鞍山市中考数学试卷及答案

合集下载

2020年辽宁省鞍山中考数学试卷及答案解析

2020年辽宁省鞍山中考数学试卷及答案解析

2020年辽宁省鞍山中考数学试卷及答案解析2020年辽宁省鞍山市初中学业水平考试数学部分一、选择题(本大题共8小题,共24分)1.求|-1/2020|的值是()。

A。

-1/2020 B。

-2020 C。

1/2020 D。

20202.如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是()。

A。

B。

C。

D。

3.下列计算结果正确的是()。

A。

a + a = a^2/4B。

a^3 = a^5C。

(a+1)^2 = a^2 + 1D。

a × a = a^24.我市某一周内每天的最高气温如下表所示:最高气温(℃)天数25 126 227 328 1则这组数据的中位数和众数分别是()。

A。

26.5 和 28B。

27 和 28C。

1.5 和 3D。

2 和 35.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数是()。

A。

36°B。

54°C。

72°D。

73°6.甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()。

A。

240/(x-6) = 300/xB。

240/x = 300/(x-6)C。

(x-6)/240 = x/300D。

(x-6)/300 = x/2407.如图,O是△ABC的外接圆,半径为2 cm,若BC=2cm,则∠A的度数是()。

A。

30°B。

25°C。

15°D。

10°8.如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B1,B2,B3,…在直线y=3x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A4,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为()。

辽宁省鞍山市2024届九年级新中考(样卷)数学试卷(含解析)

辽宁省鞍山市2024届九年级新中考(样卷)数学试卷(含解析)

2024年辽宁省鞍山市新中考数学试卷(样卷)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列与杭州亚运会有关的图案中,中心对称图形是( )A.B.C.D.2.(3分)方程3x2﹣4x﹣1=0的二次项系数、一次项系数、常数项分别是( )A.3,﹣1,4B.3,4,﹣1C.3,﹣4,﹣1D.3,﹣1,﹣43.(3分)如图,已知D、E分别在△ABC的AB、AC边上,△ABC∽△AED( )A.B.AB•AD=AE•ACC.D.AD•DE=AE•EC4.(3分)若二次函数y=x2﹣4x+k的图象经过点(﹣1,y1),(3,y2),则y1与y2的大小关系为( )A.y1=y2B.y1>y2C.y1<y2D.不能确定5.(3分)如图,小康利用复印机将一张长为5cm,宽为3cm的矩形图片放大,则放大后的矩形的宽为( )A.B.5cm C.10cm D.6cm6.(3分)已知点P(m﹣n,1)与点Q(3,m+n)关于原点对称( )A.2B.1C.﹣2D.﹣17.(3分)如图,将△ABC绕点A顺时针旋转一定的角度得到△AB′C′,此时点B′恰在边AC上,AC′=5,则B′C的长为( )A.2B.3C.4D.58.(3分)近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,4月份售价为18.63万元,设该款汽车这两月售价的月平均降价率是x( )A.23(1﹣x)2=18.63B.18.63(1+x)2=23C.18.63(1﹣x)2=23D.23(1﹣2x)=18.639.(3分)如图,正方形网格图中的△ABC与△A′B′C是位似关系图,则位似中心是( )A.点R B.点P C.点Q D.点O10.(3分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,下列对方程20t﹣5t2=15的两根t1=1与t2=3的解释正确的是( )A.小球的飞行高度为15m时,小球飞行的时间是1sB.小球飞行3s时飞行高度为15m,并将继续上升C.小球从飞出到落地要用4sD.小球的飞行高度可以达到25m二、填空题(本题共5小题,每小题3分,共15分)11.(3分)若x1,x2是一元二次方程x2+5x﹣1=0的两个实数根,则x1+x2的值为 .12.(3分)如图,以O为圆心,任意长为半径画弧,再以B为圆心,BO长为半径画弧,画射线OC,则tan ∠AOC的值为 .13.(3分)图1是伸缩折叠不锈钢晾衣架的实物图,图2是它的侧面示意图,AD与CB相交于点O,根据图2中的数据可得x的值为 .14.(3分)如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A,B(点A在点B左侧),与y轴交于点C.点P是此函数图象上在第一象限内的一动点,当S△PCB=3时,点P的坐标为 .15.(3分)如图,已知△ABC中,D,E分别是AC,,∠AED=∠ABC,DE与AB的延长线交于点F,EF=3,则BC= .三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(10分)解下列方程:(1)x2+3x﹣4=0;(2)2x2﹣4x﹣1=0.17.(8分)如图,AE平分∠BAC,D为AE中点18.(8分)已知关于x的一元二次方程x2+2kx+k﹣1=0.求证:不论k为何值,方程总有两个不相等的实数根.19.(8分)已知抛物线y=2x2+4x﹣6.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移m(m>0)个单位长度,平移后所得新抛物线经过坐标原点20.(9分)在△ABC中,AB=2,将△ABC绕点B逆时针旋转得到△MBN,MA的延长线与CN交于点P,若AM=3,.(1)求证:△ABM∽△CBN;(2)求AP的长.21.(8分)随着互联网应用的日趋成熟和完善,电子商务在近几年得到了迅猛的发展,某电商以每件40元的价格购进某款T恤,“双11”的前一周(10月30日﹣11月5日)的销售量为500件(11月6日﹣11月12日)进行降价销售,经调查,每降价1元,周销售量就会增加50件.若要求销售单价不低于成本,如何定价才能使利润最大?并求出最大利润是多少元?(利润率=×100%)22.(12分)问题提出已知△ABC是等边三角形,将等边三角形ADE(A,D,E三点按逆时针排列)绕顶点A旋转,得到线段CF,连接BE,BF.观察发现(1)如图1,当点E在线段AB上,猜想△BEF的形状 ;探究迁移(2)如图2,当点E不在线段AB上,(1)中猜想的结论是否依然成立;拓展应用(3)若AB=2,,在△ADE绕着点A旋转的过程中,当EF⊥AC时23.(12分)问题提出:如图,四边形ABCD是矩形,AB=4,连接BE,过E作EF⊥BE(点F在BE的左侧),且,连接FG,设DE长为x(x,y均可等于0).初步感知:(1)如图1,当点E由点D运动到点A时,经探究发现y是关于x的二次函数,l为其对称轴,请根据图象信息求y关于x的函数解析式及线段AD的长;(2)当点E在线段DA的延长线上运动时,求y关于x的函数解析式;延伸探究:(3)若存在三个不同位置的点E(从右向左依次用E1,E2,E3表示),对应的四边形DGFE面积均相等.①试确定DE1,DE2的数量关系,并说明理由;②当2DE2=DE1+DE3时,求四边形DGFE3的面积.2024年辽宁省鞍山市新中考数学试卷(样卷)答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.解析:解:选项B、C、D均不能找到这样的一个点,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,故选:A.2.解析:解:∵3x2﹣2x﹣1=0,∴二次项系数、一次项系数和常数项分别是7,﹣1,故选:C.3.解析:解:∵△ABC∽△AED,∴==,∵==,==,≠,∴,故A错误;∵=,∴AB•AD=AC•AE,故B正确;∵=,AE≠AD,∴,故C错误;∵AE•EC=AE(AC﹣AE)=AE•AC﹣AE2=AB•AD﹣AE5,AD•DE=AD=•AD2,∴无法推出AD•DE=AE•EC,故D错误.故选:B.4.解析:解:当x=﹣1时,y1=x5﹣4x+k=1+4+k=k+5;当x=3时,y8=x2﹣4x+k=3﹣12+k=k﹣3,所以y1>y2.故选:B.5.解析:解:设放大后矩形的宽为x cm.∵放大前后矩形相似,∴=,∴x=2.故选:D.6.解析:解:∵点P(m﹣n,1)与点Q(3,∴,∴,故选:C.7.解析:解:∵将△ABC绕点A顺时针旋转一定的角度得到△AB'C',∴AB=AB',AC=AC',∵AB=2,AC'=5,故选:B.8.解析:解:根据题意得:23(1﹣x)2=18.63.故选:A.9.解析:解:如图:∴点O是位似中心.故选:D.10.解析:解:20t﹣5t2=15的两根t3=1与t2=5,即h=15时所用的时间,∴小球的飞行高度是15m时,小球的飞行时间是1s或3s;h=20t﹣7t2=20﹣5(6﹣t)2,∴对称轴直线为:t=2,最大值为20;∴t=6时,h=15,故B错误;∵当h=0时,t1=2,t2=4,∴t3﹣t1=4,∴小球从飞出到落地要用5s,故C正确.故选:C.二、填空题(本题共5小题,每小题3分,共15分)11.解析:解:∵x1,x2是一元二次方程x7+5x﹣1=2的两个实数根,∴x1+x2=﹣4.故答案为:﹣5.12.解析:解:连接BC,如图所示: 根据作图可知:OB=OC=BC,∴△OBC为等边三角形,∴∠AOC=60°,∴tan∠AOC=tan60°=.13.解析:解:在图2中,过点O作MN⊥AB于点M,则ON=x,∵AB∥CD,∴△OCD∽△OBA,∴=,∴即=,∴x=0.96.故答案为:0.96.14.解析:解:令y=0,则﹣x2+5x+3=0,解得x3=﹣1,x2=5,∴A(﹣1,0),7),令x=0,则y=﹣3,∴C(2,﹣3),设直线BC的解析式为y=kx+b,将B(3,2)和C(0,解得:,∴直线BC的解析式为y=﹣x+3,过点P作PE⊥x轴于点E,交BC于点G,设P(t,﹣t2+7t+3),则G(t,∴PG=﹣t2+2t+3﹣(﹣t+3)=﹣t8+3t,∵S△PCB=3,∴PG•OB=3,即2+2t)×3=3,解得:t6=1,t2=2,∴点P的坐标为(1,4)或(8,故答案为:(1,4)或(7.15.解析:解:如图,过点A作AG∥BC,∵∠AED=∠ABC,∴180°﹣∠ABC=180°﹣∠AED,即∠EBF=∠AEF,又∵∠BFE=∠EFA,∴△EBF∽△AEF,∴,即,∴EB=,BF=1,∵AG∥BC,∴△BEF∽△AGF,∴=,即=,∴AG=,GF=27,∴DG=GF﹣DE﹣EF=27﹣9﹣4=15,∵AG∥BC,∴△ADG∽△CDE,∴,即,∴CE=,∴BC=BE+CE==.三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.解析:解:(1)x2+3x﹣4=0,则(x﹣1)(x+8)=0,则x﹣1=4或x+4=0,解得x5=1,x2=﹣5;(2)2x2﹣5x﹣1=0,x7﹣2x=,∴x2﹣2x+5=+62=,∴x﹣1=±,∴x=1±,∴x1=1+,x2=3﹣.17.解析:证明:∵D为AE中点,∴AE=2AD,∵AE平分∠BAC,∴∠BAE=∠CAD,∵∠B=∠C.∴△ABE∽△ACD,∴==2,∴AB=2AC.18.解析:证明:根据题意可得;a=1,b=2k,∴,∵,∴,∴不论k为何值,方程总有两个不相等的实数根.19.解析:解:(1)由题知,y=2x2+3x﹣6=2(x4+2x+1)﹣2=2(x+1)2﹣8,所以抛物线的顶点坐标为(﹣1,﹣5).(2)令y=0得,2x7+4x﹣6=8,解得x1=1,x3=﹣3.又因为将该抛物线向右平移m(m>0)个单位长度,平移后所得新抛物线经过坐标原点,所以﹣5+m=0,解得m=3.故m的值为5.20.解析:(1)证明:∵将△ABC绕点B逆时针旋转得到△MBN,∴AB=MB,BC=BN,∴,∴∠MBN+∠ABN=∠ABC+∠ABN,即∠ABM=∠CBN,∴△ABM∽△CBN;(2)解:由(1)知,△ABM∽△CBN,∴∠BMA=∠BNC,∵CN∥BM,∴∠BMA=∠APN,∴∠APN=∠BNC,又∵BC=BN,∴∠BNC=∠BCN,∴∠APN=∠BCN,∴BC∥MP,∴四边形BCPM为平行四边形,∴BC=PM,∵△ABM∽△CBN,∴,即,∴CB=5=PM,∴AP=PM﹣AM=5﹣6=2.21.解析:解:设售价为每件x元,利润为y元,得:y=(x﹣40)[500+50(60﹣x)]=﹣50x2+5500x﹣140000=﹣50(x﹣55)2+11250,∵销售单价不低于成本,且按照物价部门规定销售利润率不高于30%,∴,解得40≤x≤52,∵a=﹣50<0,∴抛物线开口向下,∵抛物线的对称轴为直线x=55,∴当40≤x≤52时,y随x的增大而增大,∴当x=52时,y有最大值4+11250=10800(元),答:当定价为每件52元,才能使利润最大.22.解析:解:(1)点E在线段AB上时,∵△ABC,△ADE是等边三角形,∴∠ABC=60°,∠AED=60°=∠BEF,∴△BEF是等边三角形;故答案为:等边三角形;(2)当点E不在线段AB上,(1)中的结论依然成立延长AD交BC于M,如图:∵△ABC,△ADE是等边三角形,∴∠ABC=60°=∠DAE,AB=BC,∵平移线段AD使点A与顶点C重合,得到线段CF,∴AD=CF,AD∥CF,∴AE=CF,∠BCF=∠AMC,∵∠AMC=∠ABC+∠BAM=60°+∠BAM=∠DAE+∠BAM=∠BAE,∴∠BCF=∠BAE,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∠ABE=∠CBF,∴∠ABE+∠EBC=∠CBF+∠EBC,即∠ABC=∠EBF,∵∠ABC=60°,∴∠EBF=60°,∴△BEF是等边三角形;(3)设直线AC交EF于H,分两种情况:①当EF在BC下方时,如图:由(2)可知△BEF是等边三角形,∴∠BFE=60°,BF=EF,∵∠ACB=60°,∴∠BCH=120°,∵EF⊥AC,∴∠H=90°,∴∠FBC=360°﹣∠BFE﹣∠H﹣∠BCH=90°,∴BF=,∵平移线段AD使点A与顶点C重合,得到线段CF,∴CF=AD=,而BC=AB=2,∴BF==,∴EF=;设EH=x,CH=y,∵FH2+CH2=CF2,EH5+AH2=AE2,∴,∴,①﹣②得:3x﹣4y+,∴y=x+③,把③代入①得:+32+x2+x+=,解得x=(负值已舍去),∴y=×+=,∵AF2=FH2+AH6,∴AF2=(+x)2+(y+3)2=(+)2+(+2)2=,∴AF=;当EF在BC上方时,如图:同理可得∠ABE=360°﹣∠FEB﹣∠H﹣∠BAH=90°,∴BE===EF,设FH=m,AH=n,∵EH2+AH2=AE3,FH2+CH2=CF8=AD2,∴,解得(负值已舍去),∴AF==;综上所述,AF的值为或.23.解析:解;(1)设抛物线的解析式为:y=a(x﹣1)2+,将原点代入解析式得:0=a+,∴a=﹣,∴抛物线解析式为:y=﹣(x﹣6)2+=﹣x8+x(0≤x≤2),令y=5,解得:x1=0,x3=2,∴AD=2﹣7=2;(2)当E在DA延长线上时,如图:∵BE⊥EF,∴∠HEF+∠AEB=180°﹣∠BEF=90°,又∵AB⊥AE,∴∠AEB+∠HEF=90°,∴∠HEF=∠ABE,又∵EF∥DG,∴∠ADG=∠HEF,∴∠ADE=∠ABE,又∵∠DAG=∠EAB,∴△ADG∽△ABE,∴==,又∵,∴DG=EF,∴四边形DEFG为平行四边形,∴y=DE•AG,∵AE=DE﹣AD=x﹣2,∴AG==(x﹣2)=,∴y=x•(x﹣1)=x2﹣x(x≥2);(3)①画出y关于x的图形,如图:∴存在三个不同位置的点E时,4<y<,∴DE4和DE2的长度在抛物线y=﹣x2+x上,∴DE1+DE8=2;②∵2DE8=DE1+DE3,∴4DE2=2﹣DE5+DE3,∴DE3=2DE2﹣2,令DE8=a,则有:﹣a4+a=(6a﹣2)2﹣(6a﹣2),整理得:5a7﹣10a+4=0,解得:a=或(小于8,∴y=,即四边形DGFE5的面积为.。

