDESIGN ? ; "SI_MOLE" ; \ P1 ID =MASSVFRA \ \ P1 ID = MASSFLMX UNITS = ( "kg/sec" ) \ \ P1 ID = HMX UNITS= ("J/kg" ) \ \ P1 ID = RHOMX UNITS = ( "kg/cum" ) \ \ P1 ID = CPMX UNITS = ("J/kg-K" ) \ \ P1 ID = PCMX UNITS = ( "N/sqm" ) \ \ P1 ID = MUMX UNITS = ("N-sec/sqm" ) \ \ P1 ID = KMX UNITS = ( "Watt/m-K" ) \ \ P1 ID = SIGMAMX UNITS = ( "N/m" ) \ \ P1 ID = MWMX \ \ P2 PHASE = ( T V L ) \ \ DESCRIPTION DESCRIPTION = "Thermal and transport, for heat exchanger design" \ ? "PROP-SET"MAIN THERMAL ? ; "METCBAR_MOLE" ; \ P1 ID = HMX UNITS = ( "cal/gm" ) \ \ P1ID = CPMX UNITS = ( "cal/gm-K" ) \ \ P1 ID = KMX \ \ P2 SUBSTREAM = MIXEDPHASE = ( V L ) \ \ DESCRIPTION DESCRIPTION ="Enthalpy, heat capacity, and themral conductivity" \ ? "PROP-SET" MAIN TXPORT ? ; "METCBAR_MOLE" ; \ P1 ID = RHOMX UNITS = ( "kg/cum" ) \ \ P1 ID =MUMX \ \ P1 ID = SIGMAMX \ \ P2 SUBSTREAM = MIXED PHASE = ( V L ) \ \DESCRIPTION DESCRIPTION = "Density, viscosity, and surface tension" \ ?"PROP-SET" MAIN VLE ? ; "METCBAR_MOLE" ; \ P1 ID = PHIMX \ \ P1 ID = GAMMA \\ P1 ID = PL \ \ P2 SUBSTREAM = MIXED PHASE = ( V L ) \ \ DESCRIPTION DESCRIPTION = "Fugacity, activity, and vapor pressure" \ ? "PROP-SET" MAINVLLE ? ; "METCBAR_MOLE" ; \ P1 ID = PHIMX \ \ P1 ID = GAMMA \ \ P1 ID = PL \\ P2 SUBSTREAM = MIXED PHASE = ( V L1 L2 ) \ \ DESCRIPTION DESCRIPTION ="Fugacity, activity, and vapor pressure" \ ? "STREAM-NAMES" ? ? STREAM MATERIAL 45 ? ; "METCBAR_MOLE" ; \ SUBSTREAM SSID = MIXED TEMP = 70.<22> <4>PRES = 4.6 <20> <5> BASIS = "MASS-FLOW" TOTAL = 19672. <-80> <0> JUNK = 3 \ \MOLE-FLOW SSID1 = MIXED CID = H2O FLOW = 10918. <-80> <3> / SSID1 = MIXEDCID = HAC FLOW = 8647. <-80> <3> / SSID1 = MIXED CID = MA FLOW = 107. <-80><3> \ ? STREAM MATERIAL "126+139" ? ; "METCBAR_MOLE" ; \ SUBSTREAM SSID =MIXED TEMP = 40. <22> <4> PRES = 1. <20> <3> BASIS = "MASS-FLOW" TOTAL =11547. <-80> <0> JUNK = 4 \ \ MOLE-FLOW SSID1 = MIXED CID = H2O FLOW= 11128.<-80> <3> / SSID1 = MIXED CID = NBA FLOW = 280. <-80> <3> / SSID1 = MIXEDCID = HAC FLOW = 11. <-80> <3> / SSID1 = MIXED CID = MA FLOW = 128. <-80><3> \ ? STREAM MATERIAL 129 ? ; "METCBAR_MOLE" ; \ SUBSTREAM SSID = MIXEDTEMP = 30. <22> <4> PRES = 1. <20> <3> BASIS = "MASS-FLOW" TOTAL = 4.01 <-80><0> JUNK = 2 \ \ MOLE-FLOW SSID1 = MIXED CID = NBA FLOW = 4. <-80> <3> /SSID1 = MIXED CID = PX FLOW = 0.01 <-80> <3> \ ? STREAM MATERIAL "142+143" ?; "METCBAR_MOLE" ; \ SUBSTREAM SSID = MIXED TEMP = 40. <22> <4> PRES = 1.2<20> <3> BASIS = "MASS-FLOW" TOTAL = 31863. <-80> <0> JUNK = 4 \ \ MOLE-FLOWSSID1 = MIXED CID = H2O FLOW = 838. <-80> <3> / SSID1 = MIXED CID = NBA FLOW= 28776. <-80> <3> / SSID1 = MIXED CID = MA FLOW = 393. <-80> <3> / SSID1= MIXED CID = PX FLOW = 1856. <-80> <3> \ ? BLOCK FSPLIT M1 ? ; "METCBAR_MOLE"; ; DOT ; \ PARAM SID = 45A FRAC = 0.5 <0> <0> / SID = 45B \ \ STREAM-ORDER ORDER-STREAM = 45A / ORDER-STREAM = 45B \ ? BLOCK FSPLIT M2 ? ; "METCBAR_MOLE"; ; DOT ; \ PARAM SID = 142 FRAC = 0.9 <0> <0> / SID = 143 \ \ STREAM-ORDER