最新高中数学考纲及考试说明

合集下载

2024 高考 数学考试大纲

2024 高考 数学考试大纲

2024 高考数学考试大纲2024年高考数学考试大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。

一、数与式1. 实数:实数的概念、实数的四则运算、有理数与无理数的关系、开方运算。

2. 立方根:立方根的概念、立方根的计算、立方根的性质。

3. 代数式与多项式:代数式的概念、等价代数式的判定、多项式的概念与多项式的次数、整除与同余等概念。

二、函数1. 函数的定义:函数的定义域、函数的值域、函数的单调性、函数的奇偶性等概念。

2. 一次函数:一次函数的定义、一次函数的图象与性质。

3. 二次函数:二次函数的定义、二次函数的图象与性质。

4. 分式函数:分式函数的定义、分式函数的图象与性质。

5. 三角函数:正弦函数、余弦函数、正切函数等三角函数的定义与性质。

6. 指数函数与对数函数:指数函数与对数函数的定义、指数函数与对数函数的图象与性质。

三、几何与变换1. 平面几何:平行线与相交线、三角形、四边形、圆等平面图形的性质与判定。

2. 立体几何:空间几何体的表面积和体积,空间点线面的位置关系等概念。

3. 解析几何:直线的方程,圆的方程,圆锥曲线的方程等解析几何的基本概念。

4. 坐标变换:平移变换、旋转变换等坐标变换的概念与性质。

四、统计与概率1. 概率初步知识:概率的基本概念,随机事件的概率等概念。

2. 统计初步知识:总体与样本的概念,数据的整理与表示方法等概念。

3. 离散型随机变量及其分布:离散型随机变量的概念,几种常见的离散型随机变量的分布等概念。

4. 二项分布及其应用:二项分布的概念,二项分布的性质等概念。

高考数学全国统一考试大纲

高考数学全国统一考试大纲

高考数学全国统一考试大纲高考数学全国统一考试大纲Ⅰ。

考试性质全国统一考试是选拔性考试,由合格的高中毕业生和具有同等学力的考生参加,高等学校依照考生的成绩,按照招生计划进行综合评估,以德、智、体、全面衡量,择优录取。

因此,考试应具有较高的信度、效度、必要的区分度和适当的难度。

Ⅱ。

考试能力要求1.平面向量考试内容包括向量、向量的加法与减法、实数与向量的积、平面向量的坐标表示、线段的定比分点、平面向量的数量积、平面两点间的距离和平移。

考生需要:1) 理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2) 掌握向量的加法和减法。

3) 掌握实数与向量的积,了解两个向量共线的充要条件。

4) 了解平面向量的差不多定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5) 掌握平面向量的数量积及其几何意义,了解用平面向量的数量积能够处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6) 掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,同时能够熟练运用平移公式。

2.集合、简易逻辑考试内容包括集合、子集、补集、交集、并集、逻辑联结词、四种命题、充分条件和必要条件。

考生需要:1) 理解集合、子集、补集、交集、并集的概念。

了解空集和全集的意义。

了解属于、包含、相等关系的意义。

掌握有关的术语和符号,并能正确表示一些简单的集合。

2) 理解逻辑联结词“或”、“且”、“非”的含义。

理解四种命题及其相互关系。

掌握充分条件、必要条件及充要条件的意义。

3.函数考试内容包括映射、函数、函数的单调性、奇偶性、反函数、互为反函数的函数图像间的关系、指数概念的扩充、有理指数幂的运算性质、指数函数、对数、对数的运算性质、对数函数和函数的应用。

考生需要:1) 了解映射的概念,理解函数的概念。

2) 了解函数单调性、奇偶性的概念,掌握判定一些简单函数的单调性、奇偶性的方法。

3) 了解反函数的概念及互为反函数的函数图像间的关系,能够求一些简单函数的反函数。

2024高中数学高考考纲

2024高中数学高考考纲

2024高中数学高考考纲一、考试性质本考试旨在评估高中生对数学基础知识和基本技能的掌握程度,以及运用数学思维解决问题的能力。

二、考试目标1、掌握高中数学的核心概念、原理、方法和技能。

2、培养数学思维和解决问题的能力。

3、检测学生对数学知识的理解和应用能力。

三、考试内容与要求1、代数•集合与逻辑•函数及其性质•指数函数与对数函数•三角函数及其性质•数列与数列的极限•排列组合与概率初步2、几何•平面几何:三角形、四边形、圆的性质和定理•立体几何:空间几何体的性质、三视图与直观图•解析几何:直线、圆、圆锥曲线的方程及其性质3、概率与统计•概率论初步:随机事件、概率及其性质•统计初步:数据的收集、整理与描述,以及简单的统计分析4、微积分初步•极限的概念与性质•导数的概念与应用•定积分及其应用四、考试形式与试卷结构1、考试形式:闭卷,笔试。

