计量经济学(英文)重点知识点考试必备

合集下载

(完整)计量经济学考试重点整理

(完整)计量经济学考试重点整理

计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。

计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。

经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。

三者结合起来,就是力量,这种结合便构成了计量经济学。

”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。

P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。

P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究.结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。

计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。

2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。

计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。

对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。

模型理论方法的发展以适应预测的需要。

3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。

2、计量经济学是统计学、经济学和数学的结合。

3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。

4、计量经济学是经济学的一个分支学科。

第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。

2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。

3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。

4、参数估计量的评价标准:无偏性、有效性、一致性。

5、OLS估计量的统计特征:线性特性、无偏性、有效性。

6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。

第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。

2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。

3、参数最小二乘估计的性质:线性性质、无偏性、有效性。

4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。

5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。

6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。

计量经济学英语专业词汇

计量经济学英语专业词汇

• • • •

• • • •
模型设定正确假设。The regression model is correctly specified. 线性回归假设。The regression model is linear in the parameters。 与随机项不相关假设。The covariances between Xi and μi are zero. 观测值变化假设。X values in a given sample must not all be the same. 无完全共线性假设。There is no perfect multicollinearity among the explanatory variables. 0均值假设。The conditional mean value of μi is zero. 同方差假设。The conditional variances of μi are identical.(Homoscedasticity) 序列不相关假设。The correlation between any two μi and μj is zero. 正态性假设。The μ’s follow the normal distribution.
• 方程的显著性检验(F检验) Testing the Overall Significance of a Multiple Regression (the F test) • 假设检验(Hypothesis Testing)变量的显著性检验(t检 验) Testing the Significance of Variables (the t test) • 参数的置信区间 Confidence Interval of Parameter • 置信系数(置信度)(confidence coefficient) • 置信限(confidence limit) • 恩格尔曲线(Engle curves) • 菲利普斯曲线(Pillips cuves)

计量经济学知识点汇总

计量经济学知识点汇总

计量经济学知识点汇总1. 变量类型
- 连续变量和离散变量
- 定量变量和定性变量
- 内生变量和外生变量
2. 数据类型
- 横截面数据
- 时间序列数据
- 面板数据
3. 回归分析
- 简单线性回归
- 多元线性回归
- 非线性回归模型
4. 估计方法
- 普通最小二乘法(OLS)
- 加权最小二乘法(WLS)
- 极大似然估计法(MLE)
5. 假设检验
- t检验
- F检验
- 拉格朗日乘数检验
6. 模型诊断
- 异方差性
- 自相关
- 多重共线性
7. 面板数据模型
- 固定效应模型
- 随机效应模型
- hausman检验
8. 时间序列分析
- 平稳性和单位根检验
- 自回归模型(AR)
- 移动平均模型(MA)
- 自回归移动平均模型(ARMA)
9. 计量经济学软件
- Stata
- EViews
- R
10. 应用领域
- 宏观经济分析
- 微观经济分析
- 金融经济分析
- 政策评估
以上是计量经济学的一些主要知识点,涵盖了变量类型、数据类型、回归分析、估计方法、假设检验、模型诊断、面板数据模型、时间序列分析等内容,以及常用的计量经济学软件和应用领域。

(完整版)计量经济学重点知识归纳整理

(完整版)计量经济学重点知识归纳整理

1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。

普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。

2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。

从此意义看,加权最小二乘法也称为广义最小二乘法。

3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。

4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。

5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。

6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。

7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。

如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。

计量经济学重点知识整理

计量经济学重点知识整理

计量经济学重点知识整理1一样性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(动身点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法必须明确:方法手段要服从研究对象的本质特点(与数学不同),方法是为经济问题服务2注意:计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论——计量经济研究的基础数据:对所研究对象经济行为观测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估量、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济问题4区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估量,对经济理论提出体会的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估量参数、验证经济理论的差不多依据●经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依靠于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论基础区别:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型动身,研究模型参数的估量和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是依照其它经济理论,应用计量经济方法将这些理论数量化。

