人工智能复习提纲
高级人工智能复习提纲
13. 说明解释泛化学习的过程。
解释泛化学习问题: 已知: • 目标概念 • 训练例 • 领域理论 • 可操作性标准 欲求: • 训练实例的泛化,使之满足以下条件 1) 是目标概念的充分概念描述 2) 满足可操作性标准 解释泛化学习的过程可以分为两个阶段: 1. 解释 • 利用领域理论知识解释为什么训练例满足目标概念的定义 2. 泛化 • 确定解释成立的最通用的条件
支持向量机需要使用核函数来进行非线性分类。 SVM 核心思想是建立在结构风险最小化原则基础上,可以自动寻找出那些对分类有较好区 分能力的支持向量,构成超平面作为两类的分割。 对非线性可分的处理是利用变换,把 数据输入从低维空间射到高维空间,然后在这个高维 空间中,将低维上非线性可分的问题变换成高维空间上线性可分的问题,求出分划超平面。 在高维空间中,实际上可以只需要进行内积计算,只要有一种核函数满足 Mercer 条件,它 就对应某一空间中的内积
14. 什么是深度学习?
是一类机器学习技术,利用多层次的非线性信息处理 的监督或无监督的特征提取和转换, 并进行模式分析和分类。即使用多层前向网络,每层网络相对独立的进行训练,然后多层联 合起来可以提高分类的准确性。
15. 给出强化学习的模型,并説明其含义。
强化学习系统接受环境状态的输入 s,根据内部的推理机制,系统输出相应的动作行为 a。 环境在系统动作作用 a 下,变迁到新的状态 s’。系统接手环境新状态输入,同时得到环境对 于系统的瞬时奖惩反馈 r。对于强化学习系统来讲,其目标是学习一个行为策略 π:S -> A, 使得系统选择的动作能够获得的环境奖励的累计值最大。
6. 什么是定性推理?
定性推理是从物理系统、生命系统的结构描述出发,导出行为描述,以便预测系统的行为并 给出原因解释。 定性推理采用系统部件间的局部结构规则来解释系统行为, 即部件状态的变 化行为只于直接相邻的部件有关。
人工智能总复习
第五章 问题求解与搜索策略(重点)
状态空间的搜索策略
状态空间表示
宽/广度优先搜索,代价树搜索,A/A*算法
与/或树的搜索策略
问题归约表示
宽/广度优先搜索,代价树搜索
第六章 人工神经网络(了解,可考)
人工神经网络基本结Leabharlann 了解人工神经网络当今新技术新发展
第七章 计算智能(了解,可考)
遗传算法
人工智能总复习
2018.1.5
第一章 绪论(了解)
人工智能的定义 人工智能的应用领域 人工智能的学科基础(哲学、数学、神经科学、计算机
学……) 人工智能的发展过程 人工智能领域的重要人物以及一些重要事件
第二章 知识表示(重点)
状态空间法 谓词逻辑法 问题归约法 与或树搜索 语义网络法 框架表示 其他方法(剧本表示、过程表示)
第三章 经典逻辑推理(重点)
自然演绎推理 归结演绎推理(子句集、归结、结论证明/问题求解) 与或形演绎推理
第四章 不确定推理(重点)
主观Bayes方法 可信度方法 (CF模型、阈值/加权/……) 证据理论 模糊推理(扎德模糊推理)
Rm ( A B) (AV ) UV (A(u) B (v)) (1 A(u)) /(u, v) Ra (AV ) (U B) UV 1 (1 A(u) B (v)) /(u,v)
基本概念、基本流程、重要操作算子
进化策略 进化编程 人工生命
人工智能简略复习大纲58
PPT文档演模板
2020/11/9
人工智能简略复习大纲58
课程简介
• 通过人工智能课程的学习,了解人工智能 的发展概况、人工智能与人类智能之间的 联系、人工智能的应用领域、机器学习、 神经计算、遗传算法、专家系统等基本概 念,掌握知识表示方式和推理、搜索推理、 消解原理等人工智能原理的基本理论、方 法及其应用技术,注重培养综合运用人工 智能原理的知识解决问题的能力。
PPT文档演模板
人工智能简略复习大纲58
宽度优先搜索与深度优先搜 索的其他区别:
• 只要问题有解,宽度优先搜索总是能找到, 并且找到的总是搜索路径最短的解;而深 度优先搜索却因为可能陷入一条“花园小 径”,不一定能够找到解,并且找到的解 也不一定是搜索路径最短的解。
PPT文档演模板
人工智能简略复习大纲58
• 这种方法,也可称为均一代价法或等代价 法。
PPT文档演模板
人工智能简略复习大纲58
耗散值的概念及应用
• 搜索图中,在任意两节点弧线间移动付出 的代价,叫弧线耗散值。
• 而一条路径的耗散值等于,连接这条路径 各节点间所有弧线耗散值的总和。
• 分支界限法、动态规划法(均一代价法、 等代价搜索法)中,均采用路径耗散值作 为评价函数,即每次扩展优先选择具有最 小路径耗散值的节点进行,记做f(n)=g*(n)。
PPT文档演模板
人工智能简略复习大纲58
PPT文档演模板
•开始
•把S放入OPEN表
•OPEN表为空表?