ORDER-STREAM = 142 / ORDER-STREAM = 143 \ ? BLOCK FSPLIT M3 ? ; "METCBAR_MOLE"; ; DOT ; \ PARAM SID = 126 / SID = 139 FRAC = 0.048 <0> <0> \ \ STREAM-ORDER ORDER-STREAM = 126 / ORDER-STREAM = 139 \ ? BLOCK HEATER "YE-500"? ; "METCBAR_MOLE" ; ; HEATER ; \ PARAM TEMP = 40. <22> <4> PRES = 1.02 <20><5> \ ? BLOCK HEATER "YE-513" ? ; "METCBAR_MOLE" ; ; HEATER ; \ PARAM TEMP =65. <22> <4> PRES = 0.029 <20> <23> \ ? BLOCK DECANTER "YD-501" ? ; "METCBAR_MOLE" ; ; "H-DRUM" ; \ PARAM TEMP = 40. <22> <4> PRES = 1.<20> <3>KLL-CORR = PROPOPTSET LL-METH = "EQ-SOLVE" L2-COMPS = ( H2O ) \ \ PROPERTIESOPSETNAME = NRTL \ \ "BLOCK-OPTION" BLKOPFREWAT = NO \ ? BLOCK RADFRAC "YT-501"? ; "METCBAR_MOLE" ; ; STRIP1 ; \ PARAM NSTAGE = 60 ALGORITHM = NONIDEALEFF= MURPHREE INIT-OPTION = AZEOTROPIC MAXOL = 200 GAMMA-MODEL = COMBINED NO-PHASE = 2 DAMPING = NONE OPT-PRES = "DP-COL" VIEW-PRES = PROFILE CONV-METH= OTHERS \ \ "COL-CONFIG" CONDENSER = NONE REBOILER = THERMOSYPHON \ \ FEEDSFEED-SID = 45A FEED-STAGE = 30 / FEED-SID = 45B FEED-STAGE = 37 / FEED-SID= 142 FEED-STAGE = 1 / FEED-SID = 143 FEED-STAGE = 22 / FEED-SID = 139FEED-STAGE = 1 \ \ PRODUCTS PROD-STREAM = 120 PROD-STAGE = 1 PROD-PHASE = VP-S = N / PROD-STREAM = 121 PROD-STAGE = 60 PROD-PHASE = L P-S = N \ \P-SPEC PRES-STAGE = 1 STAGE-PRES = 1.02 <20> <5> / PRES-STAGE = 60 STAGE-PRES = 1.25 <20> <5> \ \ "P-SPEC2" PRES1 = 1.02 <20> <5> \ \ "COL-SPECS"DP-COL = 0.23 <75> <5> BASIS-RDV = 1.0 <0> <0> B-BASIS = MASS BASIS-B = 9192.<-80> <3> \ \ "DB:F-PARAMS" DB-STREAMS = ( 45A 45B ) DB-COMPS = ( HAC ) \ \THERMOSYPHON TH-TEMP = 120. <22> <4> TH-BASIS = MASS OPT-TH-REB = OUTLET \ \STAGE-EFF SEFF-STAGE = 1 STAGE-EFF = 0.6 <0> <0> / SEFF-STAGE = 60 STAGE-EFF= 0.6 <0> <0> \ \ T-EST TEMP-STAGE = 1 TEMP-EST = 90. <22> <4> / TEMP-STAGE= 60 TEMP-EST = 118. <22> <4> \ \ SPEC SPEC-NO = 1 SPEC-TYPE = "MASS-FLOW" VALUE = 11. <0> <0> SPEC-COMPS = ( HAC ) SPEC-STREAMS = ( 120 ) SPEC-HIDE =HIDDEN \ \ VARY VARY-NO = 1 VARTYPE = D LB = 30000. <0> <0> UB = 50000.<0><0> VARY-HIDE = HIDDEN \ \ "KLL-VECS" \ \ "BLOCK-OPTION" BLKOPFREWAT = NO \ \"TRSZ-VECS" \ \ "PCKSR-VECS" \ ? BLOCK RADFRAC "YT-511" ? ; "METCBAR_MOLE" ;; FRACT1 ; \ PARAM NSTAGE = 25 ALGORITHM = NONIDEAL EFF = MURPHREE INIT-OPTION = STANDARD MAXOL = 100 GAMMA-MODEL = COMBINED NO-PHASE = 2DAMPING = NONE OPT-PRES = "DP-COL" VIEW-PRES = PROFILE CONV-METH = OTHERS \ \"COL-CONFIG" CONDENSER = TOTAL REBOILER = THERMOSYPHON \ \ FEEDS FEED-SID =140 FEED-STAGE = 13 \ \ PRODUCTS PROD-STREAM = 145 PROD-STAGE = 25PROD-PHASE= L P-S = N / PROD-STREAM = 130 PROD-STAGE = 7 PROD-PHASE = L FLOW-BASIS =MASS PROD-FLOW = 510. <-80> <3> / PROD-STREAM = 131 PROD-STAGE = 1 PROD-PHASE = L P-S = N \ \ P-SPEC PRES-STAGE = 1 STAGE-PRES = 1.01 <20> <5>/ PRES-STAGE = 25 STAGE-PRES = 1.22 <20> <5> \ \ "P-SPEC2" PRES1 = 1.01 <20><5> \ \ "COL-SPECS" DP-COL = 0.21 <75> <5> BASIS-RDV = 0.0 <0> <0> D-BASIS =MASS BASIS-D = 97. <-80> <3> RR-BASIS = MASS BASIS-RR = 30. <0> <0> \ \"DB:F-PARAMS" DB-STREAMS = ( 140 ) DB-COMPS = ( MA ) \ \ "SC-REFLUX" SC-TEMP= 40. <22> <4> \ \ THERMOSYPHON TH-TEMP = 106. <22> <4> OPT-TH-REB = OUTLET\ \ STAGE-EFF SEFF-STAGE = 1 STAGE-EFF = 0.9 <0> <0> / SEFF-STAGE = 2STAGE-EFF = 0.6 <0> <0> / SEFF-STAGE = 25 STAGE-EFF = 0.6 <0> <0> \ \ T-ESTTEMP-STAGE = 7 TEMP-EST = 92. <22> <4> / TEMP-STAGE = 25 TEMP-EST = 105.3<22> <4> \ \ "KLL-VECS" \ \ "BLOCK-OPTION" BLKOPFREWAT = NO \ \ "TRSZ-VECS" \\ "PCKSR-VECS" \ ? "EO-CONV-OPTI" ? \ DMO-PARAMS MODE = DEFAULT \ \ DMO-PARAMS MODE = SIMULATION \ \ DMO-PARAMS MODE = "PARAMETER-ESTIMATION" \ \DMO-PARAMS MODE = RECONCILIATION \ \ DMO-PARAMS MODE = OPTIMIZATION \ \LSSQP-PARAMS MODE-L = DEFAULT \ \ LSSQP-PARAMS MODE-L = SIMULATION \ \LSSQP-PARAMS MODE-L = "PARAMETER-ESTIMATION" \ \ LSSQP-PARAMS MODE-L =RECONCILIATION \ \ LSSQP-PARAMS MODE-L = OPTIMIZATION \ ? "CONV-OPTIONS" ? \WEGSTEIN WEG-MAXIT = 30 \ ? CONVERGENCE BROYDEN "C-1" ? \ TEAR SID = "142+143"/ SID = "126+139" \ \ PARAM MAXIT = 30 \ ? "CONV-ORDER" ? ? SEQUENCE "S-1" ?\ SEQUENCE BLOCK-TYPE = BLOCK BLOCK-ID = M1 / RETURN = BEGIN BLOCK-TYPE =CONVERGENCE BLOCK-ID = "C-1" / BLOCK-TYPE = BLOCK BLOCK-ID = M2 / BLOCK-TYPE = BLOCK BLOCK-ID = M3 / BLOCK-TYPE = BLOCK BLOCK-ID = "YT-501" /BLOCK-TYPE = BLOCK BLOCK-ID = "YE-500" / BLOCK-TYPE = BLOCK BLOCK-ID ="YE-513" / BLOCK-TYPE = BLOCK BLOCK-ID = "YT-511" / BLOCK-TYPE = BLOCK BLOCK-ID = "YD-501" / RETURN = RETURNTO BLOCK-TYPE = CONVERGENCE BLOCK-ID ="C-1" \ ? REPORT REPORT ? ? REPORT "BLOCK-REPORT" ? ? REPORT "STREAM-REPOR" ?\ OPTIONS MOLEFLOW = MOLEFLOW MASSFLOW = MASSFLOW MOLEFRAC = MOLEFRAC MASSFRAC = MASSFRAC \ ? REPORT "FLOWSHEET-RE" ? ? REPORT "PROPERTY-REP" ? \OPTIONS PCES = PCES PROP-DATA = "NOPROP-DATA" DFMS = NODFMS \ ? REPORT "ADA-REPORT" ? ? REPORT "BATCH-OPERAT" ? ; "METCBAR_MOLE" ;GRAPHICS_BACKUPPFS V 5.00$CONFIGparamdata ENRTL-RKparamdata VLE-IGparamdata VLE-RKparamdata VLE-HOCparamdata LLE-LITparamdata LLE-ASPENparamdata VLE-LITparamdata BINARYparamdata EOS-LITparamdata HENRYpurebank PURE11purebank AQUEOUSpurebank SOLIDSpurebank INORGANICregdbank 1ftn_check 1autoblockid 0autostreamid 0showblockid 1showstreamid 1autoplacement 1grid 2gridresolution 0.100000scale 0streamprefixblockprefix Blabelscale 1.000000qwformat %.3ftempformat %.1fpresformat %.1fflowformat %.1f strmqwformat %.0f vflowformat %.0f mflowformat %.1f vfracformat %.2f pseudobatch 0partial 0animation 1runanyway 0tooldrawvisible 0 browserheight 6465 browserwidth 10770 browsertreewidth 3810 polyplusenabled 1 dynaplusenabled 1 bfracenabled 1rtfenabled 1pinchenabled 0linklimit 500material_color 0material_style 983041 material_width 1material_termidheat_color 0heat_style 983042heat_width 1heat_termid Qwork_color 0work_style 983043work_width 1work_termid Wconnections_color 9 connections_style 983044 connections_width 1 measurements_color 4 measurements_style 983044 measurements_width 1 displayeoconn 0 displayeomeas 1 displayeomeastype 2 showeoviews 0eoautosave 1。