4、计量经济学什么缘故是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。

1、经济理论所作的陈述或假说大多数是定性性质的,计量经济学对大多数经济理论给予体会内容。

计量经济学知识点总结+名词解释重点+简答题

计量经济学知识点总结+名词解释重点+简答题

计量经济学知识点总结什么是OLS估计?原理ols估计是指样本回归函数尽可能好的拟合这组织,即样本回归线上的点与真实观测点的总体误差尽可能小的估计方法。

一、什么是计量经济学?答:计量经济学以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系与及经济活动数量规律的研究,并以建立和应用随机性的经济计量模型为核心的一门经济学科。

计量经济学模型揭示经济活动中各种因素之间的定量关系,用随机性的数量方程加以描述。

二、建立计量经济学模型的步骤和要点1.理论模型的设计(确定模型所包含的变量,确定模型的数量形式,拟定理论模型中的待估参数的理论期望值)2.样本数据的收集(常用的样本数据:时间序列数据,截面数据,虚变量数据)3.模型参数的估计(选择模型参数估计方法,应用软件的使用)4.模型的检验模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。

经济意义检验——需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;统计检验——需要检验模型参数估计值的可靠性,即检验模型的统计学性质;计量经济学检验——需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验——主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。

5.模型成功的三要素:理论、方法、数据三、计量经济学模型的应用方面(功能)答:结构分析,经济预测,政策评价,检验与发展经济理论四、引入随机干扰项的原因,内容?原因:1.代表未知的影响因素2.代表数据观测误差3.代表残缺数据4.代表模型设定误差5.代表众多细小影响因素6.变量的内在随机性内容:1.被遗漏的影响因素(由于研究者对客观经济现象了解不充分,或是由于经济理论上的不完善,以至于使研究者在建立模型时遗漏了一些对被解释变量有重要影响的变量);2.变量的测量误差(在观察和测量变量时,种种原因使观测值并不等于他的真实值而造成的误差);3.随机误差(在影响被解释变量的诸因素中,还有一些不能控制的因素);4.模型的设定误差(在建立模型时,由于把非线性关系线性化,或者略去模型)五、什么是随机误差项和残差,他们之间的区别是什么随机误差项u=Y-E(Y/X),而总体回归函数Y=Y^+e,其中e就是残差,利用Y^估计Y时带来的误差e=Y-Y^是对随机变量u的估计六、一元线性回归模型的基本假设主要有哪些?违背基本假设是否就不能进行估计1.回归模型是正确设定的;2.解释变量X是确定性变量不是随机变量;在重复抽样中取固定值。

计量经济学(英文版)

计量经济学(英文版)

b1 + b2 x t
Assumptions of the Simple Linear Regression Model yt = b1 + b2x t + e t 2. E(e t) = 0 <=> E(yt) = b1 + b2x t
1.
3. var(e t)
4.3
=
4.
5.
cov(e i,e j)
yi and e i normally distributed
4.20
b2 = S wi yi
b1 = y - b2x
(x i - x) where wi = 2 S(x i - x)
This means that b1and b2 are normal since linear combinations of normals are normal.
2 2
(4.3b)
Variance of b2
4.12
Given that both yi and ei have variance s 2, the variance of the estimator b2 is:
var(b2) =
S(x i - x)
s2
2
b2 is a function of the yi values but var(b2) does not involve yi directly.
Gauss-Markov Theorem
4.16
Under the first five assumptions of the simple, linear regression model, the ordinary least squares estimators b1 and b2 have the smallest variance of all linear and unbiased estimators of b1 and b2. This means that b1and b2 are the Best Linear Unbiased Estimators (BLUE) of b1 and b2.