考试时间为120分钟。

2、题型结构:选择题、填空题、解答题。

其中选择题和填空题占60%,解答题占40%。

3、分值分布:总分为150分。

代数部分占40%,几何部分占40%,概率与统计占15%,微积分初步占5%。

五、考试评价标准1、基础知识的掌握:要求考生对高中数学的基本概念、定理和公式有清晰的理解和掌握。

2、计算能力:能够准确、快速地进行基本的数学运算。

3、逻辑思维与分析能力:能够运用数学思维,分析问题,找到解决方案。

4、问题解决能力:能够运用所学知识解决实际问题或数学问题。

5、创新与应用能力:能够将数学知识应用于日常生活或其他学科中,具有一定的创新意识和能力。

以上是一个简略的2024年高中数学高考考纲草案。

在撰写完整考纲时,您需要进一步细化每个部分的内容,明确每个知识点的要求和标准,并给出具体的题型示例和分值分布。

同时,为了确保考纲的科学性和有效性,建议您在制定过程中充分征求教师、学生和课程专家的意见,并进行试测和反馈修订。

高中数学新课标考试大纲

高中数学新课标考试大纲

高中数学新课标考试大纲高中数学新课标考试大纲主要分为必修和选修两个部分,旨在培养学生的数学素养,提高学生解决实际问题的能力。

以下是大纲的主要内容:1. 必修内容:- 集合与简易逻辑:包括集合的概念、运算,以及简易逻辑的基本知识。

- 函数:函数的概念、性质、图像,以及基本初等函数。

- 三角函数:三角函数的定义、图像、性质和应用。

- 立体几何:空间几何体的性质、体积和表面积的计算。

- 解析几何:直线和圆的方程,以及它们的几何性质和应用。

- 概率与统计:概率的基本概念,随机事件的概率计算,以及统计的基础知识。

2. 选修内容:- 数学史与数学文化:介绍数学的发展历史,以及数学在文化中的作用。

- 微积分初步:导数、微分、积分的基本概念和计算方法。

- 线性代数初步:矩阵、行列式、向量空间的基础知识。

- 离散数学:包括组合数学、图论、逻辑和集合论等。

- 数学建模:数学建模的基本方法,以及如何应用数学解决实际问题。

- 算法初步:算法的概念,以及基本的算法设计和分析。

3. 考试要求:- 学生需要掌握数学基础知识和基本技能。

- 能够运用数学知识解决实际问题。

- 具备一定的数学思维能力和创新能力。

- 能够理解和运用数学概念、定理和公式。

- 能够进行数学推理和证明。

4. 考试形式:- 考试通常包括选择题、填空题和解答题。

- 选择题和填空题主要测试学生对基础知识的掌握。

- 解答题则更侧重于考察学生的综合应用能力和解题技巧。

5. 考试范围:- 考试内容将覆盖上述必修和选修内容。

- 考试难度将根据学生所学课程的深度和广度来设定。

6. 考试准备:- 学生应该系统地复习所学内容,加强对重点和难点的理解。

- 通过做历年真题和模拟题来提高解题速度和准确率。

- 注重培养数学思维,提高分析问题和解决问题的能力。

请注意,具体的考试大纲可能会根据不同地区的教育部门有所调整,因此建议学生和教师参考最新的官方文件和指导。

2024年上海高考数学大纲

2024年上海高考数学大纲

2024年上海高考数学大纲2024年上海高考数学大纲在总体上保持稳定,但在部分内容和要求上有所调整和更新。

具体来说,数学科目的高考将依旧考查考生的基础知识和基本能力,注重数学思想方法的运用,加强了对数学思维和解决问题能力的考查。

以下是关于2024年上海高考数学大纲的详细说明:一、知识内容与考试要求1.集合与命题考试要求:理解集合的概念,掌握集合的表示方法;了解命题的概念、真值和类型,掌握简单的命题推理。

2.函数与方程考试要求:理解函数的概念,掌握函数的表示方法和性质;理解函数的图象,能根据函数的性质解决简单的问题;理解方程的概念,掌握方程的解法;了解函数与方程的关系,能解决与函数和方程有关的问题。