精品解析:辽宁省鞍山市2021年中考真题数学试卷(解析版)

精品解析:辽宁省鞍山市2021年中考真题数学试卷(解析版)
2021年辽宁省鞍山市中考数学试卷
一、选择题(下列各题的备选答案中,只有一个是正确的每小题3分,共24分)
1.下列实数最小的是( )
A.-2B.-3.5C.0D.1
【答案】B
【解析】
【分析】根据实数大小比较的方法进行求解即可.
【详解】解:因 ,
所以最小的实数是-3.5.
故选:B.
【点睛】本题主要考查了实数的大小比较,熟练掌握应用实数大小的比较方法进行求解是解题的关键.
【答案】 或
【解析】
【分析】结合折叠及直角三角形斜边中线等于斜边一半的性质可得 ,设 ,然后利用三角形外角和等腰三角形的性质表示出 , , , ,从而利用分类讨论思想解题.
【详解】解: ,C为AB的中点,

, ,
又由折叠性质可得 ,

设 ,则 , , , ,
①当 时, ,

解得 ,

②当 时, ,
,方程无解,
2.下列四幅图片上呈现 是垃圾类型及标识图案,其中标识图案是中心对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.据此判断即可.
【详解】解:A.不是中心对称图形,故本选项不合题意;
B.不是中心对称图形,故本选项不合题意;
A. B.
C. D.
【答案】A
【解析】
【分析】首先求出当点 落在AB上时,t的值,分 或 两种情形,分别求出S的解析式,可得结论.
【详解】解:如图1中,当点 落在AB上时,取CN的中点T,连接MT.
, , ,


2024年辽宁省中考数学试卷(附答案解析)

2024年辽宁省中考数学试卷(附答案解析)