•是
•失败
•否 •n为目标节点吗?
•是
•成功
•否
•把第一个节点(n)从OPEN表移至CLOSED表
•把n的后继节点放入OPEN表的 末端,提供返回节点n的指针
人工智能复习资料整理(修正版-如发现计算错误请指出)
一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。
(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2.人工智能三个基本问题:知识获取、知识推理、知识利用。
3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。
4.机器学习分为:监督学习、无监督学习、强化学习。
5.遗传算法基本操作分为:选择、交叉和变异。
6.产生式系统的构成分为:规则库、综合数据库和推理机。
7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。
8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。
(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。
12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。
13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。
《人工智能原理》复习大纲
《人工智能原理》复习大纲《人工智能原理》复习大纲一、课程简介学生通过人工智能原理课程的学习,要了解人工智能的发展概况、人工智能与人类智能之间的联系、人工智能的应用领域、神经计算、模糊逻辑与模糊计算、遗传算法、专家系统等基本概念,掌握知识表示方式和推理、搜索推理、消解原理等人工智能原理的基本理论、方法及其应用技术,注重培养综合运用人工智能原理的知识解决问题的能力。
二、课程重点章节介绍本课程共分6章,其中第1.1,1.4,2.1~2.5,3.2,3.4~3.6,4.2,4.3,5.1章为重点章节。
三、本课程重点和难点内容简介第1章人工智能的定义(机器、学科、能力),人工智能三种主要学派及其主要观点,人工智能的应用领域第2章五种主要知识表示方法的应用(状态空间表示法、问题规约法、一阶谓词逻辑、语义网络和框架表示方法),置换与合一第3章图搜索的一般过程,广度优先搜索与有界深度优先搜索,谓词公式化子句集,消解反演,规则正向演绎、逆向演绎推理,不确定推理中证据和结论不确定性的计算。
第4章人工神经元的结构模型,神经元的几种互连形态及其特点,神经网络的推理过程,模糊集合、模糊逻辑、模糊关系合成第5章遗传算法的基本机理第6章专家系统的定义及其特征,专家系统的分类,Prolog的使用难点:置换与合一、五种知识表示方式的应用、消解反演、规则正、逆向演绎推理、模糊运算、遗传算法的基本机理。
通过学习和实践,学生要能够对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,初步掌握Prolog的编程方法。
各章具体要求详见《教学大纲》。
四、本课程内容疏理及应用领域、应用方法讲解第1章1.从不同科学或学科出发对人工智能进行了定义,着重掌握下面三种:定义1 智能机器能够在各类环境中自主地或交互地执行各种拟人任务(anthropomorphic tasks)的机器。
定义2 人工智能(学科) 人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
人工智能 考试复习提纲
第一章绪论●人工智能的诞生:1965年夏季,在达特茅斯大学●人工智能的学派:符号主义,联结主义,行为主义第二章知识表示方法●知识的特性:1.相对正确性;2.不确定性;3.可表示性;4.可利用性●★用谓词公式表示知识的步骤:1.定义谓词及个体,确定每个谓词及个体的确切含义。