3.不等式考试要求:理解不等式的概念和性质,掌握不等式的解法;能解决与不等式有关的问题。

4.数列与数学归纳法考试要求:理解数列的概念,掌握数列的表示方法和性质;能解决与数列有关的问题;理解数学归纳法的概念和原理,掌握数学归纳法的应用。

5.复数考试要求:理解复数的概念和性质,掌握复数的表示方法和运算;能解决与复数有关的问题。

6.排列组合与概率初步知识考试要求:理解排列组合的概念和原理,能进行简单的排列组合计算;理解概率的概念和计算方法,能解决简单的概率问题。

7.三角函数和平面向量考试要求:理解三角函数的概念和性质,掌握三角函数的图象和变换;能解决与三角函数有关的问题;理解平面向量的概念和表示方法,掌握向量的运算和向量的应用。

8.解析几何考试要求:理解直线、圆、圆锥曲线、坐标系等概念和性质,掌握它们的图象和变换;能解决与这些图形有关的问题。

9.立体几何初步知识考试要求:理解空间几何体的概念和性质,掌握空间几何体的表面积和体积的计算方法;能解决与空间几何体有关的问题。

10.参数方程和极坐标考试要求:理解参数方程的概念和表示方法,掌握参数方程的解法;理解极坐标的概念和表示方法,掌握极坐标的运算和应用。

二、考试形式与试卷结构1.考试形式:数学科目采用闭卷笔试形式,考试时间为150分钟,满分150分。

2024年高考数学考试大纲详解

2024年高考数学考试大纲详解

2024年高考数学考试大纲详解随着社会的不断发展,高考作为选拔人才的重要手段,对于学生们来说具有极大的意义。

数学作为高考的一门重要科目,也备受关注。

为了帮助考生更好地应对2024年高考数学考试,下面将对数学考试大纲进行详细解析。

一、考试内容概述2024年高考数学考试涵盖了基础数学和选修数学两个部分。

其中,基础数学包括数与代数、函数与方程、几何与变换等内容;选修数学则提供了数理方法与建模、统计与概率等多个选修模块。

二、基础数学1. 数与代数数与代数是数学学科的基础,也是高考数学的核心内容之一。

考生需要熟练掌握数的四则运算、数的性质以及各种数的表示方法。

代数部分包括代数式的化简、方程的解法、不等式的求解等。

2. 函数与方程函数与方程是高中数学中的重要内容,对于考生来说至关重要。

考生需要掌握函数的性质、图像与性质以及各种类型的方程解法。

特别需要强调的是,对于常用函数如一次函数、二次函数、指数函数和对数函数等,考生要了解其基本特点和图像变化规律。

3. 几何与变换几何与变换是高考数学中的另一个重点。

考生需要了解几何元素的定义、性质以及各种几何定理的应用。

此外,对于平面图形的变换,考生需要熟悉平移、旋转、翻折和对称等几何变换的基本概念与特点。

三、选修数学1. 数理方法与建模数理方法与建模是2024年高考数学的新选修模块。

这一模块旨在培养学生的数学建模能力和解决实际问题的能力。

考生需要掌握建模过程中的数学方法和技巧,能够将实际问题转化为数学问题,并运用相应的数学方法进行求解。

2. 统计与概率统计与概率是高中数学中的常见内容,也是选修数学中的一项重要内容。

考生需要熟悉统计学的基本概念和方法,能够对数据进行整理和分析。

概率部分主要涉及事件的概率计算和概率模型的应用,考生需要了解基本概率规律及其应用。

四、备考建议1. 熟悉考试大纲考生需要仔细阅读和理解2024年高考数学考试大纲,了解各个模块的要求和重点。

只有全面掌握考试大纲,才能有针对性地进行复习和备考。

浙江省高中数学高考考纲

浙江省高中数学高考考纲

2019年浙江省高中数学高考考纲一、三角函数、解三角形1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期性.3.理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.4. 了解函数y= Asin@x+妨的实际意义,掌握y= Asin@x+妨的图象,了解参数A, 3, 0对函数图象变化的影响.5.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.6.掌握简单的三角函数式的化简、求值及恒等式证明.7.掌握正弦定理、余弦定理及其应用.二、立体几何1.了解多面体和旋转体的概念,理解柱、锥、台、球的结构特征.2.了解简单组合体,了解中心投影、平行投影的含义.3.了解三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测画法画出它们的直观图.4.会计算柱、锥、台、球的表面积和体积.5.了解平面的含义,理解空间点、直线、平面位置关系的定义.掌握如下可以作为推理依据的公理和定理.公理 1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理 2 过不在一条直线上的三点,有且只有一个平面.公理 3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理 4 平行于同一条直线的两条直线互相平行.定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.6.理解空间线面平行、线面垂直、面面平行、面面垂直的判定定理和性质定理.(1)判定定理:①平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;②一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;③一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;④一个平面过另一个平面的垂线,则这两个平面垂直.