2024年辽宁省中考数学试卷(附答案解析)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .【解答】解:从上边看,底层左边是一个小正方形,上层是两个小正方形,左齐.故选:A .2.(3分)亚洲、欧洲、非洲和南美洲的最低海拔如表:大洲亚洲欧洲非洲南美洲最低海拔/m﹣415﹣28﹣156﹣40其中最低海拔最小的大洲是()A .亚洲B .欧洲C .非洲D .南美洲【解答】解:∵﹣415<﹣156<﹣40<﹣28,∴海拔最低的是亚洲.故选:A .3.(3分)越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为()A .532×108B .53.2×109C .5.32×1010D .5.32×1011【答案】C .4.(3分)如图,在矩形ABCD 中,点E 在AD 上,当△EBC 是等边三角形时,∠AEB 为()A.30°B.45°C.60°D.120°【分析】根据平行线的性质和等边三角形的性质即可解答.【解答】证明:∵△EBC是等边三角形,∴∠CBE=60°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEB=∠CBE=60°.故选:C.【点评】本题考查矩形的性质,等边三角形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(3分)下列计算正确的是()A.a2+a3=2a5B.a2•a3=a6C.(a2)3=a5D.a(a+1)=a2+a【答案】D.6.(3分)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是()A.摸出白球B.摸出红球C.摸出绿球D.摸出黑球【分析】分别求得各个事件发生的概率,即可得出答案.【解答】解:∵一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,共有10个球,∴从中随机摸出一个球,摸出白球的概率为=,摸出红球的概率为,摸出绿球的概率为=,摸出黑球的概率为.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)纹样是我国古代艺术中的瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】一个平面内,如果一个图形沿一条直线折叠,若直线两旁的图形能够完全重合,那么这个图形即为轴对称图形;一个平面内,如果一个图形绕某个点旋转180°,若旋转后的图形与原来的图形完全重合,那么这个图形即为中心对称图形;据此进行判断即可.【解答】解:A中图形既不是轴对称图形,也不是中心对称图形,则A不符合题意;B中图形既是轴对称图形,也是中心对称图形,则B符合题意;C中图形是轴对称图形,但不是中心对称图形,则C不符合题意;D中图形不是轴对称图形,但它是中心对称图形,则D不符合题意;故选:B.【点评】本题考查轴对称图形,中心对称图形,熟练掌握其定义是解题的关键.8.(3分)我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”其大意是:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有x只,兔有y只,根据题意可列方程组为()A.B.C.D.【分析】根据“上有35个头,下有94条腿”,即可列出关于x,y的二元一次方程组,此题得解.【解答】解:∵上有35个头,∴x+y=35;∵下有94条腿,∴2x+4y=94.∴根据题意可列方程组.故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图,▱ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD,若AC=3,BD=5,则四边形OCED的周长为()A.4B.6C.8D.16【分析】根据平行四边形对角线互相平分得出OC、OD的长,再证明四边形OCED是平行四边形即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴OC=,OD=,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴四边形OCED的周长=2(OC+OD)=2×()=8,故选:C.【点评】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题的关键.10.(3分)如图,在平面直角坐标系xOy中,菱形AOBC的顶点A在x轴负半轴上,顶点B在直线上,若点B的横坐标是8,则点C的坐标为()A.(﹣1,6)B.(﹣2,6)C.(﹣3,6)D.(﹣4,6)【分析】利用一次函数图象上点的坐标特征,可求出点B的坐标,利用两点间的距离公式,可求出OB 的长,结合菱形的性质,可得出BC的长及BC∥x轴,再结合点B的坐标,即可得出点C的坐标.【解答】解:当x=8时,y=×8=6,∴点B的坐标为(8,6),∴OB==10.∵四边形AOBC是菱形,且AO在x轴上,∴BC=OB=10,且BC∥x轴,∴点C的坐标为(8﹣10,6),即(﹣2,6).故选:B.【点评】本题考查了一次函数图象上点的坐标特征以及菱形的性质,利用一次函数图象上点的坐标特征及菱形的性质,求出点B的坐标及BC的长是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)方程的解为x=3.【分析】先把分式方程变形成整式方程,求解后再检验即可.【解答】解:,方程的两边同乘(x+2),得5=x+2,解得:x=3,经检验x=3是分式方程的解,所以原分式方程的解为x=3.故答案为:x=3.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.12.(3分)在平面直角坐标系中,线段AB的端点坐标分别为A(2,﹣1),B(1,0),将线段AB平移后,点A的对应点A′的坐标为(2,1),则点B的对应点B′的坐标为(1,2).【分析】根据点A及点A对应点的坐标,得出平移的方向和距离,据此可解决问题.【解答】解:因为点A坐标为(2,﹣1),且平移后对应点A′的坐标为(2,1),所以2﹣2=0,1﹣(﹣1)=2,所以1+0=1,0+2=2,所以点B的对应点B′的坐标为(1,2).故答案为:(1,2).【点评】本题主要考查了坐标与图形变化﹣平移,熟知图形平移的性质是解题的关键.13.(3分)如图,AB∥CD,AD与BC相交于点O,且△AOB与△DOC的面积比是1:4,若AB=6,则CD的长为12.【分析】根据AB∥CD,得出△AOB和△DOC相似,从而得出,由此得出CD的长.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴,∴,∵AB=6,∴,∴DC=12,故答案为:12.【点评】本题考查了相似三角形的性质与判定,掌握相似三角形面积之比等于相似比的平方是解题的关键.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴相交于点A,B,点B的坐标为(3,0),若点C(2,3)在抛物线上,则AB的长为4.【分析】依据题意,由抛物线y=ax2+bx+3过B(3,0),C(2,3),可得,求出a,b后可得抛物线的解析式,再求得对称轴,依据对称性可得A的坐标,进而可以判断得解.【解答】解:由题意,∵抛物线y=ax2+bx+3过B(3,0),C(2,3),∴.∴.∴抛物线为y=﹣x2+2x+3.∴抛物线的对称轴是直线x=﹣=1.∵抛物线与x轴的一交点为B(3,0),∴另一交点为A(1﹣2,0),即A(﹣1,0).∴AB=3﹣(﹣1)=4.故答案为:4.【点评】本题主要考查了二次函数图象上点的坐标特征、抛物线与x轴的交点,解题时要熟练掌握并能灵活运用二次函数的性质是关键.15.(3分)如图,四边形ABCD中,AD∥BC,AD>AB,AD=a,AB=10,以点A为圆心,以AB长为半径作弧,与BC相交于点E,连接AE.以点E为圆心,适当长为半径作弧,分别与EA,EC相交于点M,N,再分别以点M,N为圆心,大于的长为半径作弧,两弧在∠AEC的内部相交于点P,作射线EP,与AD相交于点F,则FD的长为a﹣10(用含a的代数式表示).【分析】利用基本作图得到AE=AB=10,EF平分∠AEC,接着证明∠AEF=∠AFE得到AF=AE=10,然后利用FD=AD﹣AF求解.【解答】解:由作法得AE=AB=10,EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AF=AE=10,∴FD=AD﹣AF=a﹣10.故答案为:a﹣10.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了列代数式、平行线的性质和角平分线的定义.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)计算:;(2)计算:.【分析】(1)先算乘方、化简二次根式,再化简绝对值算除法,最后加减;(2)先算分式乘法,再算加法.【解答】解:(1)=16﹣10+2+3﹣=9+;(2)=•+=+==1.【点评】本题考查了实数的混合运算及分式的混合运算,掌握实数的运算法则和绝对值的意义及分式的运算法则是解决本题的关键.17.(8分)甲、乙两个水池注满水,蓄水量均为36m3.工作期间需同时排水,乙池的排水速度是8m3/h.若排水3h,则甲池剩余水量是乙池剩余水量的2倍.(1)求甲池的排水速度.(2)工作期间,如果这两个水池剩余水量的和不少于24m3,那么最多可以排水几小时?【分析】(1)设甲池的排水速度是x m3/h,根据“36﹣3×甲池的排水速度=2×(36﹣3×乙池的排水速度)”列方程并求解即可;(2)设排水t小时,根据“t小时后这两个水池剩余水量的和≥24”列关于t的一元一次不等式并求解即可.【解答】解:(1)设甲池的排水速度是x m3/h.根据题意,得36﹣3x=2(36﹣3×8),解得x=4,∴甲池的排水速度是4m3/h.(2)设排水t小时.根据题意,得36×2﹣(4+8)t≥24,解得t≤4,∴最多可以排水4小时.【点评】本题考查一元一次方程和一元一次不等式的应用,根据题意列一元一次方程和一元一次不等式并求解是解题的关键.18.(8分)某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩x均为不小于60的整数,分为四个等级:D:60≤x<70,C:70≤x<80,B:80≤x<90,A:90≤x≤100),部分信息如下:信息一:信息二:学生成绩在B等级的数据(单位:分)如下:80,81,82,83,84,84,84,86,86,86,88,89.请根据以上信息,解答下列问题;(1)求所抽取的学生成绩为C等级的人数;(2)求所抽取的学生成绩的中位数;(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A等级的人数.【分析】(1)用B等级组人数除以40%可得样本容量,再用样本容量减去其它三个等级的人数可得C 等级的人数;(2)根据中位数的定义解答即可;(3)用360乘样本中成绩为A等级的人数所占比例即可.【解答】解:(1)样本容量为:12÷40%=30,30﹣1﹣12﹣10=7(人),即所抽取的学生成绩为C等级的人数为7人;(2)所抽取的学生成绩为C等级的人数为=85;(3)360×=120(人),答:该校七年级估计成绩为A等级的人数大约为120人.【点评】本题考查中位数以及用样本估计总体,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(8分)某商场出售一种商品,经市场调查发现,日销售量y(件)与每件售价x(元)之间满足一次函数关系,部分数据如表所示:每件售价x/元…455565…日销售量y/件…554535…(1)求y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价;如果不能,说明理由.【分析】(1)依据题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),可得,求出k,b即可得解;(2)依据题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,从而可得x2﹣100x+2600=0,又Δ=(﹣100)2﹣4×2600=﹣400<0,进而可以判断得解.【解答】解:(1)由题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),∴.∴.∴所求函数关系式为y=﹣x+100.(2)由题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,∴2600=﹣x2+100x.∴x2﹣100x+2600=0.∴Δ=(﹣100)2﹣4×2600=10000﹣10400=﹣400<0.∴方程没有解,故该商品日销售额不能达到2600元.【点评】本题主要一元二次方程的应用、一次函数的应用,解题时要熟练掌握并能灵活运用是关键.20.(8分)如图1,在水平地面上,一辆小车用一根绕过定滑轮的绳子将物体竖直向上提起.起始位置示意图如图2,此时测得点A到BC所在直线的距离AC=3m,∠CAB=60°,停止位置示意图如图3,此时测得∠CDB=37°(点C,A,D在同一直线上,且直线CD与地面平行),图3中所有点在同一平面内.定滑轮半径忽略不计,运动过程中绳子总长不变.(1)求AB的长;(2)求物体上升的高度CE(结果精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈ 1.73)【分析】(1)在Rt△ABC中,由∠CAB的度数求出∠ABC=30°,利用30°角所对的直角边等于斜边的一半求出AB的长即可;(2)EC的长即为BD﹣BA的长,求出BD,在Rt△BCD中,利用锐角三角函数定义求出BD的长,由(1)得到AB的长,上升高度CE即为AB变为BD的长,即CE=BD﹣BA,求出即可.【解答】解:(1)如图2,在Rt△ABC中,AC=3m,∠CAB=60°,∴∠ABC=30°,∴AB=2AC=6m,则AB的长为6m;(2)在Rt△ABC中,AB=6m,AC=3m,根据勾股定理得:BC===3m,在Rt△BCD中,∠CDB=37°,sin37°≈0.60,≈1.73,∴sin∠CDB=,即≈0.60,∴BD≈8.65m,∴CE=BD﹣BA=8.65﹣6=2.65≈2.7(m),则物体上升的高度CE约为2.7m.【点评】此题考查了解直角三角形的应用,锐角三角函数定义,勾股定理,熟练掌握各自的性质是解本题的关键.21.(8分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在上,,点E在BA的延长线上,∠CEA=∠CAD.(1)如图1,求证:CE是⊙O的切线;(2)如图2,若∠CEA=2∠DAB,OA=8,求的长.【分析】(1)连接OC,根据三角形外角的性质证得∠DAB=∠ACE,根据同弧所对的圆周角相等得出∠ABC=∠DAB,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出∠ABC+∠OAC=90°,再证∠OAC=∠OCA,即可得出∠ACE+∠OCA=90°,于是问题得证;(2)连接OD,设∠DAB=x,则∠CEA=∠CAD=2x,根据同弧所对的圆周角相等得出∠ABC=∠DAB =x,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出x+2x+x=90°,从而求出x的值,最后根据弧长公式即可得解.【解答】(1)证明:如图1,连接OC,∵∠CAO是△ACE的一个外角,∴∠CAO=∠CEA+∠ACE,即∠CAD+∠DAB=∠CEA+∠ACE,∵∠CEA=∠CAD.∴∠DAB=∠ACE,∵,∴∠ABC=∠DAB,∴∠ABC=∠ACE,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ABC+∠OCA=90°,∴∠ACE+∠OCA=90°,即∠OCE=90°,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)解:如图2,连接OD,设∠DAB=x,∵∠CEA=2∠DAB,∴∠CEA=2x,∵∠CEA=∠CAD,∴∠CAD=2x,∵,∴∠ABC=∠DAB=x,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∴x+2x+x=90°,∴x=22.5°,即∠DAB=22.5°,∴∠BOD=2∠DAB=45°,∵OA=8,∴的长为=2π.【点评】本题考查了切线的判定与性质,圆周角定理及推论,弧长公式,熟练掌握这些知识点是解题的关键.22.(12分)如图,在△ABC中,∠ABC=90°,∠ACB=α(0°<α<45°).将线段CA绕点C顺时针旋转90°得到线段CD,过点D作DE⊥BC,垂足为E.(1)如图1,求证:△ABC≌△CED.(2)如图2,∠ACD的平分线与AB的延长线相交于点F,连接DF,DF的延长线与CB的延长线相交于点P,猜想PC与PD的数量关系,并加以证明.(3)如图3,在(2)的条件下,将△BFP沿AF折叠,在α变化过程中,当点P落在点E的位置时,连接EF.①求证:点F是PD的中点;②若CD=20,求△CEF的面积.【分析】(1)可证得∠D+∠DCE=90°,∠DCE+∠ACB=90°,从而∠ACB=∠D,进而证得△ABC ≌△CED;(2)可证得△ACF≌△DCF,从而∠A=∠PDC,进而证得∠PDC=∠DCE,从而得出PC=PD;(3)①由折叠得PF=EF,∠P=∠PEF,可证得∠PEF+∠DEF=90°,∠P+∠PDE=90°,从而∠PDE=∠DEF,从而得出EF=DF,进而得出PF=DF;②设CE=a,BC=DE=b,从而BE=BC﹣CE=b﹣a,可证得△PBF∽△PED,=,在Rt△∴,从而得出PE=2BE=2(b﹣a),BF=DE=,从而S△CEFPED中,根据勾股定理得出∠PED=90°,b2+[2(b﹣a)]2=(2b﹣a)2,从而得出b=3a,由∠DEC =90°得出a2+b2=202,从而得出a2+(3a)2=400,进一步得出结果.【解答】(1)证明:∵DE⊥BC,∴∠DEC=90°,∴∠D+∠DCE=90°,∵∠ABC=90°,∴∠ABC=∠DEC,∵线段CA绕点C顺时针旋转90°得到线段CD,∴∠ACD=90°,AC=CD,∴∠DCE+∠ACB=90°,∴∠ACB=∠D,∴△ABC≌△CED(AAS);(2)PC=PD,理由如下:∵CF是∠ACD的平分线,∴∠ACF=∠DCF,由(1)知,AC=CD,△ABC≌△CED,∴∠A=∠DCE,∵CF=CF,∴△ACF≌△DCF(SAS),∴∠A=∠PDC,∴∠PDC=∠DCE,∴PC=PD;(3)①∵△BFP沿AF折叠,点P落在点E,∴PF=EF,∠P=∠PEF,∵DE⊥BC,∴∠PED=90°,∴∠PEF+∠DEF=90°,∠P+∠PDE=90°,∴∠PEF+∠PDE=90°,∴∠PDE=∠DEF,∴EF=DF,∴PF=DF,∴点F是PD的中点;②解:设CE=a,BC=DE=b,∴BE=BC﹣CE=b﹣a,由①知,点F是PD的中点,∴PF=PD,∵∠ABC=∠PED=90°,∴BF∥DE,∴△PBF∽△PED,∴,∴PE=2BE=2(b﹣a),BF=DE=b,==,∴S△CEF∵∠PED=90°,DE=b,PE=2(b﹣a),PD=PC=PE+CE=2(b﹣a)+a=2b﹣a,∴b2+[2(b﹣a)]2=(2b﹣a)2,化简得,3a2﹣4ab+b2=0,∴b=a或b=3a,∵0°<α<45°,∴a=b舍去,∴b=3a,==,∴S△CEF∵∠DEC=90°,∴a2+b2=202,∴a2+(3a)2=400,∴a2=40,=,∴S△CEF∴△CEF的面积是30.【点评】本题考查了等腰三角形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解决问题的关键是熟练掌握有关基础知识.23.(13分)已知y1是自变量x的函数,当y2=xy1时,称函数y2为函数y1的“升幂函数”.在平面直角坐标系中,对于函数y1图象上任意一点A(m,n),称点B(m,mn)为点A“关于y1的升幂点”,点B在函数y1的“升幂函数”y2的图象上.例如:函数y1=2x,当时,则函数是函数y1=2x的“升幂函数”.在平面直角坐标系中,函数y1=2x的图象上任意一点A(m,2m),点B(m,2m2)为点A“关于y1的升幂点”,点B在函数y1=2x的“升幂函数”的图象上.(1)求函数的“升幂函数”y2的函数表达式.(2)如图1,点A在函数的图象上,点A“关于y1的升幂点”B在点A上方,当AB =2时,求点A的坐标.(3)点A在函数y1=﹣x+4的图象上,点A“关于y1的升幂点”为点B,设点A的横坐标为m.①若点B与点A重合,求m的值;②若点B在点A的上方,过点B作x轴的平行线,与函数y1的“升幂函数”y2的图象相交于点C,以AB,BC为邻边构造矩形ABCD,设矩形ABCD的周长为y,求y关于m的函数表达式;③在②的条件下,当直线y=t1与函数y的图象的交点有3个时,从左到右依次记为E,F,G,当直线y=t2与函数y的图象的交点有2个时,从左到右依次记为M,N,若EF=MN,请直接写出t2﹣t1的值.【分析】(1)根据题意直接列出式子即可;(2)根据条件得出y2=3,再根据AB=2建立方程即可;(3)①将A、B坐标用含有m的式子表示出,再根据AB重合时,横纵坐标相等建立关于m的方程,进而求解即可;②根据题意画出图形,再将线段用m表示出来,需要注意的是分类讨论;③第一种情况:如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度,分别令m=2和4得解,第二种情况:点M是抛物线y=﹣2m2+6m 的顶点,由M坐标推出N坐标,进而求出MN的长度,再通过MN=EF得出F的坐标,即可求解.【解答】(1),图象如图2所示.(2)如图3,∵,设,B(m,3).因为点B在点A的上方,当AB=2时,解得m=3.所以A(3,1).(3)①因为,所以A(m,﹣m+4),B(m,﹣m2+4m).如果点B与点A重合,那么﹣m+4=﹣m2+4m.整理,得m2﹣5m+4=0.解得m=1,或m=4.②由①可知,直线y=﹣x+4与抛物线y=﹣x2+4x有两个交点(1,3)和(4,0),如图4所示,函数的图象是开口向下的抛物线,对称轴是直线x=2.因为BC∥x轴,所以B、C两点关于直线x=2对称.如图4,当点B在点C右侧时,2<m<4,BC=2(m﹣2)=2m﹣4,如图5,当点B在点C左侧时,1<m<2,BC=2(2﹣m)=4﹣2m,由点B在点A的上方,得BA=(﹣m2+4m)﹣(﹣m+4)=﹣m2+5m﹣4,当2<m<4时,y=2[(2m﹣4)+(﹣m2+5m﹣4)]=﹣2m2+14m﹣16,当1<m<2时,y=2[(4﹣2m)+(﹣m2+5m﹣4)]=﹣2m2+6m.综上,y=2m2+14m﹣16或=﹣2m2+6m.③情形一:如图7,如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度.当m=2时,y=﹣2m2+6m=4,所以P(2,4).当m=4时,y=﹣2m2+14m﹣16=8,所以Q(4,8).所以t2﹣t1=8﹣4=4.情形2,如图7(局部,变形处理),点M是抛物线y=﹣2m2+6m的顶点.由,得,所以,第21页(共21页)所以点F 的横坐标,于是可得,所以.综上,t 2﹣t 1=4或3﹣2.。