2.根据所要表达的事物或概念,为每个谓词中的变元赋以特定的值。
3.根据所要表达的知识的语义,用适当的联接符号将各个谓词联接起来,形成谓词公式。
●★★机器人搬弄积木块问题表示P19●★一阶谓词逻辑表示法的特点:1.自然性;2.适宜于精确性知识的表示;3.易实现;4.与谓词逻辑表示法相对应的推理方法。
●产生式系统的组成:1.规则库;2.综合数据库;3.推理机●★产生式系统的推理方式:1.正向推理:①规则库中的规则与综合数据库中的事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③执行启动规则的后件。
将该启用规则的后件送入综合数据库或对综合数据库进行必要的修改。
重复这个过程直至达到目标。
2.反向推理:①规则库中的规划后件与目标事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③将启用规则的前件作为子目标。
重复这个过程直至各子目标均为已知事实,则反向推理的过程成功结束。
●★★语义网络表示知识举例:P36 例2.5、2.6、2.7;P71 作业18●框架的定义及组成:一个框架由若干个“槽”组成,每个“槽”又可划分为若干个“侧面”。
一个槽用于描述所论及对象的某一方面的属性,一个侧面用于描述相应属性的一个方面。
框架名<槽名><侧面><值>●脚本表示法:美国耶鲁大学的R.C.Schank及其同事们根据概念从属理论提出了一种知识表示方法——脚本表示法。
●问题状态空间的构成:1.状态;(2).算符;3.状态空间。
●★用状态空间表示问题的步骤1.定义状态的描述形式;2.用所定义的状态描述形式把问题的所有可能的状态都表示出来,并确定出问题的初始状态集合描述和目标状态集合描述;3.定义一组算符。
人工智能复习重点
填空:1、人工智能(Artificial Intelligence,AI)主要研究用人的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。
2、人工智能之父:麦卡锡3、1973年基于一阶谓词逻辑中Horn自居理论的PROLOG语言4、产生式系统是1943年铂斯特提出,他用这种规则对符号串作替换运算产生式系统又:MYCIN、CLIPS、JESS5、语义网络是一种通过概念及其语义联系来表示知识的有向图,结点和弧必须带有标注6、问题求解系统的划分:知识贫乏系统知识丰富系统;前者依靠搜索技术解决问题,后者需求助推理技术7、盲目搜索有深度优先搜索和宽度优先搜索典型的启发式搜索有A算法A*算法为了节约计算机的存储容量,提高搜索效率,通常采用隐式存储方式进行隐式图搜索推理8状态空间很大的问题,设计搜索策略的关键是解决组合爆炸问题所谓组合爆炸是指:问题因素很多时,因素可能的组合个数会爆炸性增长,引起状态空间的急剧膨胀。
9所谓推理就是按照某种策略从已有事实和知识推出结论的过程。
推理又程序实现的,称为推理机。
简答:一、人工智能定义:就是要让机器的行为看起来就像人所表现出来的智能行为一样。
也就是人造机器所表现出来的智能。
二、人工智能的应用领域:1.机器学习:就是要让计算机能够像人那样自动获取新知识,并在实践中不断地完善自我和增强能力,是的系统下一次执行相同或类似的任务时,会比现在做的更好或效率更高。
2.专家系统:在特定的领域内具有相应的知识和经验的程序系统,并能够达到或接近专家的水平3.模式识别:研究如何是机器具有感知能力,主要是研究视觉模式和听觉模式下信息的识别4.自然语言处理:5.智能决策支持系统三、什么是知识:知识就是人类认识自然界的精神产物,是人类进行智能活动的基础表示:为描述世界所做的一组约定,就是把知识符号化的过程。
重要性:知识的表示与知识的获取、管理、处理、解释等有直接关系,对于问题能否求解,以及问题的效率有重大的影响1973年基于一阶谓词逻辑中Horn自居理论的PROLOG语言四、命题的定义和举例:具有真假意义的陈述句:今天要下雨五、产生式系统的组成:规则库、综合数据库和推理机六、推理分类演绎推理:从全称判断推出特称判断或单称判断的过程。