计量经济学复习资料

计量经济学复习资料

计量经济学复习资料1、费里希(R.Frish)是经济计量学的主要开拓者和奠基人。

2、经济计量学与数理经济学和树立统计学的区别的关键之点是“经济变量关系的随机性特征”。

3、经济计量学识以数理经济学和树立统计学为理论基础和方法论基础的交叉科学。

它以客观经济系统中具有随机性特征的经济关系为研究对象,用数学模型方法描述具体的经济变量关系,为经济计量分析工作提供专门的指导理论和分析方法。

4、时序数据即时间序列数据。

时间序列数据是同一统计指标按时间顺序记录的数据列。

5、横截面数据是在同一时间,不同统计单位的相同统计指标组成的数据列。

6、对于一个独立的经济模型来说,变量可以分为内生变量和外生变量。

内生变量被认为是具有一定概率分布的随机变量,它们的数值是由模型自身决定的;外生变量被认为是非随机变量,它们的数值是在模型之外决定的。

7、对于模型中的一个方程来说,等号左边的变量称为被解释变量,等号右边被称为解释变量。

在模型中一个方程的被解释变量可以是其它方程的解释变量。

被解释变量一定是模型的内生变量,而解释变量既包括外生变量,也包括一部分内生变量。

8、滞后变量与前定变量。

有时模型的设计者还使用内生变量的前期值作解释变量,在计量经济学中将这样的变量程为滞后变量。

滞后变量显然在求解模型之前是已知量,因此通常将外生变量与滞后变量合称为前定变量。

9、控制变量与政策变量。

由于控制论的思想不断渗入经济计量学,使某些经济计量模型具有政策控制的特点,因此在经济计量模型中又出现了控制变量、政策变量等名词。

政策变量或控制变量一般在模型中表现为外生变量,但有时也表现为内生变量。

10、经济参数分为:外生参数和内生参数。

外生参数一般是指依据经济法规人为确定的参数,如折旧率、税率、利息率等。

内生参数是依据样本观测值,运用统计方法估计得到的参数。

如何选择估计参数的方法和改进估计参数的方法,这是理论经济计量学的基本任务。

11、用数学模型描述经济系统应当遵循以下两条基本原则:第一、以理论分析作先导;第二模型规模大小要适度。

计量经济学(英文版).

计量经济学(英文版).
Chapter 4 Statistical Properties of the OLS Estimators
Xi’An Institute of Post & Telecommunication Dept of Economic & Management Prof. Long
Simple Linear Regression Model y t = b1 + b 2 x t + e t
b1 + b2 x t
Assumptions of the Simple Linear Regression Model yt = b1 + b2x t + e t 2. E(e t) = 0 <=> E(yt) = b1 + b2x t
1.
3. var(e t)
4.3
=
4.
5.
cov(e i,e j)
x t c for every observation
= cov(yi,yj)
s 2 = var(yt)
= 0
6.
e t~N(0,s 2) <=> yt~N(b1+ b2x t,
The population parameters b1 and b2 are unknown population constants.
4.2
yt = household weekly food expenditures
x t = household weekly income
For a given level of x t, the expected level of food expenditures will be: E(yt|x t) =

计量经济学英语词汇

计量经济学英语词汇

计量经济学英语词汇 Document number:BGCG-0857-BTDO-0089-2022计量经济学英语词汇Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares,估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M 估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification,组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation,反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function,分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显着差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显着差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差) Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显着水平Significance test, 显着性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换Z-transformation, Z变换。

计量经济学常用英语词汇,都在这里了!

计量经济学常用英语词汇,都在这里了!

计量经济学常用英语词汇,都在这里了!计量经济学常用英语词汇集锦Absolute deviation, 绝对离差Absolute residuals, 绝对残差Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition theorem, 加法定理Additive Noise, 加性噪声Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Alpha factoring,α因子法Alternative hypothesis, 备择假设Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Angular transformation, 角转换ANOVA Models, 方差分析模型Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arrhenius relation, 艾恩尼斯关系Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Autocorrelation of residuals, 残差的自相关Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Case-control study, 病例对照研究Categorical variable, 分类变量Cauchy distribution, 柯西分布Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Auto matic Interaction Detector, 卡方自动交互检测Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor score, 因子得分Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fatality rate, 病死率Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误。