甲醇装置预精馏塔Aspen模拟任务书

甲醇装置预精馏塔Aspen模拟任务书

甲醇装置预精馏塔Aspen模拟任务书一、模拟计算依据:1、原料处理量:学号后三位XXX × 100 kg/h;2、粗甲醇液进料组成如表1所示(质量分数);进料条件为:液相进料温度60℃,进料压力140kPa,塔顶(分凝器气相出料)冷凝器压力130kPa,再沸器压力150kPa;3、分离要求:塔顶甲酸甲酯摩尔回收率为99.99%,塔顶甲醇摩尔回收率为0.7%。

4、物性方法:BWRS表1 进料组成表二、任务1、按计算依据,用简捷法(DSTWU模块)模拟计算预精馏塔以分离粗甲醇中的轻组分(建议实际回流比取最小回流比的1.5倍)。

2、在简捷模拟计算中,通过回流比随理论板数变化曲线,确定适宜回流比、理论板数。

及相应的进料位置、塔顶产品与进料的摩尔流量比(D/F)、最小回流比、最小理论板数、实际理论板数、进料位置以及塔顶温度。

3、根据简捷计算的结果,利用严格法(RadFrac模块)对预精馏塔进行严格计算,进料条件、冷凝器形式、冷凝器压力、再沸器压力、再沸器采用釜式再沸器、产品纯度要求以及物性方法与简捷法相同,用严格法核算任务2中的结果(简捷计算结果)是否达到回收率要求。

4、通过严格法(RadFrac模块)设计规定功能,调整回流比、馏出与进料量比以达到分离要求;5、通过Aspen灵敏度分析功能,在严格法中求取回流比随理论板数据的变化曲线,重新确定适宜回流比、理论板数。

6、绘制塔内温度分布曲线、塔内液相质量组成分布曲线、塔内的气相组成分布曲线。

7、书写模拟报告。

以下为选做部分(评优学生必做)6-1、通过Aspen灵敏度分析功能,在严格法中求取进料板位置与再沸器热负荷的关系曲线,重新确定进料板位置。

6-2、设实际塔板的塔板默弗里效率为60%,在严格法中重新设定塔板数、进料板位置;然后在严格法中初步设定塔板类型为浮阀,查看塔板的水力学性质;6-3、对塔进行校核计算,确定塔的结构尺寸、水力学性能、负荷性能。