哈工大人工智能复习提纲
1人工智能复习提纲单丽莉IT&NLP智能技术与自然语言处理shanlili8888@2人工智能复习提纲z学习目标通过对本课程的学习,了解人工智能的发展历史,人工智能的相关研究及应用领域。
初步掌握人工智能的基本理论、技术及其应用方法。
能够应用相应的人工智能技术解决简单的实际应用问题。
突破传统思想的束缚,逐步领略人工智能思想的精髓,对人工智能的思想和方法有初步的理解和认识,学会从人工智能的角度出发去思考问题,解决问题。
为将来在人工智能各个方向的进一步研究,及在相关领域中的应用打下良好基础。
3人工智能课程的基本内容第1 章人工智能概述第2 章知识表示第3 章确定性推理第4 章不确定性推理第5 章搜索策略第6 章机器学习第7 章神经网络及连接学习4第1 章人工智能概述z通过人工智能提出的过程理解人工智能的概念–什么是人工智能?–为什么要研究人工智能?z人工智能研究的内容及应用领域–人工智能都研究哪些问题?–人工智能技术当前的应用情况如何?z人工智能的三大学派–有哪三大学派?他们的基本思想是什么?5第2 章知识表示z理解知识及知识表示的概念,了解人工智能中对知识的分类及选择知识表示方法时的考虑因素。
–什么是知识?–人工智能研究的知识如何分类?–根据哪些因素来进行知识的表示?z熟练掌握常用的知识表示方法,能够使用确定的方法正确的表示给定的知识。
–一阶谓词表示法–产生式表示法:产生式系统的基本结构–语义网络表示法6第3 章确定性推理z理解掌握推理的概念及其分类–什么是推理?–有哪些推理方法?其基本思想是什么?–推理策略有哪些?什么是冲突消解?z掌握归结演绎推理基本理论,理解掌握相关定义,掌握简单定理推论的证明过程。
能够熟练使用归结方法完成简单定理证明及问题求解。
–为证明F⇒G 反证法只要证明F∧¬G不可满足–F∧¬G不可满足⇔其标准子句集S不可满足–子句集S不可满足⇔S的一切H解释都为假:海伯伦理论–子句集S不可满足⇔由S可归结出空子句: 鲁宾逊归结原理7第3 章确定性推理z熟练掌握基于规则的正向演绎推理方法,能够进行简单定理证明和问题求解。
人工智能期末复习概要
当MB(H,E)>0时,则为P(H/E)> P(H),那么有 MD(H,E)=0
如果P(H/E)= P(H),则MD(H,E)= MD(H,E)=0表 示,E与H无关
第四章 不确定性推理
不确定性的传递问题
– 单条知识
第四章 不确定性推理
可信度方法 组合证据不确定性表示
– 当多个证据以合取得方式构成一个组合证 据的时候,组合证据的可信度为这些单一 证据的可信度最小值;
– 当多个证据以析取得方式构成一个组合证 据的时候,组合证据的可信度为这些单一 证据的可信度最大值;
第四章 不确定性推理
– MB(H,E):信任增长度 – MD(H,E):不信任增长度 – MB(H,E)与MD(H,E)是互斥的 – 解释
学习目标
– 了解不确定性推理的含义、思路和讨论的 主要问题。
– 掌握可信度方法、主观Bayes方法和证据 理论不确定性推理方法
第四章 不确定性推理
计算问题
– 不确定性的传递问题 – 证据不确定性的合成问题 – 结论不确定性的合成问题
第四章 不确定性推理
可信度方法 知识不确定性的表示
– 在基于可信度的不确定性推理模型中,知 识是以产生式规则来表示的,而只是的不 确定性则是以可信度CF(H,E)来表示的, 其一般的形式为:
第一章 绪论
课程研究的主要内容
– 知识表示 – 推理方式
确定性推理(主要归结原理) 不确定性推理
– 搜索技术研究
普通图搜索 超图搜索(与或图搜索)
第一章 绪论
需要解决的问题:
– 万能的人工智能的知识体系结构从根本上 就不可能有,最根本的原因是缺乏知识。 人是根据知识行事的,而不是根据抽象原 则上进行推理。
人工智能原理及应用复习提纲