2023年辽宁省鞍山市中考数学试题卷(含答案解析)

2023年辽宁省鞍山市中考数学试题卷(含答案解析)

2023年辽宁省鞍山市中考数学试题卷(含答案解析)一、选择题1.已知∠A=60°,BC=3,AC=√7,则BC的长度为().A)√21 B)√24 C) √25 D)√28答案:A 解析:根据余弦定理可以求解BC,根据正弦定理可以求解∠ACB,结合两个角的关系即可解题。

2.设∠A和∠B是同位角,则∠A=()°.A)∠B B)2∠B C)∠B/2 D)180°-∠B答案:C 解析:同位角指的是两条直线被一条干扰线所切割而形成的一对内错角或外错角。

根据同位角的定义,∠A=∠B/2。

3.直线y=kx-3与x轴交于点A,直线y=-x-1与x轴交于点B。

若点P(1,2)在线段AB上,则k的取值范围是().A)[2,3) B)(-∞,1) C) (-1,4) D)(-∞,∞)答案:D 解析:首先,直线y=kx-3与x轴的交点为(-3/k,0),直线y=-x-1与x轴的交点为(-1,0)。

因为点P(1,2)在线段AB上,所以点P在线段AB的x坐标范围为-3/k 到-1之间,即-3/k < 1 < -1,整理得-1 < k < -3。

因此,k的取值范围是(-∞,∞)。

4.在直角坐标系中,若点A(1,2)关于原点O对称,则点A’的坐标是().A)(2,1) B)(-1,-2) C) (-1,2) D)(-2,-1)答案:D 解析:点A关于原点O对称,则A’的坐标的x坐标和y坐标分别是点A的x坐标和y坐标的相反数。

所以A’的坐标是(-1,-2)。

二、填空题1.在下面的分数中,分子是15,分母是在1到10之间的奇数,则这些分数的和是____.答案:15/1 + 15/3 + 15/5 + 15/7 + 15/9 = 8 4/52.一块圆形花坛的直径是4米,则它的周长是____米.答案:4π米3.方程2m-3=4的解是____.答案:m = 7/2三、解答题1.已知函数y=2x+3,求函数的零点.答案和解析:零点指的是函数图像与x轴相交的点,也就是函数的解。

辽宁省鞍山市中考数学试卷及答案

辽宁省鞍山市中考数学试卷及答案

辽宁省鞍山市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)1.在下列各组根式中,是同类二次根式的是()2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()5.已知2 是关于x 的方程的一个根,则2a- 1的值是()A.3 B.4 C.5 D.66.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥07.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()A.4π B.2π C.D.π8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定二、填空题(每小题2 分,共20 分)11.在函数中,自变量x 的取值范围是_______________ .12.若方程的两根分别为13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.17.用换元法解方程,若设,则原方程可化成关于y 的整式方程为__________.18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P,则BP 的长为__________ .19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是__________.20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度数为__________.三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)21.当x=2,y=3 时,求代数式的值.22.如图,已知:AB.求作:(1)确定AB 的圆心O.(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:_____________________________________________ .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:_____________________________________________ .(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?答:_____________________________________________ .四、(10 分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).五、(10 分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;(3)求第8 个月公司所获利润是多少万元?六、(12 分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?七、(12 分)27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明八、(14 分)28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:与y 轴交于P.(1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。

鞍山中考数学试题及答案

鞍山中考数学试题及答案

鞍山中考数学试题及答案1. 选择题1. 已知函数$f(x)=3x^2-2x+1$,则$f(-2)$的值为()。

A. 13B. 17C. 19D. 232. 在抛物线$y=x^2+4x+3$上,点$P$的横坐标为2,纵坐标为$m$。

则实数$m$的取值范围是()。

A. $m\leq-2$B. $-2<m\leq3$C. $3<m\leq 7$D. $7<m$3. 若正方形$ABCD$的边长为2,$P$为$BC$的中点,$Q,R$分别是$AD,AP$的延长线上的一点,则$\triangle PQR$的面积为()。

A. 2B. 4C. 6D. 84. 已知集合$A=\{x \mid x \text{是偶数,且} -4\leq x<4\}$,集合$B=\{-1, 2, 5\}$,则$A \cap B$是()。

A. $\{2, 5\}$B. $\{-1, 5\}$C. $\{-4, 2, 5\}$D. $\{-4, 2\}$5. 下列各组数中,互质的是()。

A. 12, 15B. 16, 21C. 18, 27D. 20, 252. 解答题(1)计算$(-\frac{3}{4})^2-\frac{1}{2}\times(-\frac{3}{4})$的值。

解析:根据指数和乘法运算法则,$(-\frac{3}{4})^2=(-\frac{3}{4})\times(-\frac{3}{4})=\frac{9}{16}$。

再根据乘法的交换律和结合律,$-\frac{1}{2}\times(-\frac{3}{4})=(-1)\times\frac{1}{2}\times(-\frac{3}{4})=\frac{3}{8}$。

综上所述,$(-\frac{3}{4})^2-\frac{1}{2}\times(-\frac{3}{4})=\frac{9}{16}-\frac{3}{8}=\frac{3}{16}$。

今年鞍山中考数学试题及答案

今年鞍山中考数学试题及答案

今年鞍山中考数学试题及答案今年的鞍山中考数学试题囊括了各个知识点,涵盖了基础与拓展性的题目,考察了学生的运算能力、推理能力以及问题解决能力等多个方面。

以下是对今年鞍山中考数学试题的一些列举及解答,供广大考生参考。

一、选择题部分1. 某数的三位数、十位上的数字是各数位上数字之和的二倍,百位上的数字是十位上的数字加5,该数是:(A) 165 (B) 363 (C) 132 (D) 264解答:设该数的百位、十位、个位数字分别为a、b、c,则根据题意可列出方程组:a =b + 5b = 2(a+c)c = a + b + c根据以上方程组求解可得到:a=4,b=6, c=2。

因此,该数是264,故选(D)。

2. 在一个长为4cm,宽为1cm,高为1cm的长方体中,有横截面为半圆的一个圆锥体,该圆锥体的高为1cm,那么该圆锥体的体积是:(A) 1cm³ (B) 2cm³ (C) 3cm³ (D) 4cm³解答:根据题意,可得该圆锥体的底面圆的半径为1cm,高为1cm,利用圆锥的体积公式可求解:V = 1/3 * π * r² * hV = 1/3 * π * 1² * 1V = 1/3 * π约等于 1 cm³,故选(A)。

二、填空题部分1. 9除以某个正整数,商为75,余数是:答:6解答:已知9 ÷ n = 75 + 6/n,根据除法原理可得余数为6。

2. 已知数a和数b的比是3:5,数b和数c的比是4:7,若数a的值是24,则数c的值是:答:42解答:根据已知条件,可得 24 ÷ 3 = b ÷ 5,解方程可得 b = 40。

同理,可得 10 ÷ 4 = c ÷ 7,解方程可得 c = 42。

三、解答题部分1. 已知二次函数y = ax² + bx + c的顶点坐标是(-2, 4),且过点(1, 1),求该二次函数的解析式。

2022年辽宁省鞍山市中考数学试题及答案解析

2022年辽宁省鞍山市中考数学试题及答案解析

2022年辽宁省鞍山市中考数学试卷一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1.2022的相反数是( )A. 2022B. −12022C. 12022D. −20222.如图所示的几何体是由4个大小相同的小正方体搭成的,它的左视图是( )A.B.C.D.3.下列运算正确的是( )A. √2+√8=√10B. a3⋅a4=a12C. (a−b)2=a2−b2D. (−2ab2)3=−8a3b64.为了解居民用水情况,小丽在自家居住的小区随机抽查了10户家庭月用水量,统计如下表:月用水量/m378910户数2341则这10户家庭的月用水量的众数和中位数分别是( )A. 8,7.5B. 8,8.5C. 9,8.5D. 9,7.55.如图,直线a//b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为( )A. 80°B. 70°C. 60°D. 50°6.如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数( )A. 39°B. 40°C. 49°D. 51°7.如图,在矩形ABCD中,AB=2,BC=√3,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )A. π3B. 3π5C. 2π3D. 3π48.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4√3cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以√3cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为t s,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是( )A. B.C. D.二、填空题(本大题共7小题,共21.0分)9.教育部2022年5月17日召开第二场“教育这十年”“1+1”系列新闻发布会,会上介绍我国已建成世界最大规模高等教育体系,在学总人数超过44300000人.将数据44300000用科学记数法表示为______.10.一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为______.摸球的总次数a10050010002000…摸出红球的次数b19101199400…0.1900.2020.1990.200…摸出红球的频率ba11.如图,AB//CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为______.12.某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为______.13.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D,E分别在AB,BC上,将△BDE沿直线DE翻折,点B的对应点B′恰好落在AB上,连接CB′,若CB′=BB′,则AD的长为______.14.如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB中点,F为AD中点,连接EF,则EF的长为______.15.如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=12;②S△EBH:S△DHF=3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是______.(填序号即可).三、解答题(本大题共10小题,共102.0分。