计量经济学重点知识点考试必备

计量经济学重点知识点考试必备

1.Econometrics(计量经济学):the social science in which the tools of economic theory, mathematics, and statistical inference are applied to the analysis of economic phenomena.the result of a certain outlook on the role of economics, consists of the application of mathematical statistics to economic data to lend empirical support to the models constructed by mathematical economics and to obtain numerical results.2.Econometric analysis proceeds along the following lines计量经济学分析步骤1)Creating a statement of theory or hypothesis.建立一个理论假说2)Collecting data.收集数据3)Specifying the mathematical model of theory.设定数学模型4)Specifying the statistical, or econometric, model of theory.设立统计或经济计量模型5)Estimating the parameters of the chosen econometric model.估计经济计量模型参数6)Checking for model adequacy : Model specification testing.核查模型的适用性:模型设定检验7)Testing the hypothesis derived from the model.检验自模型的假设8)Using the model for prediction or forecasting.利用模型进行预测Step2:收集数据Three types of data三类可用于分析的数据1)Time series(时间序列数据):Collected over a period of time, are collected at regular intervals.按时间跨度收集得到2)Cross-sectional截面数据:Collected over a period of time, are collected at regular intervals.按时间跨度收集得到3)Pooled data合并数据(上两种的结合)Step3:设定数学模型1.plot scatter diagram or scattergram2.write the mathematical modelStep4:设立统计或经济计量模型CLFPR is dependent variable应变量CUNR is independent or explanatory variable独立或解释变量(自变量)We give a catchall variable U to stand for all these neglected factorsIn linear regression analysis our primary objective is to explain the behavior of the dependent variable in relation to the behavior of one or more other variables, allowing for the data that the relationship between them is inexact.线性回归分析的主要目标就是解释一个变量(应变量)与其他一个或多个变量(自变量)只见的行为关系,当然这种关系并非完全正确Step5:估计经济计量模型参数In short, the estimated regression line gives the relationship between average CLFPR and CUNR 简言之,估计的回归直线给出了平均应变量和自变量之间的关系That is, on average, how the dependent variable responds to a unit change in the independent variable.单位因变量的变化引起的自变量平均变化量的多少。

(完整版)计量经济学重点知识归纳整理

(完整版)计量经济学重点知识归纳整理

1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。

普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。

2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。

从此意义看,加权最小二乘法也称为广义最小二乘法。

3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。

4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。

5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。

6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。

7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。

如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。

计量经济学重点内容

计量经济学重点内容

第一章导论计量经济学定义:计量经济学(Econometrics)是一门应用数学、统计学和经济理论来分析、估计和检验经济现象与理论的科学。

通过使用统计数据和经济模型,计量经济学试图量化经济关系,以更好地理解经济变量之间的相互作用。

研究的问题(相关关系):计量经济学的目的是研究经济变量之间的关系,例如:1. 消费与收入的关系。

2. 教育与工资的关系。

3. 利率与投资的关系。

第二章 OLS (普通最小二乘法):OLS 是一种用于估计线性回归模型中未知参数的方法。

它通过最小化误差平方和来找到回归线。

在一元线性回归中,我们通常使用普通最小二乘法(OLS)来估计模型参数。

对于模型 Y = α + βX + ε,我们可以使用以下公式来计算α和β:β= Σ( (X - mean(X)) (Y - mean(Y)) ) / Σ( (X - mean(X))^2 ) α̂ = mean(Y) - β̂ * mean(X)这里,mea n(X) 是 X 变量的平均值(即ΣX/n),mean(Y) 是 Y 变量的平均值(即ΣY/n)。

在这些公式中,mean 表示求平均值。

Σ 表示对所有数据点求和,n 是样本大小。

这里α_hat 是截距的估计值,β_hat 是斜率的估计值。

结论及推论:1. 在高斯马尔可夫假设下,OLS 估计量是最佳线性无偏估计量(BLUE)。

2. 当误差项的方差是常数时,OLS 估计量是有效的。

3. 如果模型是正确规范的,并且误差项是独立且同分布的,那么 OLS 估计量是一致的。

4. 如果误差项与解释变量相关,或者存在遗漏变量,那么 OLS 估计量可能是有偏的。

5. OLS 提供了估计的标准误差、t 统计量和其他统计量,这些可以用于进行假设检验和构建置信区间。

第三章一元回归:(1)总函、样函:总函数和样本函数是线性回归模型的两种表现形式。

总函数(总体函数)表示整体样本的关系,一般形式为Y = β0 + β1X + ε。

计量经济学知识点汇总

计量经济学知识点汇总

计量经济学知识点汇总1. 计量经济学概念
- 定义和作用
- 理论基础和研究方法
2. 数据处理
- 数据收集和探索性分析
- 异常值处理和缺失值处理
- 数据转换和规范化
3. 回归分析
- 简单线性回归
- 多元线性回归
- 回归假设和诊断
4. 时间序列分析
- 平稳性和单位根检验
- 自相关和偏自相关
- ARIMA模型和Box-Jenkins方法
5. 面板数据分析
- 固定效应模型和随机效应模型
- hausman检验
- 动态面板数据模型
6. 内生性和工具变量
- 内生性问题及其检验
- 工具变量法
- 两阶段最小二乘法
7. 离散选择模型
- 二项Logit/Probit模型
- 多项Logit/Probit模型
- 计数数据模型
8. 模型评估和选择
- 模型适合度检验
- 信息准则
- 交叉验证和预测评估
9. 计量经济学软件应用
- R/Python/Stata/EViews等软件使用 - 数据导入和清洗
- 模型构建和结果解释
10. 实证研究案例分析
- 经典文献阅读和评析
- 实证研究设计和实施
- 结果分析和政策建议
以上是计量经济学的主要知识点汇总,每个知识点都包含了相关的理论基础、模型方法和实践应用,可根据具体需求进行深入学习和研究。