人工智能原理及应用复习提纲第一章1.什么是人工智能?答:人工智能从学科角度说是一门研究如何构造智能机器或智能系统,使它能模拟、延伸和扩展人类智能的学科。
2.人工智能的产生和发展过程有哪些?答:①孕育期(1956年以前)②形成期(1956年~1970年)③知识应用期(1971年~80年代末)④综合集成期3.人工智能的研究和应用领域答:机器学习;自然语言理解;专家系统;模式识别;计算机视觉;机器人学;博弈;自动定理证明;自动程序设计;智能控制;智能决策支持系统;人工神经网络;知识发现和数据挖掘;分布式人工智能第二章1.什么是知识表示?答:知识表示:就是对知识的一种描述,即用一些约定的符号把知识编码成一组计算机可以接受的数据结构。
2.常用的知识表示方法有哪些?答:目前使用较多的有:一阶谓词逻辑表示法、产生式表示法、语义网络表示法、框架表示法等。
3.产生式系统的基本结构答:综合数据库;规则库;控制系统4. 什么是产生式系统?答:用产生式知识表示方法构造的智能系统称为产生式系统。
第三章1.什么是推理?答:所谓推理是指按照某种策略从已知事实出发去推出结论的过程2.推理的控制策略包括哪些内容?分别解决什么问题?答:推理的控制策略又可分为推理策略和搜索策略推理策略主要解决推理方向、冲突消解等问题。
搜索策略主要解决推理线路、推理效果、推理效率等问题。
3.推理的方向有哪些?答:推理分为正向、逆向及混合推理。
4.冲突消解策略有几种?答:特殊知识优先;新鲜知识优先;差异性大的知识优先;领域特点优先;上下文关系优先;前提条件少者优先第四章1.什么是不确定性推理答:不确定性推理就是从不确定性的初始证据出发,通过运用不确定性的知识,最终推理出具有一定程度的不确定性,但又是合理或者基本合理的结论的思维过程。
2.C-F模型(大题)在C-F模型中,知识是用产生式规则表示的,其一般形式为:IF E THEN H (CF(H,E))例4.2 设有如下一组知识:r1: IF E1 THEN H (0.9)r2: IF E2 THEN H (0.6)r3: IF E3 THEN H (-0.5)r4: IF E4 AND (E5 OR E6 ) THEN E1 (0.8)已知:CF(E2)=0.8, CF(E3)=0.6, CF(E4)=0.5, CF(E5)=0.6, CF(E6)=0.8 求:CF(H)=?解:由r4得到:CF(E1)=0.8xmax{0,CF(E4 AND (E5 OR E6 ))}= 0.8xmax{0,min{CF(E4),CF(E5 OR E6 )}}= 0.8xmax{0,min{CF(E4),max{CF(E5),CF(E6)}}}= 0.8xmax{0,min{CF(E4),max{0.6,0.8}}}= 0.8xmax{0,min{0.5,0.8}}= 0.8xmax{0,0.5}= 0.4由r1得到:CF1(H) = CF(H,E1) x max{0, CF(E1)}=0.9x max{0,0.4}=0.36由r2得到:CF2(H) = CF(H,E2) x max{0, CF(E2)}=0.6x max{0,0.8}=0.48由r3得到:CF3(H) = CF(H,E3) x max{0, CF(E3)}= -0.5x max{0,0.6}= -0.3根据结论非精确性的合成算法得到:CF1,2(H)=CF1(H) + CF2(H) - CF1(H) x CF2(H)=0.36+0.48-0.36x0.48=0.84-0.17=0.67= 0.53CF(H)=0.53第五章1.什么是搜索?答:根据问题的实际情况,不断寻找可利用知识,从而构造一条代价最小的推理路线,使问题得以解决的过程称为搜索。
人工智能期末复习
人工智能原理期末考试复习1. 什么是人工智能?发展经历了几个阶段?人工智能指的是能够感知或推断信息,并将其作为知识而拥有,以应用于环境或语境中适合的行为;机器的智能称为人工智能,通常在运用程序、间或适当硬件的计算机系统中得以实现.2. 人工智能研究的内容有哪些?机器学习、知识表示方法、搜索求解策略、进化算法及其应用、确定性及不确定性推理方法、群体智能算法及其应用。
