沿程水头损失和局部水头损失
沿程水头损失和局部水头损失

lgRe
匀砂粒粗糙的管路中进行了系统的沿程阻力系数和
断面流速分布的测定,得出λ与Re之间的关系曲线,
如图所示。
沿程水头损失和局部水头损失
1.2 湍流沿程水头损失计算
1.1
1.0
a
0.9
根据λ的变化特性,图中曲线 0.8
可分为5个阻力区。
lg(100λ) 0.7
—r0
e
ks
15
第Ⅰ区(ab线,lgRe<3.36, 0.6
0.6
60
0.5
b
126
0.4 252
0.3
507
0.2
d
f
2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
lgRe
沿程水头损失和局部水头损失
1.2 湍流沿程水头损失计算
第Ⅲ区(cd线,lgRe>3.6,
126
0.4
于一定的管路,λ在该区常数。由 0.3
252 507
式(5-1),沿程水头损失与流速
0.2
d
f
2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
lgRe
的平方成正比,故湍流粗糙区又
称阻力平方区。
沿程水头损失和局部水头损失
则d=对显4于然R,边,d长对e=为于4Ra边。、长表b的为示矩a非的形圆正断管方面的形来当断说量面,直来其径说当为,量水其直力当径半量径d直e 的径44Rd倍e=。4a。2(aab
b)
2ab ab
有了当量直径de,仍可用达西公式计算非圆管的沿程水头损失,其公式如下
第四章 水流型态与水头损失.

水力学
解:(1)先求弯管内的流速:
QV
A tA
水
A
100
0.28
0.052
4
1.43m s
Δh B
水力学
(2)再求沿程水头损失,由达西公式得:
hf
l 2
d 2g
0.0264 10 1.43 2 0.55m 0.05 2 9.8
1.雷诺实验
1883年英国科学家雷诺,通过实验发现液体 在流动中存在两种内部结构完全不同的流态: 层流和紊流。
(1)层流 当流速较小时,各流层质点互不混杂,
这种型态的流动叫层流。
水力学
(2)紊流 当流速较大时,各流层质点形成涡体
互相混掺,这种型态的流动叫做紊流。
水力学
同时发现,层流的沿程水头损失hf与流速一 次方成正比,紊流的hf与流速的1.75~2.0次方 成正比;在层流与紊流之间存在过渡区,hf与
2.83 3 0.0101
840.592000层流
水力学
五. 圆管层流运动和沿程水头损失
圆管层流运动可以应用牛顿内摩擦定律表达 式和均匀流内切应力表达式,通过积分求出过 水断面上的流速分布为抛物型分布。
J
u
4
r02 r 2
最大流速在管轴线处 u J r 2
max 4 0
(3)紊流过渡区 :λ既与Re有关,也与Δ有 关,hf 1.75~2。0 。
七. 沿程水头损失经验公式
谢才公式
C RJ
水力学
C是反映边界对液体运动影响的综合系 数,称为舍齐系数,单位:m1/2/s 。
管道水头损失核算

合计
9.520m
Hale Waihona Puke 蜗壳271-2002)、《水轮机基本技术条件》 (GB/T15468-2010) 《水力计算手册》(第二版)、《小型水电站 上》(天津大学水利系1976) 转轮D1= 主管管径 0.60 m 【据《DL/T5195》附录C1、C2】 支管径 0.40 m
水轮机 2 台 损失: hm=ξ*V^2/(2*g) 栅形系数β 1.83 湿周 X(m) 5.40 5.40
平均湿周 水力半径 谢才系数 沿程损失 沿损糙率n 局损系数ξ R(m) C X(m) hf(m) 3.64 0.231 46.08 0.017 0.05 0.000 湿周 X(m) 1.88 湿周 X(m) 1.88 湿周 X(m) 1.88 湿周 X(m) 1.88 湿周 X(m) 1.26 湿周 X(m) 2.51 沿程损失 水力半径 谢才系数 沿损糙率n 局损系数ξ R(m) C hf(m) 0.150 60.74 0.012 0.090 7.323 水力半径 谢才系数 沿损糙率n v支/v主= 局损系数ξ R(m) C 0.150 60.74 0.012 0.180 0.650 沿程损失 水力半径 谢才系数 沿损糙率n 局损系数ξ R(m) C hf(m) 0.150 60.74 0.012 0.108 0.571 沿程损失 水力半径 谢才系数 沿损糙率n 局损系数ξ R(m) C hf(m) 0.067 53.06 0.012 0.180 0.076 沿程损失 水力半径 谢才系数 沿损糙率n 局损系数ξ R(m) C hf(m) 0.100 56.77 0.012 0.180 0.106 沿程损失 水力半径 谢才系数 沿损糙率n 局损系数ξ R(m) C hf(m) 0.200 63.73 0.012 0.138 0.000
第4章 水头损失