(2)性质定理:①一条直线与一个平面平行,则过这条直线的任一个平面与此平面的交线与该直线平行;②如果两个平行平面同时和第三个平面相交,那么它们的交线平行;③垂直于同一个平面的两条直线平行;④两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.7.理解直线与平面所成角的概念,了解二面角及其平面角的概念.8.了解空间直角坐标系,会用空间直角坐标表示点的位置.9.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示.10.了解空间向量的加、减、数乘、数量积的定义、坐标表示的运算.11.了解空间两点间的距离公式、向量的长度公式及两向量的夹角公式.12.了解直线的方向向量与平面的法向量.13.了解求两直线夹角、直线与平面所成角、二面角的向量方法.三、集合与常用逻辑用语1.了解集合、元素的含义及其关系.2.理解集合的表示法.3.了解集合之间的包含、相等关系.4.理解全集、空集、子集的含义.5.会求简单集合间的并集、交集6.理解补集的含义并会求补集.7.了解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系.8.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.四、函数与基本初等函数11.了解函数、映射的概念.2.了解函数的定义域、值域及三种表示法(解析法、图象法和列表法).3.了解简单的分段函数,会用分段函数解决简单的问题.4.理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性.5•理解函数的最大(小)值的含义,会求简单函数的最大(小)值.6•了解指数幕的含义,掌握有理指数幕的运算.7•理解指数函数的概念,掌握指数函数的图象、性质及应用.8 •理解对数的概念,掌握对数的运算,会用换底公式.9•理解对数函数的概念,掌握对数函数的图象、性质及应用.10. 了解幕函数的概念.111. 掌握幕函数y=x,y=x2,y=x3,y= -,y=x2的图象和性质.X12. 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法.13. 了解指数函数、对数函数以及幕函数的变化特征.14. 能将一些简单的实际问题转化为相应的函数问题,并给予解决.五、导数及其应用1.了解导数的概念与实际背景,理解导数的几何意义.2.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+ b)的导数).3.了解函数单调性和导数的关系,能用导数求函数的单调区间.4. 理解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大(小)值,会求闭区间上函数的最大(小)值.六、平面向量、复数1. 理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念.2. 掌握平面向量加法、减法、数乘的概念,并理解其几何意义.3. 理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题.4.掌握平面向量的正交分解及其坐标表示.5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数量积的概念及其几何意义.7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.10.了解复数的定义、复数的模和复数相等的概念.11.了解复数的加、减运算的几何意义.12.理解复数代数形式的四则运算.七、不等式1.了解不等关系,掌握不等式的基本性质.2•了解一元二次函数、一元二次方程、一元二次不等式之间的联系•会解一元二次不等式.3•了解二元一次不等式的几何意义,掌握平面区域与二元一次不等式(组)之间的关系,并会求解简单的二元线性规划问题._ a+ b4. 掌握基本不等式.abw—厂(a, b> 0)及其应用.5. 会解|x+ b|< c, |x+ b|>c, |x—a|+ |x—b|>c, |x—a| + |x—b|<c型不等式.6. 了解不等式||a|—|b||< |a+ b|w |a|+ |b|.八、数列1. 了解数列的概念和表示方法(列表、图象、公式).2. 理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n项和公式及其应用.3. 了解等差数列与一次函数、等比数列与指数函数的关系.4.会用数列的等差关系或等比关系解决实际问题.5.会用数学归纳法证明一些简单数学问题.九、平面解析几何1.理解平面直角坐标系,理解直线的倾斜角与斜率的概念,掌握直线方程的点斜式、两点式及一般式,了解直线方程与一次函数的关系.2.能根据两条直线的斜率判定这两条直线平行或垂直.3.会求过两点的直线斜率、两直线的交点坐标、两点间的距离、点到直线的距离、两条平行直线间的距离.4.掌握圆的标准方程与一般方程.5.掌握椭圆、抛物线的定义、标准方程、几何图形及简单几何性质.6.会解决直线与圆、椭圆、抛物线的位置关系的问题,会判断圆与圆的位置关系.7.了解双曲线的定义、标准方程、几何图形及简单几何性质,了解直线与双曲线的位置关系.8.了解方程与曲线的对应关系,会求简单的曲线的方程.十、计数原理与古典概型1.理解分类加法计数原理和分步乘法计数原理.2.了解排列、组合的概念,会用排列数公式、组合数公式解决简单的实际问题.3.了解二项式定理,理解二项式系数的性质.4.了解事件、互斥事件、对立事件及独立事件的概念.5.了解概率与频率的概念.6.了解古典概型,会计算古典概型中事件的概率.7.了解取有限个值的离散型随机变量及其分布列的概念,了解两点分布,了解独立重复试验的模型及二项分布.8.了解离散型随机变量均值、方差的概念.。