鞍山中考试题

鞍山中考试题

鞍山中考试题鞍山市中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果一个角是直角的一半,那么这个角的度数是多少?A. 15°B. 30°C. 45°D. 90°3. 一个圆的半径是5厘米,那么这个圆的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²4. 以下哪个不是二次根式?A. √3B. -√2C. √16D. √-15. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -86. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少?A. 24 m³B. 26 m³C. 28 m³D. 30 m³7. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 08. 一个直角三角形的两条直角边分别是3厘米和4厘米,斜边的长度是多少?A. 5厘米B. 6厘米C. 7厘米D. 8厘米9. 一个数的倒数是1/2,这个数是多少?A. 1/2B. 2C. 1D. -110. 一个数的立方根是2,这个数是多少?A. 6B. 8C. 2³D. 3³二、填空题(每题2分,共20分)11. 如果一个数的平方是25,那么这个数是________。

12. 一个数的立方是-27,这个数是________。

13. 一个圆的直径是14厘米,那么这个圆的半径是________厘米。

14. 一个直角三角形的斜边长是13厘米,如果一条直角边是5厘米,那么另一条直角边是________厘米。

15. 如果一个数的绝对值是7,那么这个数是________或________。

16. 一个长方体的体积是120 cm³,长是5厘米,宽是4厘米,那么高是________厘米。

2020年辽宁省鞍山市中考数学试卷(含答案)

2020年辽宁省鞍山市中考数学试卷(含答案)

2020年辽宁省鞍山市中考数学试卷(含答案)一、选择题1. −12020的绝对值是()A.−2020B.−12020C.12020D.20202. 如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是()A. B. C. D.3. 下列计算结果正确的是()A.a2+a2=a4B.(a3)2=a5C.(a+1)2=a2+1D.a⋅a=a24. 我市某一周内每天的最高气温如下表所示:则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和35. 如图,直线l1 // l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54∘,则∠1的度数为()A.36∘B.54∘C.72∘D.73∘6. 甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()A.240x =300x−6B.240x=300x+6C.240x−6=300xD.240x+6=300x7. 如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为()A.30∘B.25∘C.15∘D.10∘8. 如图,在平面直角坐标系中,点A 1,A 2,A 3,A 4,…在x 轴正半轴上,点B 1,B 2,B 3,…在直线y =√33x(x ≥0)上,若A 1(1, 0),且△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,则线段B 2019B 2020的长度为( )A.22021√3B.22020√3C.22019√3D.22018√3二、填空题9.据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为________.10.分解因式:a 3−2a 2b +ab 2=________.11.在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为________.12.如果关于x 的一元二次方程x 2−3x +k =0有两个相等的实数根,那么实数k 的值是________94 .13.不等式组{2x −1≤32−x <1的解集为________. 14.如图,在平行四边形ABCD 中,点E 是CD 的中点,AE ,BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为________.15.如图,在平面直角坐标系中,已知A(3, 6),B(−2, 2),在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持CD =1,线段CD 在x 轴上平移,当AD +BC 的值最小时,点C 的坐标为________.16.如图,在菱形ABCD 中,∠ADC =60∘,点E ,F 分别在AD ,CD 上,且AE =DF ,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①△ACF ≅△CDE ;①CG 2=GH ⋅BG ;①若DF =2CF ,则CE =7GF ;①S 四边形ABCG =√34BG 2.其中正确的结论有________.(只填序号即可)三、解答题17.先化简,再求值:(x −1−3x+1)÷x 2+4x+4x+1,其中x =√2−2.18.如图,在四边形ABCD 中,∠B =∠D =90∘,点E ,F 分别在AB ,AD 上,AE =AF ,CE =CF ,求证:CB=CD.19.为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了________名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.20.甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是________;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.21.图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60∘,∠ACB=15∘,AC=40cm,求支架BC的长.(结果精确到1cm,参考数据:√2≈1.414,√3≈1.732,√6≈2.449)22.如图,在平面直角坐标系中,一次函数y=x+1的图象与x轴,y轴的交点分别为点A,(k≠0)的图象交于C,D两点,CE⊥x轴于点E,连接DE,AC=3√2.点B,与反比例函数y=kx(1)求反比例函数的解析式;(2)求△CDE的面积.23.如图,AB是⊙O的直径,点C,点D在⊙O上,AĈ=CD̂,AD与BC相交于点E,AF与⊙O 相切于点A,与BC延长线相交于点F.(1)求证:AE=AF.(2)若EF=12,sin∠ABF=3,求⊙O的半径.524.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?25.在矩形ABCD中,点E是射线BC上一动点,连接AE,过点B作BF⊥AE于点G,交直线CD 于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是________,位置关系是________;①如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作平行四边形BEHF,M是BH中点,连接GM,AB=3,BC=2,求GM的最小值.26.在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(−2, −4)和点C(2, 0),与y轴交于点D,与x轴的另一交点为点B.(1)求抛物线的解析式;(2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME时,请沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AME面积的14直接写出线段AM的长.参考答案一、1-8 CADB CBAD二、9.8.81×10610.a(a −b)211.24个12.9413.1<x ≤214.315.(−1, 0)16.①①①三、17.(x −1−3x+1)÷x 2+4x+4x+1, =[x−11−3x+1]⋅x+1(x+2)2, =x 2−1−3x+1⋅x+1(x+2)2, =x−2x+2,当x =√2−2时,原式=√2−2−2√2−2+2=√2−4√2=2−4√22=1−2√2.18.证明:连接AC ,如图,在△AEC 与△AFC 中,{AC =AC ,CE =CF ,AE =AF ,① △AEC ≅△AFC(SSS),① ∠CAE =∠CAF .① ∠B=∠D=90∘,① CB=CD.19.50C组学生有50−5−18−17=10(人),补全的频数分布直方图如右图所示;扇形统计图中C组所对应的圆心角度数是:360∘×1050=72∘,即扇形统计图中C组所对应的圆心角度数是72∘;1500×550=150(人),答:该校有150名学生平均每天睡眠时间低于7时.20.25(2)根据题意画树状图如下:共有6种等可能的情况数,其中两人选购到同一种类奶制品的有2种,则两人选购到同一种类奶制品的概率是26=13.21.解:如图,过C作CD⊥MN于D,则∠CDB=90∘,① ∠CAD=60∘,AC=40,① CD=AC⋅sin∠CAD=40×sin60∘=20√3,=40×√32① ∠ACB=15∘,① ∠CBD=∠CAD−∠ACB=45∘,① BC=√2CD=20√6≈49(cm),即支架BC的长约为49cm.22.解:(1)① 一次函数y=x+1与x轴和y轴分别交于点A和点B,① A(−1,0),B(0,1),① OA=OB=1.又∠AOB=90∘,① ∠CAE=45∘,即△CAE为等腰直角三角形,① AE=CE.① AC=3√2,AE2+CE2=(3√2)2,解得:AE=CE=3,① OE=2,① C(2, 3),① k=2×3=6,① 反比例函数表达式为y=6.x(2)联立{y=x+1,y=6x,解得:{x=2,y=3或{x=−3,y=−2,① 点D的坐标为(−3, −2),① S△CDE=12×3×[2−(−3)]=152.23.证明:① AF与⊙O相切于点A,① FA⊥AB,① ∠FAB=90∘,① ∠F+∠B=90∘,① AB是⊙O的直径,① ∠ACB=90∘,① ∠CAE+∠CEA=90∘,① AĈ=CD̂,① ∠CAE=∠D,① ∠D+∠CEA=90∘,① ∠D=∠B,① ∠B+∠CEA=90∘,① ∠F=∠CEA,① AE=AF.① AE=AF,∠ACB=90∘,① CF=CE=12EF=6,① ∠ABF=∠D=∠CAE,① sin∠ABF=sin∠CAE=35,① CEAE =6AE=35,① AE=10,① AC=√AE2−CE2=√102−62=8,① sin∠ABC=AC AB =8AB =35,① AB =403, ① OA =12AB =203. 即⊙O 的半径为203.24.设y =kx +b ,由表可知:当x =15时,y =150,当x =16时,y =140,则{150=15k +b 140=16k +b ,解得:{k =−10b =300, ① y 关于x 的函数解析式为:y =−10x +300;由题意可得:w =(−10x +300)(x −11)=−10x 2+410x −3300,① w 关于x 的函数解析式为:w =−10x 2+410x −3300;① 410−2×(−10)=20.5,当x =20或21时,代入,可得:w =900,① 该工艺品每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是900元.25.相等,垂直可得:∠CBF =∠BAE ,又① ∠ABE =∠BCF =90∘,① △ABE ∽△BCF ,① AB BC =BE CF ,即32=x CF , ① CF =2x 3,① EF =√CE 2+CF 2=√139x 2−4x +4,设y =139x 2−4x +4, 当x =1813时,y 取最小值1613,① EF 的最小值为4√1313,故GM 的最小值为2√1313.26.① 抛物线y =ax 2+bx +2经过点A(−2, −4)和点C(2, 0), 则{−4=4a −2b +20=4a +2b +2,解得:{a =−1b =1 , ① 抛物线的解析式为y =−x 2+x +2;存在,理由是:在x 轴正半轴上取点E ,使OB =OE ,过点E 作EF ⊥BD ,垂足为F , 在y =−x 2+x +2中,令y =0,解得:x =2或−1,① 点B 坐标为(−1, 0),① 点E 坐标为(1, 0),可知:点B 和点E 关于y 轴对称,① ∠BDO =∠EDO ,即∠BDE =2∠BDO ,① D(0, 2),① DE =√22+12=√5=BD ,在△BDE 中,有12×BE ×OD =12×BD ×EF ,即2×2=√5×EF ,解得:EF =4√55, ① DF =√DE 2−EF 2=3√55, ① tan∠BDE=EF DF =4√55÷3√55=43, 若∠PBC =2∠BDO ,则∠PBC =∠BDE ,① BD=DE=√5,BE=2,则BD2+DE2>BE2,① ∠BDE为锐角,当点P在第三象限时,∠PBC为钝角,不符合;当点P在x轴上方时,① ∠PBC=∠BDE,设点P坐标为(c, −c2+c+2),过点P作x轴的垂线,垂足为G,则BG=c+1,PG=−c2+c+2,① tan∠PBC=PGBG =−c2+c+2c+1=43,解得:c=23,① −c2+c+2=209,① 点P的坐标为(23, 209);当点P在第四象限时,同理可得:PG=c2−c−2,BG=c+1,tan∠PBC=PGBG =c2−c−2c+1=43,解得:c=103,① −c 2+c +2=−529, ① 点P 的坐标为(103, −529),综上:点P 的坐标为(23, 209)或(103, −529);设EF 与AD 交于点N ,① A(−2, −4),D(0, 2),设直线AD 表达式为y =mx +n , 则{−4=−2m +n 2=n ,解得:{m =3n =2, ① 直线AD 表达式为y =3x +2,设点M 的坐标为(s, 3s +2),① A(−2, −4),C(2, 0),设直线AC 表达式为y =m 1x +n 1, 则{−4=−2m 1+n 10=2m 1+n 1 ,解得:{m 1=1n 1=−2, ① 直线AC 表达式为y =x −2,令x =0,则y =−2,① 点E 坐标为(0, −2),可得:点E 是线段AC 中点,① △AME 和△CME 的面积相等,由于折叠,① △CME ≅△FME ,即S △CME =S △FME ,由题意可得:当点F在直线AC上方时,① S△MNE=14S△AMC=12S△AME=12S△FME,即S△MNE=S△ANE=S△MNF,① MN=AN,FN=NE,① 四边形FMEA为平行四边形,① CM=FM=AE=12AC=12×√42+42=2√2,① M(s, 3s+2),① √(s−2)2+(3s+2)2=2√2,解得:s=−45或0(舍),① M(−45, −25),① AM=√(−45+2)2+(−25+4)2=6√105,当点F在直线AC下方时,如图,同理可得:四边形AFEM为平行四边形,① AM=EF,由于折叠可得:CE=EF,① AM=EF=CE=2√2,综上:AM的长度为6√10或2√2.5。