计量经济学英语词汇

计量经济学英语词汇

A校正R2(Adjusted R-Squared):多元回归分析中拟合优度的量度,在估计误差的方差时对添加的解释变量用一个自由度来调整。

对立假设(Alternative Hypothesis):检验虚拟假设时的相对假设。

AR(1)序列相关(AR(1) Serial Correlation):时间序列回归模型中的误差遵循AR(1)模型。

渐近置信区间(Asymptotic Confidence Interval):大样本容量下近似成立的置信区间。

渐近正态性(Asymptotic Normality):适当正态化后样本分布收敛到标准正态分布的估计量。

渐近性质(Asymptotic Properties):当样本容量无限增长时适用的估计量和检验统计量性质。

渐近标准误(Asymptotic Standard Error):大样本下生效的标准误。

渐近t 统计量(Asymptotic t Statistic):大样本下近似服从标准正态分布的t统计量。

渐近方差(Asymptotic Variance):为了获得渐近标准正态分布,我们必须用以除估计量的平方值。

渐近有效(Asymptotically Efficient):对于服从渐近正态分布的一致性估计量,有最小渐近方差的估计量。

渐近不相关(Asymptotically Uncorrelated):时间序列过程中,随着两个时点上的随机变量的时间间隔增加,它们之间的相关趋于零。

衰减偏误(Attenuation Bias):总是朝向零的估计量偏误,因而有衰减偏误的估计量的期望值小于参数的绝对值。

自回归条件异方差性(Autoregressive Conditional Heteroskedasticity, ARCH):动态异方差性模型,即给定过去信息,误差项的方差线性依赖于过去的误差的平方。

一阶自回归过程[AR(1)](Autoregressive Process of Order One [AR(1)]):一个时间序列模型,其当前值线性依赖于最近的值加上一个无法预测的扰动。

计量经济学重点知识整理

计量经济学重点知识整理

计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法必须明确:方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务2注意:计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论——计量经济研究的基础数据:对所研究对象经济行为观测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估计、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济问题4区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据●经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论基础区别:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型出发,研究模型参数的估计和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是根据其它经济理论,应用计量经济方法将这些理论数量化。

4、计量经济学为什么是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。

1、经济理论所作的陈述或假说大多数是定性性质的,计量经济学对大多数经济理论赋予经验内容。

伍德里奇计量经济学英文版各章总结(K12教育文档)

伍德里奇计量经济学英文版各章总结(K12教育文档)

伍德里奇计量经济学英文版各章总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(伍德里奇计量经济学英文版各章总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为伍德里奇计量经济学英文版各章总结(word版可编辑修改)的全部内容。

CHAPTER 1TEACHING NOTESYou have substantial latitude about what to emphasize in Chapter 1。