2. 过流断面的水力要素
液流边界几何条件对水头损失的影响 产生水头损失的根源是实际液体本身具有粘滞性,而固
体边界的几何条件(轮廓形状和大小)对水头损失也 有很大的影响。(p54)
20
3 工程第项4目章 管水理头规损划失
液流横向边界对水头损失的影响
过水断面的面积 ω:过水断面的面积是一个因素 ,但仅靠过水断面面积尚不足表征过水断面几 何形状和大小对水流的影响。
R
22
3 工程第项4目章 管水理头规损划失
例 子:
管道
d2
d
R 4 d
d 4
23
3 工程第项4目章 管水理头规损划失
矩形断面明渠
R bh b 2h
h b
24
3 工程第项4目章 管水理头规损划失
梯形断面明 渠
a
(b 2mh b)h (b mh)h
2
m=tgθ
a h
b
b 2 h2 (hm)2 b 2h 1 m2
雷诺:O.Osborne Reynolds (1842~1912) 英国力学家、物理学家和工程师,杰出实验科学家
1867年-剑桥大学王后学院毕业
1868年-曼彻斯特欧文学院工程学教授
1877年-皇家学会会员
1888年-获皇家勋章
1905年-因健康原因退休
第4章 水头损失
30
3 工程项目管理规划
雷诺兴趣广泛,一生著述很多,近70篇论文都有很 深远的影响。论文内容包括
§4.1 沿程水头损失及局部水头损失
1. hf & hm
理想液体的运动是没有能量损失的,而实际液 体在流动的中为什么会产生水头损失 ?
5
3 工程第项4目章 管水理头规损划失
水头损失的计算

2 v1 h m = 7 . 69 2g Q = 0 . 049 m 3 / s
第四节 沿程水头损失
3、谢才系数 的公式有: 谢才系数C的公式有: 谢才系数 的公式有 (1)曼宁公式,为
1 1/ 6 C= R n
式中n是粗糙系数,简称糙率。它是反映边界形状和 粗糙度对液体运动影响的综合系数,是数百年工程实 践资料的总结。 1 y 计算谢才系数的曼宁公式只适用于紊流阻力平方区, R n 这使谢才公式一般只适用于紊流阻力平方区。 (2)巴浦洛夫斯基公式: C=
分析:全部阻力做功=水位高差
h m = Σh f + Σh m hm
2 2 L 1 v1 L2 v2 v1 v2 v2 2 = λ1 + λ2 + ζ 出口 + ζ 突扩 2 + ζ 进口 2 D1 2g D 2 2g 2g 2g 2g
第六节 局部水头损失 2、管道配件的局部水头损失 、
分析:全部阻力做功=水位高差
ρ Q ( v 2 - v 1)= pA 1 − PA 2 + γ A 2 ( z 1 − z 2 )
将 Q = A 2 v 2 代入,并除以
γA 2
v2 p1 p2 ( v 2 − v1 ) = (z1 + ) − (z 2 + ) g γ γ
第六节 局部水头损失
2 p1 p 2 v1 v2 − z2 − + h m = z1 + − 2 γ γ 2g 2g v2 p1 p2 ( v 2 − v1 ) = (z1 + ) − (z 2 + ) g γ γ v2 v1 v2 hm = ( v 2 − v1 ) + − g 2g 2g
沿程水头损失计算