Aspen plus模拟精馏塔说明书

Aspen plus模拟精馏塔说明书

Aspen plus模拟精馏塔说明书一、设计题目根据以下条件设计一座分离甲醇、水、正丙醇混合物的连续操作常压精馏塔:生产能力:100000吨精甲醇/年;原料组成:甲醇70%w,水%w,丙醇%w;产品组成:甲醇≥%w;废水组成:水≥%w;进料温度:;全塔压降:;所有塔板Murphree 效率。

二、设计要求对精馏塔进行详细设计,给出下列设计结果并利用AutoCAD绘制塔设备图,并写出设计说明。

(1).进料、塔顶产物、塔底产物、侧线出料流量;(2).全塔总塔板数N;最佳加料板位置N F;最佳侧线出料位置N P;(3).回流比R;(4).冷凝器和再沸器温度、热负荷;(5).塔内构件塔板或填料的设计。

三、分析及模拟流程1.物料衡算(手算)目的:求解Aspen 简捷设计模拟的输入条件。

内容:(1)生产能力:一年按8000 hr计算,进料流量为100000/(8000*= t/hr。

(2)原料、塔顶与塔底的组成(题中已给出):原料组成:甲醇70%w,水%w,丙醇%w;产品:甲醇≥%w;废水组成:水≥%w。

(3).温度及压降:进料温度:;全塔压降:;所有塔板Murphree 效率。

2.用简捷模块(DSTWU)进行设计计算目的:对精馏塔进行简捷计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、理论板数和加料板位置。

3.灵敏度分析目的:研究回流比与塔径的关系(N T-R),确定合适的回流比与塔板数;研究加料板位置对产品的影响,确定合适的加料板位置。

方法:作回流比与塔径的关系曲线(N T-R),从曲线上找到期望的回流比及塔板数。

4. 用详细计算模块(RadFrac)进行计算目的:精确计算精馏塔的分离能力和设备参数。

方法:用RadFrac模块进行精确计算,通过设计规定(Design Specs)和变化(Vary)两组对象进行设定,检验计算数据是否收敛,计算出塔径等主要尺寸。

5. 塔板设计目的:通过塔板设计(Tray sizing)计算给定板间距下的塔径。

aspen精馏塔设计

aspen精馏塔设计

2)输入 C3H6
2)点击 Find now
输入组分,1)点击 Find 选 DSTWU
1)输入 C3H6
选择
点 Add
` 点击 下拉菜单, 选择物性方法
`
点击 打开物性 方法对话框
` ` 然后点next按钮, 一直点击,系统 会自动调入所需 的物性数据
从下拉菜单中 选择 CHAOSEA物性方法
输入完后,一直点 按钮,运行软件。 运行完后,点 按钮,察看结果。
` `
根据DSTWU模型计算的结果,得到 回流比R,理论板N,进料位置FN,采出量D 选择RadFrac模块,进行严格计算。
`
`
`
`
`
运行软件,检查结果,看分离是否满足要求。
若不满足设计要求,可改变回流比、采出量、 进料位置。 也可以采用designe规定,
精馏塔设计
要求设计一个精馏塔,实现丙烷和丁烷的分 离。 进料温度323k 压力 20atm 进料量 1kmol/sec 进料组成(wt%) 分离目标 丙烷 0.4 塔顶 丙烷> 99% 丁烷 0.6 塔釜 丁烷>99%
先用DSTWU求最小理论板数和回流比
点击
选择基 本单位
先点击 Report Option,再点Stream,然后选择 mass,和mass fraction
`
结果是否满足设计要求。
使用设计规定
`
`
`
1)先点 Design Specs, 2) 再点new;3)点对话 框中的ok
从类型的下拉菜单中选择mass purity
` ` `
运行后,查看结果。
`
`
塔径计算 Pack sizing
` ` `