辽宁省鞍山市2020年中考数学试题

辽宁省鞍山市2020年中考数学试题

………外………内辽宁省鞍山市2020年中考数学试题试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx学校注意事项:1.答题前填写好自己的姓名、班级、考号等信息$2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.下列各式计算结果中正确的是 A .a 2+a 2=a 4 B .(a 3)2=a 5 C .(a +1)2=a 2+1 D .a·a =a 2【答案】D 【解析】 【分析】根据合并同类项,幂的运算法则,完全平方公式逐项计算即可得出正确答案. 【详解】解:a 2+a 2=2 a 2, 故错误; (a 3)2=a 6, 故错误;(a +1)2=a 2+2a+1. 故错误; a·a=a 1+1=a 2, 正确; 故选: D2.如图,直线l 1//l 2,点A 在直线l 1上,以点A 为圆心,适当长为半径画弧,分别交 直线l 1、l 2于B 、C 两点,连结AC 、BC .若∠ABC =54°,则∠1的大小为()A .36°.B .54°.C .72°.D .73°.【答案】C试卷第2页,总31页○………线…………○………线…………【解析】∵l 1∥l 2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A 为圆心,适当长为半径画弧,分别交直线l 1、l 2于B 、C 两点, ∴AC=AB ,∴∠ACB=∠ABC=54°, ∵∠1+∠ACB+∠2=180°, ∴∠1=72°. 故选C . 3.12020-的绝对值是( ) A .12020 B .12020-C .2020-D .2020【答案】A 【解析】 【分析】根据负数的绝对值等于它的相反数求解即可. 【详解】解:负数的绝对值等于它的相反数,故1120202020-=. 故选:A . 【点睛】本题考查绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是( )…线…………○………线…………○……A . B . C .D .【答案】A 【解析】 【分析】根据从正面看得到的图形是主视图,可得答案. 【详解】解:从正面看第一层是三个小正方形,第二层第一排是一个小正方形, 故选:A . 【点睛】本题考查了简单几何体的三视图,从正面看得到的图形是主视图. 5.我市某一周内每天的最高气温如下表所示:则这组数据的中位数和众数分别是( )A .26.5和28B .27和28C .1.5和3D .2和3【答案】B 【解析】 【分析】根据中位数、众数的定义,结合表格信息即可得出答案. 【详解】解:将表格数据从小到大排列为:25,26,27,27,28,28,28, 中位数为:27; 众数为:28. 故选B .试卷第4页,总31页…………○…………※※请※※不※…………○…………【点睛】本题考查了众数、中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( ) A .2403006x x =- B .2403006x x =+ C .2403006x x=- D .2403006x x=+ 【答案】B【解析】 【分析】根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可. 【详解】 解:根据题意得:2403006x x =+, 故选B . 【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.7.如图,O 是ABC 的外接圆,半径为2cm ,若2cm BC =,则A ∠的度数为( )A .30°B .25°C .15°D .10°【答案】A 【解析】 【分析】连接OB 和OC ,证明△OBC 为等边三角形,得到∠BOC 的度数,再利用圆周角定理得出∠A .……○…………装…订…………○……学校:___________姓名____考号:___________……○…………装…订…………○……【详解】解:连接OB 和OC , ∵圆O 半径为2,BC=2, ∴△OBC 为等边三角形, ∴∠BOC=60°, ∴∠A=30°, 故选A .【点睛】本题考查了圆周角定理和等边三角形的判定和性质,解题的关键是正确的作出辅助线. 8.如图,在平面直角坐标系中,点1234,,,,A A A A 在x 轴正半轴上,点123,,,B B B 在直线(0)y x x =≥上,若1(1,0)A ,且112223334,,,A B A A B A A B A 均为等边三角形,则线段20192020B B 的长度为( )A .2B .2C .2D .2【答案】D 【解析】 【分析】根据题意得出∠A n OB n =30°,从而推出A n B n =OA n ,得到B n B n+1n A n+1,算出B 1A 2=1,B 2A 3=2,B 3A 4=4,找出规律得到B n A n+1=2n-1,从而计算结果.试卷第6页,总31页…○…………外……○…………内…【详解】解:设△B n A n A n+1的边长为a n , ∵点B 1,B 2,B 3,…是直线(0)y x x =≥上的第一象限内的点, 过点A 1作x 轴的垂线,交直线(0)y x =≥于C , ∵A 1(1,0),令x=1,则, ∴A 1C=3, ∴111tan AC AOC OA ∠== ∴∠A n OB n =30°,∵112223334,,,A B A A B A A B A 均为等边三角形,∴∠B n A n A n+1=60°, ∴∠OB n A n =30°, ∴A n B n =OA n , ∵∠B n A n+1B n+1=60°, ∴∠A n+1B n B n+1=90°, ∴B n B n+1B n A n+1, ∵点A 1的坐标为(1,0),∴A 1B 1=A 1A 2=B 1A 2=1,A 2B 2=OA 2=B 2A 3=2,A 3B 3=OA 3=B 3A 4=4,..., ∴A n B n =OA n =B n A n+1=2n-1,∴20192020B B 2019A 202020182, 故选D .【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,本题属于基础题,难度不大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题9.分解因式:3222 a a b ab -+=_____________________. 【答案】()2a ab - 【解析】 【分析】原式提取公因式,再利用完全平方公式分解即可. 【详解】解:原式=()()2222 a a a b b b a a -+=-,故答案为:()2a a b -. 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 10.据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为________. 【答案】8.81×106 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:8810000=8.81×106, 故答案为:8.81×106. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球试卷第8页,总31页搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为_________. 【答案】24 【解析】 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解. 【详解】解:∵共试验100次,其中有20次摸到红球,∴白球所占的比例为:20411005-=, 设袋子中共有白球x 个,则465x x =+, 解得:x=24,经检验:x=24是原方程的解, 故答案为:24. 【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.12.如果关于x 的一元二次方程230x x k -+=有两个相等的实数根,那么实数k 的值是________. 【答案】94【解析】 【分析】根据方程有两个相等的实数根得到△=b 2-4ac=0,求出k 的值即可. 【详解】解:∵一元二次方程x 2-3x+k=0有两个相等的实数根, ∴△=b 2-4ac=32-4×1×k=0, ∴9-4k=0, ∴k=94, 故答案为:94. 【点睛】…………装校:___________姓…………装此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.13.不等式组21321x x -≤⎧⎨-<⎩的解集为________.【答案】1<x≤2 【解析】 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集. 【详解】 解:21321x x -≤⎧⎨-<⎩①②,解不等式①得:x≤2, 解不等式②得:x >1, 则不等式的解集为1<x≤2, 故答案为:1<x≤2. 【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.14.如图,在ABCD 中,点E 是CD 的中点,AE ,BC 的延长线交于点F .若ECF △的面积为1,则四边形ABCE 的面积为________.【答案】3 【解析】 【分析】根据□ABCD 的对边互相平行的性质及中位线的性质知EC 是△ABF 的中位线;然后根证明△ABF ∽△CEF ,再由相似三角形的面积比是相似比的平方及△ECF 的面积为1求得△ABF 的面积;最后根据图示求得S 四边形ABCE =S △ABF -S △CEF =3. 【详解】解:∵在□ABCD 中,AB ∥CD ,点E 是CD 中点, ∴EC 是△ABF 的中位线;试卷第10页,总31页…………装…………※※请※※不※※要※※在※※装※…………装…………在△ABF 和△CEF 中, ∠B=∠DCF ,∠F=∠F , ∴△ABF ∽△ECF , ∴12EC EF CF AB AF BF ===, ∴S △ABF :S △CEF =1:4; 又∵△ECF 的面积为1, ∴S △ABF =4,∴S 四边形ABCE =S △ABF -S △CEF =3. 故答案为:3. 【点睛】本题综合考查了相似三角形的判定与性质、平行四边形的性质;解得此题的关键是根据平行四边形的性质及三角形的中位线的判定证明EC 是△ABF 的中位线,从而求得△ABF 与△CEF 的相似比.15.如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.【答案】(-1,0) 【解析】 【分析】作点B 关于x 轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x 轴交于点D ,过点B′作AB″的平行线,与x 轴交于点C ,得到此时AD+BC 的值最小,求出直线AB″,得到点D 坐标,从而可得点C 坐标. 【详解】解:如图,作点B 关于x 轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x 轴交于点D ,过点B′作AB″的平行线,与x 轴交于点C ,………装…………○……___________姓名:___________班级:_………装…………○……可知四边形B′B″DC 为平行四边形, 则B′C=B″D ,由对称性质可得:BC=B′C , ∴AD+BC=AD+B′C=AD+B″D=AB″, 则此时AB″最小,即AD+BC 最小, ∵A (3,6),B (-2,2), ∴B′(-2,-2), ∴B″(-1,-2),设直线AB″的表达式为:y=kx+b ,则632k b k b =+⎧⎨-=-+⎩,解得:20k b =⎧⎨=⎩,∴直线AB″的表达式为:y=2x ,令y=0,解得:x=0,即点D 坐标为(0,0), ∴点C 坐标为(-1,0), 故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC 最小时的情形.16.如图,在菱形ABCD 中,60ADC ∠=︒,点E ,F 分别在AD ,CD 上,且AE DF =,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①ACF CDE △≌△;②2CG GH BG =⋅;③若DF 2CF =,则7CE GF =;④2ABCG S =四边形.其中正确的结论有_______.(只填序号即可)试卷第12页,总31页线…………○……线…………○……【答案】①③④ 【解析】 【分析】根据等边三角形的性质证明△ACF ≌△CDE ,可判断①;过点F 作FP ∥AD ,交CE 于P 点,利用平行线分线段成比例可判断③;过点B 作BM ⊥AG 于M ,BN ⊥GC 于N ,得到点A 、B 、C 、G 四点共圆,从而证明△ABM ≌△CBN ,得到S 四边形ABCG =S 四边形BMGN ,再利用S 四边形BMGN =2S △BMG 求出结果即可判断④;证明△BCH ∽△BGC ,得到BC BHBG BC,推出GH·BG=BG 2-BC 2,得出若等式成立,则∠BCG=90°,根据题意此条件未必成立可判断②. 【详解】解:∵ABCD 为菱形, ∴AD=CD , ∵AE=DF , ∴DE=CF , ∵∠ADC=60°,∴△ACD 为等边三角形, ∴∠D=∠ACD=60°,AC=CD , ∴△ACF ≌△CDE (SAS ),故①正确;过点F 作FP ∥AD ,交CE 于P 点. ∵DF=2CF ,∴FP :DE=CF :CD=1:3, ∵DE=CF ,AD=CD , ∴AE=2DE ,∴FP :AE=1:6=FG :AG , ∴AG=6FG ,∴CE=AF=7GF ,故③正确;……○…………外…………○…………内……过点B 作BM ⊥AG 于M ,BN ⊥GC 于N ,∵∠AGE=∠ACG+∠CAF=∠ACG+∠GCF=60°=∠ABC , 即∠AGC+∠ABC=180°, ∴点A 、B 、C 、G 四点共圆,∴∠AGB=∠ACB=60°,∠CGB=∠CAB=60°, ∴∠AGB=∠CGB=60°, ∴BM=BN ,又AB=BC , ∴△ABM ≌△CBN (HL ), ∴S 四边形ABCG =S 四边形BMGN , ∵∠BGM=60°, ∴GM=12BG ,, ∴S 四边形BMGN =2S △BMG =2×12×122,故④正确; ∵∠CGB=∠ACB=60°,∠CBG=∠HBC , ∴△BCH ∽△BGC , ∴BC BH CHBG BC CG==, 则BG·BH=BC 2, 则BG·(BG-GH )=BC 2, 则BG 2-BG·GH= BC 2, 则GH·BG=BG 2-BC 2, 当∠BCG=90°时,BG 2-BC 2=CG 2,此时GH·BG= CG 2, 而题中∠BCG 未必等于90°,故②不成立, 故正确的结论有①③④, 故答案为:①③④.试卷第14页,总31页【点睛】本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,相似三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键. 三、解答题17.先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中2x =. 【答案】22x x -+,1-【解析】 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值. 【详解】 解:原式=()()()21131112x x x x x x +-⎡⎤+-⨯⎢⎥+++⎣⎦=()()()211222x x x x x ++⨯+-+=22x x -+ 当2x =时,原式1-【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.如图,在四边形ABCD 中,90B D ∠=∠=︒,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =,求证:CB CD =.……○…………装………线…………○……学校:___________姓名:____……○…………装………线…………○……【答案】见解析 【解析】 【分析】连接AC ,证明△ACE ≌△ACF ,得到∠CAE=∠CAF ,再利用角平分线的性质定理得到CB=CD . 