3. 人工智能有哪些研究领域?安全防范、医疗诊断、语音识别、工业制造、计算机游戏、机器翻译。
4. 什么是知识?有哪些特性?有几种分类方法?知识是人们在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。
相对正确性、不确定性、可表示性与可利用性。
分类方法:(1)按知识的作用范围分为∶常识性知识和领域性知识﹔(2)按知识的作用及表示分为∶事实性知识、规则性知识、控制性知识和元知识;(3 )按知识的确定性分为:确定知识和不确定知识;(4) 按人类思维及认识方法分为:逻辑性知识和形象性知识。
5. 什么是知识表示、命题、谓词,一阶谓词逻辑、产生式、框架、语义网络?知识表示就是将人类知识形式化或者模型化;命题是一个非真即假的陈述句;谓词的一般形式: ),...,,(21n x x x P );n x x x ,...,,21是个体,某个独立存在的事物或者某个抽象的概念, P 是谓词名,用来刻画个体的性质、状态或个体间的关系。
一阶谓词逻辑表示:谓词不但可表示一些简单的事实,而且可以表示带有变量的“知识”,有时称为“事实的函数”。
进而可用谓词演算中的逻辑联接词“与()”、“或(v)"、“非(┐)”和“蕴含(→)”等来组合已有知识,从而表示出更复杂的知识。
产生式通常用于表示事实、规则以及它们的不确定性度量,适合于表示事实性知识和规则性知识。
框架是一种描述所论对象(一个事物、事件或概念)属性的数据结构。
语义网络:从图论的观点看,它其实就是“一个带标识的有向图”,由结点和弧(也称“边”)所组成。
人工智能期末复习重点
人工智能复习重点1绪论1.1人工智能-理论基础。
从理论基础上讲,它是信息论、控制论、系统工程论、计算机科学、心理学、神经学、认知科学、数学和哲学等多学科相互渗透的结果。
1.2 什么是人工智能?从思维基础上讲,它是人们长期以来探索研制能够进行计算、推理和其它思维活动的智能机器的必然结果;• 从理论基础上讲,它是信息论、控制论、系统工程论、计算机科学、心理学、神经学、认知科学、数学和哲学等多学科相互渗透的结果;• 从物质和技术基础上讲,它是电子计算机和电子技术得到广泛应用的结果。
1.3 人工智能的研究途径和方法1.利用搜索采用尝试-检验(try-and-test)的方法,对问题进行试探性的求解,直到成功。
这就是AI问题求解的基本策略中的生成-测试法。
2.利用知识知识有几大难以处理的属性:①非常庞大②难于精确表达③经常变化所以,对于知识的处理必须做到:①抓住一般性,以免浪费大量时间,空间;②要能够被提供和接受知识的人所理解;③易于修改;④能够通过搜索技术来减少知识的巨大容量。
3.利用抽象抽象用以区分重要与非重要的特征,借助于抽象可将处理问题中的重要特征和变式与大量非重要特征和变式区分开来,使对知识的处理变得更有效、更灵活。
4.利用推理目前,AI 工作者以研究出各种逻辑推理、概率推理、定性推理、模糊推理、非单调推理和次协调推理等各种推理技术和各种控制策略,它为人工智能的应用开辟了广阔的应用前景。
5.遵循有限合理性原则西蒙在20世纪50年代在研究人的决策制定中总结出一条关于智能行为的基本原则,因此而获得诺贝尔奖。
爆炸性的搜索量,仍要做好决策,而不是放弃,这时,人将在一定的约束条件下作机遇性的搜索,以制定尽可能好的决策。
这样的决策的制定具有一定的机遇性,往往不是最优的。
1.4 人工智能三大学派1. 符号主义认为人工智能源于数理逻辑。
2. 联结主义(Connetionism)认为人工智能源于仿生学,特别是人脑模型的研究,神经元与神经元之间的连接。
人工智能复习资料(手工整理版)
第一章1.人工智能的定义(能力)?人工智能的研究目标?人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