Aspen简捷法精馏塔设计计算解析

Aspen简捷法精馏塔设计计算解析

第 9页
5 塔Columns模块---简捷蒸馏模块
SCFrac (简捷法多塔蒸馏)
对每个塔段必需规定产品压力和基于进料流率
的产品流率或分率,对所有产品,除馏出物外 必须规定蒸汽与产品的比值。
计算中由于进行蒸汽计算,所以水必须被定义
为一个组分。所以水都与塔顶产品一起离开。
该模型不能处理固体,游离水计算可在冷凝器
5 简捷法精馏塔设计计算
1
第 1页
5 塔Columns模块
塔设备是化工生产中应用最为广泛的操作设备 之一,通常在其中进行蒸馏(精馏)、吸收和 萃取单元操作。吸收和蒸馏实际都是气液相平 衡的单元操作,只是蒸馏过程的热量平衡相对 更为复杂。
对塔设备可分为三大类:简捷法计算的蒸馏塔 、严格法计算的蒸馏塔和液-液萃取塔三类。
第 6页
5 塔Columns模块---简捷蒸馏模块
Distl(简捷法精馏核算)
Distl模型可以模拟一个带有一股进料和两种 产品的多级多组分的蒸馏塔,塔可带有分凝 器或全凝器。模型假定恒摩尔流和恒相对挥 发度。用Edimister法进行产品组成。
第 7页
5 塔Columns模块---简捷蒸馏模块
中完成。
第10页
5 塔Columns模块---简捷蒸馏模块
SCFrac (简捷法多塔蒸馏)
SCFrac估算:
产品组成和流率
每一段的级数
每一段的热或冷负荷
该模型不能处理固体,游离水计算可在冷凝器 中完成。
第11页
例5-1 简捷法精馏设计计算
• 利用精馏方法对附表中进料流 股进行分离,其压强为445830 Pa, 处于饱和液体状态。规定 该分离操作的轻、重关键组分 分别为N-Butane和I-Pentane, 塔顶产品中轻、重关键组分的 回收率(recovery)分别为0.99 08和0.0112,并规定操作采用 回流比为最小回流比的1.8倍。 体系热力学性质计算采用“SR K”模型方程。 试确定:该条件下的最小回流 比、理论板数、最小理论板数 及适宜的进料位置。 组分 Propane I-Butane N-Butane I-Pentane 流量 / kmol/s 0.0006 0.0013 0.0038 0.0025

14-ASPEN_酯化反应精馏-动力学

14-ASPEN_酯化反应精馏-动力学

酯化反应精馏塔的模拟计算
一、工艺流程简述
酯化反应精馏塔,其工流流程如图26-1所示,在精馏塔内乙酸与乙醇发生酯化反应,生成乙酸乙酯和水,该反应为可逆反应。

图26-1 酯化反应精馏塔模拟计算流程图
二、需要输入的主要参数
1、 装置进料数据
表26.1 进料数据
物流号 FEED
温度,℃ 70
压力,atm 5.0 组份流量,kmol/h
乙酸(AA) 50
乙醇(ETOH) 50
2、 单元操作参数
DA501塔操作压力atm 1.00
全塔压降MPa 0.03
理论板数 15
进料板7
冷凝器类型 全凝器
塔顶产品 30kmol/h
回流比 0.70
3、反应数据
乙酸(AA)+乙醇(ETOH)←→乙酸乙酯(EA)+水
正反应
R=1.9E8-5.95E7/RT[AA][ETOH]
逆反应
R=5.0E7-5.95E7/RT[AA][ETOH]
浓度单位 kmol/m3
反应速率单位 kmol/m3.S
活化能J/kmol
液相反应,滞液量再沸器1.0L,其它板0.3L.
三、软件版本
采用ASPEN PLUS 软件V7.2版本,保存文件名KINETICS.APW。

ASPEN软件进行精馏塔设计

ASPEN软件进行精馏塔设计

1引言1.1ASPEN‎PLUS概‎述Aspen‎Plus是‎大型通用流‎程模拟系统‎,源于美国能‎源部七十年‎代后期在麻‎省理工学院‎(MIT)组织的会战‎,开发新型第‎三代流程模‎拟软件。

该项目称为‎“过程工程的‎先进系统”(Advan‎c ed Syste‎m for Proce‎s s Engin‎e erin‎g,简称ASP‎E N),并于198‎1年底完成‎。

1982年‎为了将其商‎品化,成立了As‎p enTe‎c h公司,并称之为A‎s pen Plus。

该软件经过‎20多年来‎不断地改进‎、扩充和提高‎,已先后推出‎了十多个版‎本,成为举世公‎认的标准大‎型流程模拟‎软件,应用案例数‎以百万计。

全球各大化‎工、石化、炼油等过程‎工业制造企‎业及著名的‎工程公司都‎是Aspe‎n Plus 的‎用户。

1.2精馏塔概述‎精馏塔是进‎行精馏的一‎种塔式汽液‎接触装置,又称为蒸馏‎塔。

有板式塔与‎填料塔两种‎主要类型。

根据操作方‎式又可分为‎连续精馏塔‎与间歇精馏‎塔。

蒸气由塔底‎进入。

蒸发出的气‎相与下降液‎进行逆流接‎触,两相接触中‎,下降液中的‎易挥发(低沸点)组分不断地‎向气相中转‎移,气相中的难‎挥发(高沸点)组分不断地‎向下降液中‎转移,气相愈接近‎塔顶,其易挥发组‎分浓度愈高‎,而下降液愈‎接近塔底,其难挥发组‎分则愈富集‎,从而达到组‎分分离的目‎的。