高中数学函数题考试大纲2024版

高中数学函数题考试大纲2024版

高中数学函数题考试大纲2024版一、函数的概念与表示11 函数的定义理解函数的概念,包括定义域、值域和对应关系。

能够判断给定的关系是否为函数。

12 函数的表示法掌握函数的三种表示方法:解析式法、图象法和列表法。

能够根据不同的情境选择合适的表示方法。

能够进行函数的解析式与图象之间的相互转化。

二、函数的基本性质21 单调性理解函数单调性的定义。

能够利用定义判断函数的单调性。

掌握常见函数的单调性,如一次函数、二次函数、反比例函数等。

能够利用函数的单调性求函数的最值。

22 奇偶性理解函数奇偶性的定义。

能够判断函数的奇偶性。

掌握常见奇函数和偶函数的特点。

三、指数函数与对数函数31 指数函数理解指数函数的概念。

掌握指数函数的图象和性质。

能够进行指数运算。

32 对数函数理解对数函数的概念。

掌握对数函数的图象和性质。

能够进行对数运算。

四、幂函数41 幂函数的定义理解幂函数的概念。

42 常见幂函数的图象和性质掌握常见幂函数(如 y = x,y = x²,y = x³等)的图象和性质。

五、函数的综合应用51 函数的零点理解函数零点的概念。

掌握函数零点存在性定理。

能够利用函数零点求方程的根。

52 函数模型及其应用能够建立函数模型解决实际问题。

掌握常见的函数模型,如一次函数模型、二次函数模型、指数函数模型、对数函数模型等。

六、函数与方程、不等式的关系61 函数与方程的关系理解函数与方程的等价关系。

能够利用函数图象求解方程的根。

62 函数与不等式的关系理解函数与不等式的关系。

能够利用函数图象求解不等式的解集。

七、三角函数与函数的结合71 正弦函数、余弦函数与函数性质研究正弦函数、余弦函数的定义域、值域、周期性、奇偶性和单调性。

理解正弦函数、余弦函数的图象特征。

72 正切函数与函数性质研究正切函数的定义域、值域、周期性和单调性。

理解正切函数的图象特征。

八、反函数81 反函数的概念理解反函数的定义。

能够判断两个函数是否互为反函数。

2024年全新数学大纲详细解读

2024年全新数学大纲详细解读

2024年全新数学大纲详细解读前言本文档旨在深入解读2024年的全新数学大纲,为广大考生提供详尽、全面的指导。

我们将对大纲中的各个部分进行详细解析,以帮助考生更好地理解考试要求,把握考试方向。

一、大纲概述2024年数学大纲相较于以往有了较大的调整,充分体现了对学生综合能力的重视。

大纲分为两个部分:高中数学和大学数学。

1.1 高中数学高中数学部分主要包括:- 集合与函数概念- 实数与函数- 立体几何- 解析几何- 概率与统计- 算法与程序设计1.2 大学数学大学数学部分主要包括:- 高等数学- 线性代数- 概率论与数理统计- 离散数学二、考试要求2.1 高中数学高中数学考试要求学生掌握基本概念、公式、定理和方法,具备较强的运算能力和解决问题的能力。