近期目标:实现机器智能——理论和技术基础远期目标:制造智能机器——发展方向2.人工智能的起源与发展过程;典型人物、事件(1)古希腊,亚里士多德,形式逻辑的基本规律(2)英国,培根,归纳法(3)德国,莱布尼茨,数理逻辑(4)英国,布尔,布尔代数(5)奥地利,哥德尔,一阶谓词完备性(6)英国,图灵,图灵机(7)美国,Mauchly,ENIAC(8)美国,McCulloch,神经网络模型(9)美国,香农,信息论1956年,麦卡锡,人工智能之父,50年代开始符号处理,70年代理论走向实践,Nilson A*算法,1977年,专家系统广泛应用,80年代达到顶峰,90年代趋向小型化、并行化、网络化、智能化。
3.人工智能的主要学派及观点符号主义,认为人工智能源于数理逻辑。
联结主义,认为人工智能源于仿生学。
行为主义,认为人工智能源于控制论。
4.人工智能所研究的范围与应用领域智能感知:模式识别、自然语言理解智能推理:问题求解、逻辑推理与定理证明、专家系统、自动程序设计智能学习:机器学习、神经网络、计算智能与进化计算智能行动:机器人学、智能控制、智能检索、智能调度与指挥、分布式人工智能与Agent、数据挖掘与知识发现、人工生命、机器视觉5.人工智能的基本技术推理技术、搜索技术、知识表示与知识库技术、归纳技术、联想技术第二章1.概念:知识及形式化描述、同构变换、同态变换把有关信息关联在一起所形成的信息结构称为知识。
同构变换可使问题更明确,便于求解,同构问题的解答等价于原始问题的解答。
同态变换可使问题更加简化,易于求解。
原始问题有解,则同态问题有解,同态问题无解,则原始问题无解,它们之间是蕴含关系。
2.知识、信息和数据的区别数据是记录信息的符号,是信息的载体和表示;信息是对数据的解释,是数据在不同场合下的具体含义;只有将有关的信息关联到一起才能使用,才称之为知识。
《人工智能》复习大纲
《人工智能应用技术》复习大纲一、人工智能概述略二、谓词公式与逻辑推理定义2.1 命题(Proposition),即具有真(T)假(F)意义的陈述性语句。
定义2.2 所谓个体,是指可以独立存在的某个事物。
定义2.3 谓词:由定义的谓词名、变元,共同构成了具有陈述性表达的形式化语句,称为谓词。
一个谓词可以有n(其中n=0,1,2, ……)个变元,并称之为n元谓词。
定义2.3 谓词中包含个体或变元的数目,称为谓词的元或谓词的目。
定义2.4 谓词表达形式中所包容相叠加的含义层次数数目,称为谓词的阶。
例2-2 比较下列谓词或谓词形式的命题:①LIKE(john,mary);②ROBOT(john);③ROBOT(mary);④ADDQ(x,y,z)。
试解释具体含义,并指出它们各是几元谓词。
解:上述谓词①②③意即“机器人约翰喜欢玛丽”;②和③都只有一个个体,称为一元谓词;相应①则称为二元谓词;④表示为表达式“x+y=z”,其中包含有3个变元,故称为三元谓词。
依此类推,可推出关于n元谓词的概念。
例2-3 为了说明谓词的阶,我们来比较下列谓词形式的命题:①LIFELESS(outer-stars);外星球没有智能生命。
②INCORRECT(lifeless(outer-stars));说“外星球没有智能生命”是不确切的。
解:在上述谓词形式的命题中,谓词①只有一层含义,称为一阶谓词;谓词②在前一层含义基础上,又增加了一层新意,共有二层含义。
故把谓词②称为二阶谓词。
依此类推,可推出关于n阶谓词的概念。
注意:在谓词逻辑演算中,最重要的有三大类:即:命题逻辑演算、一阶谓词逻辑演算和二阶谓词演算。
命题逻辑表示比较简单,只能表达具体固定的情况,命题是谓词逻辑特殊事例的生动描述,谓词逻辑可以灵活表现多种或变化的情况;谓词表达是命题逻辑的抽象与推广。
总的看来,命题和谓词的知识表示形式可以相互转换,而谓词比命题有更强的表达能力。
人工智能期末复习资料