【详解】 解:连接AC ,∵AE=AF ,CE=CF ,AC=AC , ∴△ACE ≌△ACF (SSS ), ∴∠CAE=∠CAF , ∵∠B=∠D=90°, ∴CB=CD .【点睛】本题考查了全等三角形的判定和性质,角平分线的性质定理,解题的关键是连接AC ,证明三角形全等.19.为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间设每名学生的平均每天睡眠时间为x 时,共分为四组:A .67x ≤<,B .78x ≤<,C .89x ≤<,D .910x ≤≤,将调查结果绘制成如下两幅不完整的统计图: 注:学生的平均每天睡眠时间不低于6时且不高于10时.试卷第16页,总31页○…………外…………线…………○……○…………内…………线…………○……请回答下列问题:(1)本次共调查了________名学生; (2)请补全频数分布直方图;(3)求扇形统计图中C 组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.【答案】(1)50;(2)见解析;(3)72°;(4)150 【解析】 【分析】(1)用D 组的人数除以所占百分比即可; (2)求出C 组的人数,再补全统计图;(3)用C 组的人数除以样本人数,再乘以360即可;(4)用样本中每天睡眠时间低于7时的人数除以样本总人数,再乘以1500可得结果. 【详解】解:(1)17÷34%=50人, 故本次共调查了50人, 故答案为:50; (2)50-5-18-17=10人, 补全统计图如下:(3)10÷50×360=72°,…………外……………内…故扇形统计图中C 组所对圆心角为72°; (4)样本中每天睡眠时间低于7时的有5人, ∴5÷50×1500=150, ∴该校有150名学生平均每天睡眠时间低于7时. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A .纯牛奶,B .核桃奶;伊利品牌有三个种类的奶制品:C .纯牛奶,D .酸奶,E .核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是_______; (2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率. 【答案】(1)25;(2)13【解析】 【分析】(1)根据概率公式直接计算即可;(2)画出树状图,得出所有可能的情况数和符合要求的情况数,再利用概率公式计算. 【详解】解:(1)∵两个品牌共有5个种类的奶制品,每个品牌都有一种纯牛奶, ∴选购到纯牛奶的概率=25, 故答案为:25; (2)画树状图如下:可知共有6种等可能的结果,其中两人选购到同一种类奶制品的情况有2种,试卷第18页,总31页…………订…………○订※※线※※内※※答※※题※※…………订…………○∴两人选购到同一种类奶制品的概率为26=13.【点睛】此题考查的是用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.21.图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40cm AC =,求支架BC 的长.(结果精确到1cm ,1.414≈ 1.732≈ 2.449≈)【答案】49cm 【解析】 【分析】过点C 作CD ⊥MN ,垂足为D ,分别解△ACD 和△BCD ,即可得到结果. 【详解】解:过点C 作CD ⊥MN ,垂足为D , ∵∠MAC=60°,∠ACB=15°, ∴∠ABC=60°-15°=45°,∠ACD=30°, ∴△BCD 是等腰直角三角形, ∵AC=40cm , ∴在Rt △ACD 中,AD=12AC=20cm , ∴=cm ,∴在Rt △BCD 中,49=≈cm , ∴支架BC 的长为49cm .…装…………○……………线…………○……____姓名:___________班级:_____…装…………○……………线…………○……【点睛】本题考查了解直角三角形,涉及到等腰直角三角形的判定和性质,含30°的直角三角形的性质,解题的关键是添加辅助线,构造特殊直角三角形.22.如图,在平面直角坐标系中,一次函数1y x =+的图象与x 轴,y 轴的交点分别为点A ,点B ,与反比例函数(0)ky k x=≠的图象交于C ,D 两点,CE x ⊥轴于点E ,连接DE ,AC =(1)求反比例函数的解析式; (2)求CDE △的面积. 【答案】(1)6y x =;(2)152【解析】 【分析】(1)根据一次函数表达式推出△CAE 为等腰直角三角形,得到AE=CE ,再由AC 的长求出AE 和CE ,再求出点A 坐标,得到OE 的长,从而得到点C 坐标,即可求出k 值; (2)联立一次函数和反比例函数表达式,求出交点D 的坐标,再用12乘以CE 乘以C 、D 两点横坐标之差求出△CDE 的面积. 【详解】解:(1)∵一次函数y=x+1与x 轴和y 轴分别交于点A 和点B ,试卷第20页,总31页………外…………○…※………内…………○…∴∠CAE=45°,即△CAE 为等腰直角三角形, ∴AE=CE ,∵AC=(222AE CE +=,解得:AE=CE=3,在y=x+1中,令y=0,则x=-1, ∴A (-1,0), ∴OE=2,CE=3, ∴C (2,3), ∴k=2×3=6, ∴反比例函数表达式为: 6y x=; (2)联立:16y x y x =+⎧⎪⎨=⎪⎩,解得:x=2或-3, 当x=-3时,y=-2,∴点D 的坐标为(-3,-2), ∴S △CDE =()13232⨯⨯--⎡⎤⎣⎦=152. 【点睛】本题考查了反比例函数和一次函数综合,求反比例函数表达式,解一元二次方程,三角形面积,难度不大,解题时要注意结合坐标系中图形作答. 23.如图,AB 是O 的直径,点C ,点D 在O 上,AC CD =,AD 与BC 相交于点E ,AF 与O 相切于点A ,与BC 延长线相交于点F .(1)求证:AE AF =. (2)若12EF =,3sin 5ABF ∠=,求O 的半径.试卷第21页,总31页【答案】(1)见解析;(2)203【解析】 【分析】(1)根据圆周角定理得到∠ACB=90°,根据切线性质得到∠BAF=90°,由AC CD =得出∠CAD=∠CDA ,结合∠CDA=∠ABC ,证明∠CAF=∠CAD ,从而证明△ACF ≌△ACE ,即可得到结论;(2)根据EF 求出CE ,结合sin ∠ABF=sin ∠CAD 求出AE ,再利用勾股定理算出AC ,最后根据sin ∠ABF=ACAB求出AB 即可得到半径. 【详解】解:(1)∵AB 为圆O 直径, ∴∠ACB=90°, ∵AF 与圆O 相切,∴∠BAF=90°=∠CAF+∠CAB , ∴∠CBA+∠CAB=90°, ∵AC CD =, ∴AC=CD , ∴∠CAD=∠CDA , 又∵∠CDA=∠CBA ,∴∠CDA+∠CAB=∠CAD+∠CAB=90°,∴∠CAF=∠CAD ,又AC=AC ,∠ACF=∠ACE=90°, ∴△ACF ≌△ACE (ASA ), ∴AE=AF ;(2)∵∠ABF=∠ADC=∠CAD , ∴sin ∠ABF=sin ∠CAD=CE AE =35, ∵△ACF ≌△ACE ,EF=12, ∴CE=CF=6, ∴6AE =35,解得:AE=10, ∴=8,∴sin ∠ABF=AC AB =35,试卷第23页,总31页装…………○………_姓名:___________班级:_____装…………○………(2)由题意可得:w =(-10x+300)(x-11)=-10x 2+410x-3300, ∴w 关于x 的函数解析式为:w =-10x 2+410x-3300;(3)∵()410210-⨯-=20.5, 当x=20或21时,代入, 可得:w=900,∴该工艺品每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是900元. 【点睛】本题考查了求一次函数表达式,二次函数的实际应用,解题的关键是弄清题中所含的数量关系,正确列出相应表达式.25.在矩形ABCD 中,点E 是射线BC 上一动点,连接AE ,过点B 作BF AE ⊥于点G ,交直线CD 于点F .(1)当矩形ABCD 是正方形时,以点F 为直角顶点在正方形ABCD 的外部作等腰直角三角形CFH ,连接EH .①如图1,若点E 在线段BC 上,则线段AE 与EH 之间的数量关系是________,位置关系是_________;②如图2,若点E 在线段BC 的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E 在线段BC 上,以BE 和BF 为邻边作BEHF ,M 是BH 中点,连接GM ,3AB =,2BC =,求GM 的最小值. 【答案】(1)①相等;垂直;②成立,理由见解析;(2)13【解析】 【分析】试卷第24页,总31页(1)①证明△ABE ≌△BCF ,得到BE=CF ,AE=BF ,再证明四边形BEHF 为平行四边形,从而可得结果;②根据(1)中同样的证明方法求证即可;(2)说明C 、E 、G 、F 四点共圆,得出GM 的最小值为圆M 半径的最小值,设BE=x ,证明△ABE ∽△BCF ,得到CF ,再利用勾股定理表示出值即可得到GM 的最小值. 【详解】解:(1)①∵四边形ABCD 为正方形,∴AB=BC ,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°, ∵AE ⊥BF ,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE ,又AB=BC ,∠ABE=∠BCF=90°, ∴△ABE ≌△BCF (AAS ), ∴BE=CF ,AE=BF , ∵△FCH 为等腰直角三角形,∴FC=FH=BE ,FH ⊥FC ,而CD ⊥BC , ∴FH ∥BC ,∴四边形BEHF 为平行四边形, ∴BF ∥EH 且BF=EH , ∴AE=EH ,AE ⊥EH , 故答案为:相等;垂直; ②成立,理由是:当点E 在线段BC 的延长线上时, 同理可得:△ABE ≌△BCF (AAS ), ∴BE=CF ,AE=BF , ∵△FCH 为等腰直角三角形,∴FC=FH=BE ,FH ⊥FC ,而CD ⊥BC , ∴FH ∥BC ,∴四边形BEHF 为平行四边形, ∴BF ∥EH 且BF=EH , ∴AE=EH ,AE ⊥EH ;试卷第25页,总31页(2)∵∠EGF=∠BCD=90°, ∴C 、E 、G 、F 四点共圆,∵四边形BCHF 是平行四边形,M 为BH 中点, ∴M 也是EF 中点,∴M 是四边形BCHF 外接圆圆心, 则GM 的最小值为圆M 半径的最小值, ∵AB=3,BC=2, 设BE=x ,则CE=2-x , 同(1)可得:∠CBF=∠BAE , 又∵∠ABE=∠BCF=90°, ∴△ABE ∽△BCF ,∴AB BE BC CF =,即32xCF=, ∴CF=23x ,∴ 设y=213449x x -+, 当x=1813时,y 取最小值1613, ∴EF 的最小值为13, 故GM试卷第26页,总31页…………装…………○………………线…………○……※※请※※不※※要※※在※※装※※订※※线…………装…………○………………线…………○……【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,二次函数的最值,圆的性质,难度较大,找出图形中的全等以及相似三角形是解题的关键.26.在平面直角坐标系中,抛物线22(0)y ax bx a =++≠经过点(2,4)A --和点(2,0)C ,与y 轴交于点D ,与x 轴的另一交点为点B .(1)求抛物线的解析式;(2)如图1,连接BD ,在抛物线上是否存在点P ,使得2PBC BDO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将CME △沿ME 所在直线翻折,得到FME ,当FME 与AME △重叠部分的面积是AMC 面积的14时,请直接写出线段AM 的长. 【答案】(1)22y x x =-++;(2)存在,(23,209)或(103,529-);(3)5或试卷第27页,总31页【解析】 【分析】(1)根据点A 和点C 的坐标,利用待定系数法求解;(2)在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,构造出∠PBC=∠BDE ,分点P 在第三象限时,点P 在x 轴上方时,点P 在第四象限时,共三种情况分别求解;(3)设EF 与AD 交于点N ,分点F 在直线AC 上方和点F 在直线AC 下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN ,FN=NE ,从而证明四边形FMEA 为平行四边形,继而求解. 【详解】解:(1)∵抛物线22(0)y ax bx a =++≠经过点A (-2,-4)和点C (2,0),则44220422a b a b -=-+⎧⎨=++⎩,解得:11a b =-⎧⎨=⎩,∴抛物线的解析式为22y x x =-++; (2)存在,理由是:在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F , 在22y x x =-++中, 令y=0,解得:x=2或-1, ∴点B 坐标为(-1,0), ∴点E 坐标为(1,0),可知:点B 和点E 关于y 轴对称, ∴∠BDO=∠EDO ,即∠BDE=2∠BDO , ∵D (0,2),∴=BD , 在△BDE 中,有12×BE ×OD=12×BD ×EF , 即2×EF ,解得:EF=5, ∴,试卷第28页,总31页外…………○…………装※※请※※不※※内…………○…………装∴tan ∠BDE=EF DF =55÷=43, 若∠PBC=2∠BDO , 则∠PBC=∠BDE , ∵BE=2, 则BD 2+DE 2>BE 2, ∴∠BDE 为锐角, 当点P 在第三象限时, ∠PBC 为钝角,不符合; 当点P 在x 轴上方时,∵∠PBC=∠BDE ,设点P 坐标为(c ,22c c -++), 过点P 作x 轴的垂线,垂足为G , 则BG=c+1,PG=22c c -++,∴tan ∠PBC=PG BG =221c c c -+++=43, 解得:c=23, ∴22c c -++=209, ∴点P 的坐标为(23,209);当点P 在第四象限时,同理可得:PG=22c c --,BG=c+1,tan ∠PBC=PG BG =221c c c --+=43,试卷第29页,总31页………订…………○……___________考号:___________………订…………○……解得:c=103, ∴22c c -++=529-, ∴点P 的坐标为(103,529-), 综上:点P 的坐标为(23,209)或(103,529-);(3)设EF 与AD 交于点N ,∵A (-2,-4),D (0,2),设直线AD 表达式为y=mx+n ,则422m n n -=-+⎧⎨=⎩,解得:32m n =⎧⎨=⎩,∴直线AD 表达式为y=3x+2, 设点M 的坐标为(s ,3s+2),∵A (-2,-4),C (2,0),设直线AC 表达式为y=m 1x+n 1,则11114202m n m n -=-+⎧⎨=+⎩,解得:1112m n =⎧⎨=-⎩,∴直线AC 表达式为y=x-2, 令x=0,则y=-2, ∴点E 坐标为(0,-2), 可得:点E 是线段AC 中点, ∴△AME 和△CME 的面积相等, 由于折叠,∴△CME ≌△FME ,即S △CME =S △FME , 由题意可得:试卷第30页,总31页……装…………○………※不※※要※※在※※装※※订※※线※……装…………○………当点F在直线AC上方时,∴S△MNE=14S△AMC=12S△AME=12S△FME,即S△MNE= S△ANE= S△MNF,∴MN=AN,FN=NE,∴四边形FMEA为平行四边形,∴CM=FM=AE=12AC=12=,∵M(s,3s+2),=解得:s=45-或0(舍),∴M(45-,25-),∴当点F在直线AC下方时,如图,同理可得:四边形AFEM为平行四边形,∴AM=EF,由于折叠可得:CE=EF,∴AM=EF=CE=试卷第31页,总31页 …………线…………○………………线…………○…… 综上:AM 的长度为5或 【点睛】 本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.。

