2020年湖南省长沙市高考数学一模试卷(理科)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年湖南省长沙市高考数学一模试卷(理科)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)设复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,则z1z2=()A.2 B.﹣2 C.1+i D.1﹣i
2.(5分)设全集U=R,函数f(x)=lg(|x+1|﹣1)的定义域为A,集合B={x|sinπx=0},则(∁U A)∩B的子集个数为()
A.7 B.3 C.8 D.9
3.(5分)函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象中相邻对称轴的距离为,若角φ的终边经过点,则的值为()A.B.C.2 D.
4.(5分)如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的a i为茎叶图中的学生成绩,则输出的m,n分别是()
A.m=38,n=12 B.m=26,n=12 C.m=12,n=12 D.m=24,n=10
5.(5分)设不等式组表示的平面区域为Ω1,不等式(x+2)2+(y﹣2)
2≤2表示的平面区域为Ω2,对于Ω1中的任意一点M和Ω2中的任意一点N,|MN|的最小值为()
A.B.C.D.
6.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(0,2) D.(1,2)
7.(5分)某多面体的三视图如图所示,则该多面体各面的面积中最大的是()A.11 B.C.D.
8.(5分)设等差数列{a n}的前n项和为S n,且满足S2014>0,S2015<0,对任意正整数n,都有|a n|≥|a k|,则k的值为()
A.1006 B.1007 C.1008 D.1009
9.(5分)已知非零向量,,满足|﹣|=||=4,(﹣)•(﹣)=0,若对每一个确定的,||的最大值和最小值分别为m,n,则m﹣n的值为()A.随增大而增大B.随增大而减小
C.是2 D.是4
10.(5分)已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为()
A.4πB.12πC.16πD.36π
11.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()
A.B.C.D.
12.(5分)已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y ∈[﹣1,1],使得x+y2e y﹣a=0成立,则实数a的取值范围是()A.[1,e]B.C.(1,e]D.
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.(5分)已知a>0,展开式的常数项为15,则
=.
14.(5分)设a,b∈R,关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ab的取值范围是.
15.(5分)正项数列{a n}的前n项和为S n,且(n∈N*),设,则数列{c n}的前2016项的和为.
16.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),
当△APF周长最小时,其面积为.
三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.(12分)△ABC中,已知点D在BC边上,且,AB=3.
(Ⅰ)求AD的长;
(Ⅱ)求cosC.
18.(12分)如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF 均为等边三角形,EF∥AB,EF=AD=AB.
(1)过BD作截面与线段FC交于点N,使得AF∥平面BDN,试确定点N的位置,并予以证明;
(2)在(1)的条件下,求直线BN与平面ABF所成角的正弦值.
19.(12分)2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:
(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,根据表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d 的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过经济损失超过合计
4000元4000元
a=30b
捐
款
超
过
500
元
c d=6
捐
款
不
超
过
500
元
合
计
0.150.100.050.0250.0100.0050.001
P
(K2
≥
k)
k 2.072 2.706 3.841 5.024 6.6357.87910.828附:临界值表参考公式:,.20.(12分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x ﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.