一、智能化智能体1.什么是智能体?什么是理性智能体?智能体的特性有哪些?智能体的分类有哪些?智能体定义:通过传感器感知所处环境并通过执行器对该环境产生作用的计算机程序及其控制的硬件.理性智能体定义:给定感知序列(percept sequence)和内在知识(built—in knowledge),理性智能体能够选择使得性能度量的期望值(expected value)最大的行动。
智能体的特性:自主性(自主感知学习环境等先验知识)、反应性(Agent为实现自身目标做出的行为)、社会性(多Agent及外在环境之间的协作协商)、进化性(Agent自主学习,逐步适应环境变化)智能体的分类:简单反射型智能体:智能体寻找一条规则,其条件满足当前的状态(感知),然后执行该规则的行动.基于模型的反射型智能体:智能体根据内部状态和当前感知更新当前状态的描述,选择符合当前状态的规则,然后执行对应规则的行动。
基于目标的智能体:为了达到目标选择合适的行动,可能会考虑一个很长的可能行动序列,比反射型智能体更灵活。
基于效用的智能体:决定最好的选择达到自身的满足。
学习型智能体:自主学习,不断适应环境与修正原来的先验知识.2.描述几种智能体类型实例的任务环境PFAS,并说明各任务环境的属性.答题举例:练习:给出如下智能体的任务环境描述及其属性刻画。
o机器人足球运动员o因特网购书智能体o自主的火星漫游者o数学家的定理证明助手二、用搜索法对问题求解1。
简述有信息搜索(启发式搜索)与无信息搜索(盲目搜索、非启发式搜索)的区别。
非启发式搜索:按已经付出的代价决定下一步要搜索的节点。
具有较大的盲目性,产生较多的无用节点,搜索空间大,效率不高。
启发式搜索:要用到问题自身的某些信息,以指导搜索朝着最有希望的方向前进。
由于这种搜索针对性较强,因而原则上只需搜索问题的部份状态空间,搜索效率较高。
2.如何评价一个算法的性能?(度量问题求解的性能)▪完备性:当问题有解时,算法是否能保证找到一个解;▪最优性:找到的解是最优解;▪时间复杂度:找到一个解需要花多长时间▪搜索中产生的节点数▪空间复杂度:在执行搜索过程中需要多少内存▪在内存中存储的最大节点数3。
生活中的人工智能_复习提纲
M-P 神经元模型离实际智能模拟还很远,设计一个少于 1000 个神经元的蚂蚁神经系统, 已超出当时的技术条件。
反思: AI 指导思想:用计算机模拟人类思维的普遍规律; 模拟重心:建立通用万能的符号逻辑运算体系(GPS); 问题关键:忽视现实世界的复杂性和问题的多样性。 总结过去经验及教训,E.A.Feigenbaum(费根鲍姆)提出以知识为中心的人工智能,此 观点被大多数人接受。
80 年代,全面实现 AI; 2000 年,机器智能将超过人类。
现实情况: Samuel 的下棋程序在当了州冠军之后再也没有当上全国冠军; 自然语言的机器翻译方面文字阴差阳错。
著名的例子是: The spirit is willing,but the flesh is weak. (心有余而力不足) 翻译成俄语后,再翻回来则变成: The winห้องสมุดไป่ตู้ is good but the meat is spoiled. (酒是好的,肉变质了)
设计者本人,1962 年击败美国州冠军。这是机器模拟人类学习过程的一次极有意义的探 索
定理证明方面:1956 年 Newell、J.Shaw 和 Simon 编制逻辑理论程序 LT,证明《数 学原理》第二章中的 38 条定理。这是计算机模拟人高级思维活动的一个重大成果。
1957 年,Newell、J.Shaw 和 Simon 总结人们求解问题的思维规律,于 1960 年编制 了通用问题求解程序(General Problem Solver),不依赖于具体领域,能求解 11 种不 同类型问题。
其他:1969 年,成立国际人工智能联合会议 IJCAI(International Joint Conference on Artificial Intelligent),它标志着 AI 这门新兴学科得到世界的肯定与公认。