鞍山岫岩中考数学试题及答案

鞍山岫岩中考数学试题及答案

鞍山岫岩中考数学试题及答案一、选择题1. 已知函数 f(x) = 2x + 1,若 f(a) = 7,则 a 的值为多少?A. 3B. 1C. 2D. 4解析:根据已知条件,将 f(a) = 7 代入函数 f(x) = 2x + 1,得到 2a +1 = 7,解方程可得 a = 3。

因此,选项 A 正确。

2. 若 x + y = 5, 2x - y = 1,则 x 和 y 的值分别为多少?A. x = 2, y = 3B. x = 4, y = 1C. x = 3, y = 2D. x = 1, y = 4解析:使用联立方程的方法求解。

将两个方程同时进行消元,消去y 变量,得到 3x = 6,解方程可得 x = 2。

将 x = 2 代入其中一个原方程求解 y,得到 y = 3。

因此,选项 A 正确。

3. 若正方形的边长为 a,则其对角线的长度为多少?A. aB. a√2C. 2aD. 2a√2解析:对角线的长度等于两个边的长度平方和的平方根,即 d =√(a^2 + a^2) = √2a^2 = a√2。

因此,选项 B 正确。

二、填空题1. 如果 a:b = 2:3,b:c = 4:5,则 a:c = ______。

解析:根据比例的性质,可以将 a:b 和 b:c 的比例分别相乘,得到a:c 的比例是 2:3 × 4:5 = 8:15。

所以,答案是 8:15。

2. 下列哪个数字是无理数?A. 2/3B. √2C. 0.5D. 3解析:无理数是指不能表示为两个整数之比的数。

其中,选项B √2 是无理数,其他选项都可以表示为两个整数之比。

因此,选项B 正确。

三、解答题1. 解方程 3x + 5 = 14。

解析:将方程移项得到 3x = 14 - 5,即 3x = 9。

然后除以系数 3,得到 x = 9 / 3 = 3。

所以,方程的解是 x = 3。

2. 计算平方根√144 + √64。

解析:将两个根号内的数分别进行开根号,得到√144 + √64 = 12 +8 = 20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年辽宁省鞍山市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)(2012•泰州)3﹣1等于()A.3B.C.﹣3 D.﹣2.(2分)(2012•苏州)一组数据2,4,5,5,6的众数是()A.2B.4C.5D.63.(2分)(2012•肇庆)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°4.(2分)(2012•肇庆)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤25.(2分)(2012•重庆)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°6.(2分)(2013•鞍山)已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根7.(2分)(2010•绍兴)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.2 9.2 9.2 9.2方差(环2)0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁8.(2分)(2013•鞍山)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(共8小题,每小题2分,满分16分)9.(2分)(2013•鞍山)分解因式:m2﹣10m=_________.10.(2分)如图,∠A+∠B+∠C+∠D=_________度.11.(2分)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第_________象限.12.(2分)若方程组,则3(x+y)﹣(3x﹣5y)的值是_________.13.(2分)(2013•鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC的长_________.14.(2分)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是_________.15.(2分)(2013•鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是_________cm.16.(2分)(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是_________.三、计算题(共2小题,每小题6分,满分12分)17.(6分)(2013•鞍山)先化简,再求值:,其中x=.18.(6分)(2013•鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?四、应用题(共2小题,每小题6分,满分12分)19.(6分)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.20.(6分)(2013•鞍山)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)五、应用题(共2小题,每小题6分,满分12分)21.(6分)(2013•鞍山)如图,已知线段a及∠O,只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)22.(6分)(2010•贵阳)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.六、应用题(共2小题,每小题6分,满分12分)23.(6分)(2013•鞍山)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?(2)若AC=2,AO=,求OD的长度.24.(6分)(2003•天津)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.七、应用题(满分10分)25.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?八、应用题(满分10分)26.(10分)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.2013年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.(2分)(2012•泰州)3﹣1等于()A.3B.C.﹣3 D.﹣考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂:a﹣p=(a≠0,p为正整数),进行运算即可.解答:解:3﹣1=.故选D.点评:此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.2.(2分)(2012•苏州)一组数据2,4,5,5,6的众数是()A.2B.4C.5D.6考点:众数.分析:根据众数的定义解答即可.解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.3.(2分)(2012•肇庆)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°考点:平行线的性质;三角形内角和定理.专题:探究型.分析:先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.解答:解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.故选C.点评:本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.4.(2分)(2012•肇庆)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,2﹣x≥0,解得x≤2.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(2分)(2012•重庆)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°考点:圆周角定理.专题:探究型.分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(2分)(2013•鞍山)已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根考点:解一元二次方程-直接开平方法.分析:根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.解答:解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.点评:此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.7.(2分)(2010•绍兴)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.2 9.2 9.2 9.2方差(环2)0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁考点:方差.专题:图表型.分析:根据方差的定义,方差越小数据越稳定.解答:解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(2分)(2013•鞍山)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个考点:二次函数图象与系数的关系.分析:由开口方向、与y轴交于负半轴以及对称轴的位置,即可确定a,b,c的正负;由对称轴x=﹣=1,可得b+2a=0;由抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,可得抛物线与x轴的另一个交点为(4,0);当x=﹣1时,y=a﹣b+c<0;a﹣b+c<0,b+2a=0,即可得3a+c<0.解答:解:∵开口向上,∴a>0,∵与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b<0,∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x轴的另一个交点为(4,0);故③正确;∵当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④错误;∵a﹣b+c<0,b+2a=0,∴3a+c<0;故⑤正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题2分,满分16分)9.(2分)(2013•鞍山)分解因式:m2﹣10m=m(m﹣10).考点:因式分解-提公因式法.分析:直接提取公因式m即可.解答:解:m2﹣10m=m(m﹣10),故答案为:m(m﹣10).点评:此题主要考查了提公因式法分解因式,关键是找准公因式.10.(2分)如图,∠A+∠B+∠C+∠D=360度.考点:多边形内角与外角.分析:根据四边形内角和等于360°即可求解.解答:解:由四边形内角和等于360°,可得∠A+∠B+∠C+∠D=360度.故答案为:360.点评:考查了四边形内角和等于360°的基础知识.11.(2分)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第四象限.考点:一次函数图象与系数的关系.专题:探究型.分析:先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.解答:解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.12.(2分)若方程组,则3(x+y)﹣(3x﹣5y)的值是24.考点:解二元一次方程组.专题:整体思想.分析:把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.解答:解:∵,∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.故答案为:24.点评:本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.13.(2分)(2013•鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC的长2.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.(2分)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9.考点:代数式求值.专题:应用题.分析:观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.解答:解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.点评:依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.15.(2分)(2013•鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是80cm.考点:二元一次方程组的应用.分析:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可的方程:x+y=220,又知两棒未露出水面的长度相等,又可得方程x=y,把两个方程联立,组成方程组,解方程组可得较长的铁棒的长度,用较长的铁棒的长度×可以求出木桶中水的深度.解答:解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可列x+y=220,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为120×=80(cm).故答案为:80.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,找出合适的等量关系,列出方程组.16.(2分)(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.三、计算题(共2小题,每小题6分,满分12分)17.(6分)(2013•鞍山)先化简,再求值:,其中x=.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为后解答.解答:解:原式=÷(﹣)﹣1=÷﹣1=•﹣1=﹣1.当x=时,原式=﹣1,=﹣1=﹣1.点评:本题考查了分式的化简求值,能正确进行因式分解是解题的关键.18.(6分)(2013•鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?考点:二次函数的应用.分析:(1)利用待定系数法求得y与x之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.解答:解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.点评:本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.四、应用题(共2小题,每小题6分,满分12分)19.(6分)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可解答:解:法一,列表法二,画树形图(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=,所以:此游戏对双方不公平.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2013•鞍山)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)考点:解直角三角形的应用-坡度坡角问题.分析:在Rt△ABC中,根据AB=5米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD 的长度,用AD﹣AB即可求出滑板加长的长度.解答:解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD﹣AB=7.07﹣5=2.07(米).答:改善后滑滑板会加长2.07米.点评:本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.五、应用题(共2小题,每小题6分,满分12分)21.(6分)(2013•鞍山)如图,已知线段a及∠O,只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.22.(6分)(2010•贵阳)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.考点:平行四边形的判定;全等三角形的判定.专题:证明题.分析:(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.解答:证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).点评:此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.六、应用题(共2小题,每小题6分,满分12分)23.(6分)(2013•鞍山)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?(2)若AC=2,AO=,求OD的长度.考点:切线的性质;勾股定理.专题:计算题.分析:(1)AC=CD,理由为:由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由OC与OB垂直,得到∠BOC为直角,由OA=OB,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边即可得证;(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的长.解答:解:(1)AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OAC=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CDA,∴∠CDA+∠B=90°,∴∠DAC=∠CDA,则AC=CD;(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,解得:OD=1.点评:此题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.24.(6分)(2003•天津)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.考点:反比例函数综合题.专题:计算题;数形结合.分析:(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入y=可确定反比例函数的解析式.解答:解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(﹣1,0),B(0,1),D(1,0);(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2),又∵点C在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.点评:本题主要考查用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式.七、应用题(满分10分)25.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?考点:正方形的性质;全等三角形的判定与性质.专题:证明题;探究型.分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD 成立.解答:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(3分)(2)解:GE=BE+GD成立.(4分)理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,(5分)∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,(6分)又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.(7分)∴GE=DF+GD=BE+GD.(8分)点评:本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.八、应用题(满分10分)26.(10分)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a(x﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2 ∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.。

相关文档
最新文档