由塔顶上升‎的气相进入‎冷凝器,冷凝的液体‎的一部分作‎为回流液返‎回塔顶进入‎精馏塔中,其余的部分‎则作为馏出‎液取出。

塔底流出的‎液体,其中的一部‎分送入再沸‎器,加热蒸发成‎气相返回塔‎中,另一部分液‎体作为釜残‎液取出。

1.2.1 精馏塔的分‎类气-液传质设备‎主要分为板‎式塔和填料‎塔两大类。

精馏操作既‎可采用板式‎塔,也可采用填‎料塔,填料塔的设‎计将在其他‎分册中作详‎细介绍,故本书将只‎介绍板式塔‎。

板式塔为逐‎级接触型气‎-液传质设备‎,其种类繁多‎,根据塔板上‎气-液接触元件‎的不同,可分为泡罩‎塔、浮阀塔、筛板塔、穿流多孔板‎塔、舌形塔、浮动舌形塔‎和浮动喷射‎塔等多种。

ASPEN软件进行精馏塔设计

ASPEN软件进行精馏塔设计

1引言1.1ASPEN PLUS概述Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。

该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。

1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。

该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus 的用户。

1.2精馏塔概述精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入。

蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。

由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。

1.2.1 精馏塔的分类气-液传质设备主要分为板式塔和填料塔两大类。

精馏操作既可采用板式塔,也可采用填料塔,填料塔的设计将在其他分册中作详细介绍,故本书将只介绍板式塔。

板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。

板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。

Aspen影响精馏塔操作的因素

Aspen影响精馏塔操作的因素

12.什么是强制回流?什么是自然回 流?各有什么优缺点?
用泵打入塔内进行回流,回流冷凝器不需
要安装在塔顶的回流方式称强制回流。回 流冷凝器安装在塔顶的回流液借重力回流 到塔内的回流方式称自然回流。
优缺点
强制回流的量稳定,容易调节,生产不正
常时扭转起来快,厂房不要高的框架结构, 塔很高采用强制回流,安装方便。但强制 回流需回流泵,动力消耗大,特别是低沸 点的物料容易造成泵不上量。自然回流操 作简单,不要回流泵,节省能源。但回流 量随塔压的变化而变化,回流比不严格, 生产不正常时扭转起来慢,厂房需框架结 构。
6.塔顶冷剂量的大小对精馏操作有 何影响?
塔顶冷剂量的大小会引起回流量和回流温
度的变化。冷剂量加大,回流量也加大, 塔顶温度下降;冷剂量减小,回流量也减 小,会引起顶温上升,因 此, 塔顶冷剂 量要适当。
7.塔顶取出量的大小对精馏操作有 何影响?
塔顶取出量的大小与进料量有着密切关系:
进料量增大或减小,取出量也相应增大或 减小,这样才能保持搭内固定的回流比, 维持塔的正常操作。如果进料不变,增加 塔顶取出量,会引起回流比减小,操作压 力下降,使重组分带到塔顶,引起产品不 合格。减小取出量,会引起回流比增大, 塔内的物料增多,上升蒸汽速度增大,塔 顶与塔釜压差增大,时间长了会引起液泛, 从而导致塔釜产品不合格。
9.什么是加压精馏?
塔顶压力高于大气压力下操作的精馏过程
叫加压精馏。加压精馏常用于被分离混合 物的沸点较低的情况。如在常温常压下, 混合物为气态的物料,采用加压精馏。因 为就精馏过程说,获得高压比低压在设备 和能耗方面更为经济一些。
10.什么是减压精馏?
塔顶压力低于大气压的精馏操作过程,叫

Aspen简捷法精馏塔设计计算

Aspen简捷法精馏塔设计计算
在冷凝器中完成。
例5-1 简捷法精馏设计计算
• 利用精馏方法对附表中进料流 股进行分离,其压强为445830 , 处于饱和液体状态。规定该
分离操作的轻、重关键组分分
别为和,塔顶产品中轻、重关 键组分的回收率()分别为0.9 908和0.0112,并规定操作采用 回流比为最小回流比的1.8倍。 体系热力学性质计算采用“” 模型方程。
• 灵敏度分析定义方法:

(模型分析工具)
• (灵敏度分析)
• 灵敏度分析对象管理器
例5-3 灵敏度分析
例5-3 以例5-2为基础,由灵敏度分析工具,考 察回流比的变化对实际塔板数的影响。 灵敏度分析定义方法: 1)定义目标变量 2)定义自变量 3)规定表格
例5-3 灵敏度分析
例5-3 灵敏度分析
1)定义因变量( )
例5-3 灵敏度分析
1)定义因变量( )
例5-3 灵敏度分析
2)定义自变量()回流比()自1.4-10,步长为0.5变化
例5-3 灵敏度分析
3)规定表格()规定需要软件计算的变量列表
例5-3 灵敏度分析
5 塔模块简捷蒸馏模块
➢(简捷法精馏核算)
➢ 模型可以模拟一个带有一股进料和两
种产品的多级多组分的蒸馏塔,塔可带有 分凝器或全凝器。模型假定恒摩尔流和恒 相对挥发度。用法进行产品组成。
5 塔模块简捷蒸馏模块
➢(简捷法精馏核算) ➢模型必需规定: ➢理论板数 ➢回流比 ➢塔顶产品流率 ➢其他相关的塔设备参数等 ➢可规定一个部分的或全部冷凝器。
例5-1 简捷法精馏设计计算
3) 组分输入
例5-1 简捷法精馏设计计算
4) 进料流股参数设置
例5-1 简捷法精馏设计计算

aspen精馏塔讲义(个人总结)

aspen精馏塔讲义(个人总结)
102
T-xy d i ag ram for C 2H 5O H /H 2O
x 1. 0133 b ar
100
y 1. 0133 b ar
98
96
94
92
90
恒沸组成为乙 醇为0.89,恒 沸温度为78℃
Tem p eratu re,C
88
86
84
82
80
78℃
0. 05 0. 10 0. 15 0. 20 0. 25 0. 30 0. 35 0. 40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 90 0. 95 1. 00 Li q ui d /vap o r m o l e fracti o n,C2H 5O H
总塔板数 (NT)
余下3个独立 变量从中任选
塔顶与塔釜摩尔量之比(D/W) 1
Tips 2
多元组分的分离(distill专用软件):以三元组分C4,C5,C6的正构烷烃分离为例
Tips 3
命名(Rename):流股、模块、组分 ◆在一些大型的全厂规模的模拟中算例中有着众多
的装置、流股、组分,因此对单元、物流和组分的 做出合理的规划很重要,设计时能够便利许多。
定义因 变量
定义自变量 回流比RR
利润函数表达式
指定馏出 物浓度规 定
定义自变量 塔顶馏出物D
指定组分
指定目标组 分 7
设计规定(Design Spec/Vary)收敛问题
对于需要调节多个操纵变量以达到精馏塔设计目标函数的要求,需要设定多个 设计规定,若同时进行联立操作则容易导致过程不收敛因而找不到合适的解, 或者得到依初始条件而定的多重解,对于此类问题通常比较好的方法是:让程 序一次只对一个变量收敛,而不是同时求解多个变量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:设计一个脱乙烷精馏塔,进料流量为100kmol/hr ,进料摩尔分数:氢气0.00014、甲烷0.0016、乙烯0.75746、丙烯0.00075、乙烷0.24003.进料压力18atm ,泡点进料,要求乙烯在塔顶的回收率达到0.95,并且塔顶的流出物中乙烯的纯度达到0.99,塔顶设一全凝器,操作压力为17.8atm ,塔釜有再沸器,操作压力为18.2atm ,回流比取3,热力学模型选reng-robinson 方程试用简捷法确定精馏塔的理论塔板数、进料位置以及产品流股的组成。

提示:乙烷回收率计算如下
塔顶乙烯量=100x0.75746x0.95=71.9587kmol
塔顶氢气量=100x0.00014=0.014kmol (全部回收)
塔顶甲烷量=100x0.00162=0.162kmol (全部回收)
塔顶丙烯量=0
乙烯浓度:
x 9587.71162.0014.09587
.7199.0乙烷量塔顶乙烯量+++=
X=0.550855kmol
乙烷回收率=0.022949
选着模板和米制单位进入Aspen plus界面,用dstwu模块建立流程,如下图:
点击next键,进入全局设定,为模拟命名:
点击next键,输入包含的物质:
点击next键,选着物性方法peng-rob:
点击next键,进入二元交互参数界面,此处不需改动:
点击next键,输入进料物流信息(泡点进料即气相分率为0):
点击next键,输入精馏塔信息:
点击next键,开始运行模拟:
查看物流结果:
查看精馏塔结果:。

相关文档
最新文档