2、谢才公式 对于明渠中的紊流沿程水头损失,在工程计算
中常常采用谢才公式。
v c RJ
式中: C——谢才系数 R——水力半径 J——水力坡度
J=hf/l
也可采用
hf
l
v2
De 2g
De——当量直径
关于谢才系数C的确定 1) 曼宁公式
C
1
1
R6
n
式中:n——粗糙系数,可查附录2。P160
Re 0.25
2)、紊流过渡区间:
d
d
10
Re
1000
1 2 lg(
3.7d
2.51 )
Re
此式即为柯列勃洛克公式
3)、阻力平方区间: 4 Re 1000 d
1 2 lg
3.7d
上式所有的计算仅仅是针对圆管流动的情况而言,
而在实际工程中经常碰到液体在非圆管道中流动。下面 将讨论非圆管道的情况。
R2
d2
——(5)
对平直圆管定截面的液体流动:
hf
p
32l v d 2
32l v gd 2
64
vd
l d
v2 2g
l v2
d 2g
则上式即为达西公式
所以 64 ——层流时沿程阻力系数
Re
三、紊流时沿程阻力系数λ 的确定
(一)摩擦系数曲线图
内做匀速层流运
hf
动,如图:在1-2
截面间液体中分
R
τ dr
r
出一个半径为r的
1
2
L
液体柱,由于液 体作匀速运动,
流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v
8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数
沿程水头损失和局部水头损失

沿程水头损失和局部水头损失
一·产生水头损失的原因
1.水头损失的内因:粘滞性
2.水头损失的外因:边界对液流的约束
二·水流运动的阻力的分类
1.内摩擦阻力
2.附加阻力
三·水头损失的类型
水头损失:单位重量的液体自一断面流到另一断面所损失的机械能。
分类:
(1)沿程水头损失:液流做均匀流,在液流内部与固壁之间产生的沿程不变的切应力,称为沿程阻力。
由沿程阻力做功而引起的水头损失称为沿程水头损失。
沿程水头损失产生的原因:
为了克服各流层之间的沿程阻力,而引起单位重量流体在运动过程中的能量损失。
(2)局部水头损失:
当固体壁沿流程急剧改变,是液流内部流速重新分布,质点间进行剧烈动量交换而产生的阻力。
有局部阻力做功引起的水头损失称为局部水头损失。
局部水头损失产生的原因:
主要原因是流体经局部阻碍时,因惯性作用,主流与壁面脱离,其间形成漩涡
区,漩涡区流体质点强烈紊动,消耗大量能量;此时漩涡区质点不断被主流带向下游,加剧下游一定范围内主流的紊动,从而加大能量损失;局部阻碍附近,流速分布不断调整,也将造成能量损失。
常见的发生局部水头损失区域
只要局部地区边界的形状或大小改变,液流内部结构就要急剧调整,流速分布进行改组流线发生弯曲并产生旋涡,在这些局部地区就有局部水头损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沿程水头损失和局部水头损失
一·产生水头损失的原因
1.水头损失的内因:粘滞性
2.水头损失的外因:边界对液流的约束
二·水流运动的阻力的分类
1.内摩擦阻力
2.附加阻力
三·水头损失的类型
水头损失:单位重量的液体自一断面流到另一断面所损失的机械能。
分类:
(1)沿程水头损失:液流做均匀流,在液流内部与固壁之间产生的沿程不变的切应力,称为沿程阻力。
由沿程阻力做功而引起的水头损失称为沿程水头损失。
沿程水头损失产生的原因:
为了克服各流层之间的沿程阻力,而引起单位重量流体在运动过程中的能量损失。
(2)局部水头损失:
当固体壁沿流程急剧改变,是液流内部流速重新分布,质点间进行剧烈动量交换而产生的阻力。
有局部阻力做功引起的水头损失称为局部水头损失。
局部水头损失产生的原因:
主要原因是流体经局部阻碍时,因惯性作用,主流与壁面脱离,其间形成漩涡
区,漩涡区流体质点强烈紊动,消耗大量能量;此时漩涡区质点不断被主流带向下游,加剧下游一定范围内主流的紊动,从而加大能量损失;局部阻碍附近,流速分布不断调整,也将造成能量损失。
常见的发生局部水头损失区域
只要局部地区边界的形状或大小改变,液流内部结构就要急剧调整,流速分布进行改组流线发生弯曲并产生旋涡,在这些局部地区就有局部水头损失。
Welcome !!! 欢迎您的下载,资料仅供参考!。