I find it useful to talk about the economics of crime example (Example 1.1) and the wage example (Example 1.2) so that students see, at the outset,that econometrics is linked to economic reasoning, even if the economics is not complicated theory.I like to familiarize students with the important data structures that empirical economists use, focusing primarily on cross—sectional and time series data sets, as these are what I cover in a first—semester course. It is probably a good idea to mention the growing importance of data sets that have both a cross—sectional and time dimension。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1.Econometrics(计量经济学):the social science in which the tools of economic theory, mathematics, and statistical inference are applied to the analysis of economic phenomena.the result of a certain outlook on the role of economics, consists of the application of mathematical statistics to economic data to lend empirical support to the models constructed by mathematical economics and to obtain numerical results.2.Econometric analysis proceeds along the following lines计量经济学分析步骤1)Creating a statement of theory or hypothesis.建立一个理论假说2)Collecting data.收集数据3)Specifying the mathematical model of theory.设定数学模型4)Specifying the statistical, or econometric, model of theory.设立统计或经济计量模型5)Estimating the parameters of the chosen econometric model.估计经济计量模型参数6)Checking for model adequacy : Model specification testing.核查模型的适用性:模型设定检验7)Testing the hypothesis derived from the model.检验自模型的假设8)Using the model for prediction or forecasting.利用模型进行预测Step2:收集数据Three types of data三类可用于分析的数据1)Time series(时间序列数据):Collected over a period of time, are collected at regular intervals.按时间跨度收集得到2)Cross-sectional截面数据:Collected over a period of time, are collected at regular intervals.按时间跨度收集得到3)Pooled data合并数据(上两种的结合)Step3:设定数学模型1.plot scatter diagram or scattergram2.write the mathematical modelStep4:设立统计或经济计量模型CLFPR is dependent variable应变量CUNR is independent or explanatory variable独立或解释变量(自变量)We give a catchall variable U to stand for all these neglected factorsIn linear regression analysis our primary objective is to explain the behavior of the dependent variable in relation to the behavior of one or more other variables, allowing for the data that the relationship between them is inexact.线性回归分析的主要目标就是解释一个变量(应变量)与其他一个或多个变量(自变量)只见的行为关系,当然这种关系并非完全正确Step5:估计经济计量模型参数In short, the estimated regression line gives the relationship between average CLFPR and CUNR 简言之,估计的回归直线给出了平均应变量和自变量之间的关系That is, on average, how the dependent variable responds to a unit change in the independent variable.单位因变量的变化引起的自变量平均变化量的多少。

Step6:核查模型的适用性:模型设定检验The purpose of developing an econometric model is not to capture totalreality, but just its salient features.Step7:检验自模型的假设Why do we perform hypothesis testingWe want to find our whether the estimated model makes economic sense and whether the results obtains conform with the underlying economic theory.第二章1.The meaning of regression(回归)Regression analysis is concerned with the study of the relationship between one variable called the dependent or explained variable, and one or more other variables called independent or explanatory variables. 2.Objectives of regression1)Estimate the mean, or average, and the dependent values given the independent values2)Test hypotheses about the nature of the dependence -----hypotheses suggested by the underlying economic theory3)Predict or forecast the mean value of the dependent variable given the values of the independents4)One or more of the preceding objectives combined3.Population Regression Line(PRL)In short, the PRL tells us how the mean, or average, value of Y is related to each value of X in the whole population4.The dependence of Y on X, technically called the regression of Y onX.5.How do we explain itA student’s score, say, the ith individual, corresponding to a specific family income can be expressed as the sum of two components1)The component can be called the systematic, or deterministic,component.2)May be called the nonsystematic or random component6.What is the nature of U(stochastic error) term1)The error term may represent the influence of those variables that are not explicitly included in the model.误差项代表了未纳入模型变量的影响2)Some intrinsic randomness in the math score is bound to occur that can not be explained even we include all relevant variables.即使模型包括了决定性数学分数的所有变量,内在随机性也不可避免,这是做任何努力都无法解释的。

3)U may also represent errors of measurement. U还代表了度量误差4)The principle of Ockham’s razor - the description be kept as simple as possible until proved inadequate - would suggest that we keep our regression model as simple as possible.“奥卡姆剃刀原则”,描述应该尽可能简单,只要不遗漏重要信息。

这表明回归模型应尽可能简单。

7.How do we estimate the PRF(population regression function)Unfortunately, in practice, We rarely have the entire population in our disposal, often we have only a sample from this population.8.Granted that the SRF is only an approximation of PRF. Can we find amethod or a procedure that will make this approximation as close as possible SRF仅仅是PRF的近似,那么能不能找到一种方法使这种近似尽可能接近真实呢9.Special meaning of “linear”1)Linearity in the variables变量线性The conditional mean value of the dependent variable is a linear function of the independent variables2)Linearity in the Parameters参数线性The conditional mean of the dependent variable is a linear function of the parameters, the B’s; it may or may not be linear in the variables.第三章1.Unless we are willing to assume how the stochastic U terms are generated, we will not be able to tell how good an SRF is as an estimate of the true PRF.只有假定了随机误差的生成过程,才能判定SRF对PRF拟合的是好是坏。

相关文档
最新文档