具体要求如下:- 集合与函数概念:理解集合的基本运算,掌握函数的定义、性质及应用。

- 实数与函数:掌握实数的基本性质,理解函数的单调性、奇偶性、周期性等。

- 立体几何:熟悉空间几何的基本概念,掌握计算公式,能解决实际问题。

- 解析几何:理解坐标系下的几何图形,掌握方程式的变换和应用。

- 概率与统计:了解概率的基本原理,掌握统计方法及其应用。

- 算法与程序设计:掌握基本算法,能运用程序设计解决数学问题。

2.2 大学数学大学数学考试要求学生具备较强的抽象思维能力和逻辑推理能力,能运用数学知识解决实际问题。

具体要求如下:- 高等数学:理解极限、导数、积分等基本概念,掌握计算方法和应用。

- 线性代数:熟悉矩阵、向量、线性方程组等基本概念,掌握运算规则及应用。

- 概率论与数理统计:了解概率分布、随机变量、数理统计等基本概念,掌握计算方法和应用。

- 离散数学:理解图论、组合数学等基本概念,掌握计算方法和应用。

三、考试形式及评分标准3.1 考试形式考试形式分为选择题、填空题、解答题三种,题型丰富,考查学生的综合能力。

3.2 评分标准评分标准根据题目难度和答题正确程度进行评分,遵循公平、公正的原则。

高中数学考试怎么考大纲解析

高中数学考试怎么考大纲解析

高中数学考试怎么考大纲解析一、考试范围1、集合与常用逻辑用语集合的概念、运算充分条件、必要条件、充要条件全称量词与存在量词2、函数函数的概念、性质基本初等函数(指数函数、对数函数、幂函数)函数的图像函数的应用3、导数及其应用导数的概念、几何意义导数的运算利用导数研究函数的单调性、极值、最值4、三角函数任意角的概念、弧度制三角函数的定义、诱导公式三角函数的图象和性质两角和与差的三角函数公式简单的三角恒等变换5、平面向量平面向量的概念、线性运算平面向量的基本定理及坐标表示平面向量的数量积平面向量的应用6、数列数列的概念等差数列、等比数列数列求和7、不等式不等式的性质一元二次不等式基本不等式8、立体几何空间几何体的结构、三视图、直观图空间点、直线、平面的位置关系直线与平面、平面与平面平行和垂直的判定与性质空间向量在立体几何中的应用9、平面解析几何直线的方程圆的方程椭圆、双曲线、抛物线的定义、标准方程和几何性质直线与圆锥曲线的位置关系10、概率与统计随机事件的概率古典概型、几何概型抽样方法用样本估计总体变量的相关性11、复数复数的概念复数的四则运算二、考试形式与试卷结构1、考试形式考试采用闭卷、笔试形式。

考试时间为具体时长分钟。

2、试卷结构试卷包括选择题、填空题和解答题。

选择题为四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程。

试卷满分具体分数分,选择题约占X%,填空题约占X%,解答题约占X%。

三、考试要求1、知识要求对数学概念、性质、定理、公式和法则等有清晰的认识,并能正确地表述和运用。

理解数学知识之间的内在联系,形成知识网络。

2、能力要求运算能力:能根据法则和公式正确地进行运算,能根据问题的条件寻找合理、简捷的运算途径。

空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换。

数学高考大纲详细讲解2024年版

数学高考大纲详细讲解2024年版

数学高考大纲详细讲解2024年版2024年版数学高考大纲在内容和难度上有一些微调和更新,旨在更好地评估学生数学素养的全面发展。

本文将详细讲解2024年版数学高考大纲的内容,并提供一些备考建议。

一、考试结构2024年版数学高考分为两个版本:必修版和选修版。

必修版适用于所有考生,而选修版仅适用于选择了相应选修课程的考生。

各个版本的考试结构如下:1. 必修版考试结构- 第一部分: 选择题,共20个题目。

每个题目有4个选项,其中只有一个是正确的。

每题4分,总分80分。

- 第二部分:解答题,共10个题目。

其中选择8个题目作答,每题10分,总分80分。

- 第三部分:综合应用题,共2个题目。

每题20分,总分40分。

总分:200分。

2. 选修版考试结构- 第一部分: 选择题,共20个题目。

每个题目有4个选项,其中只有一个是正确的。

每题4分,总分80分。

- 第二部分:解答题,共12个题目。

其中选择10个题目作答,每题10分,总分100分。

- 第三部分:综合应用题,共3个题目。

每题20分,总分60分。

总分:240分。

二、考试内容1. 必修版考试内容必修版考试内容包括以下三个模块:- 初等数学:包括数与式、函数与方程、图形与变换、三角函数、概率与统计等内容。

- 高等数学:包括数列与极限、导数与微分、函数与积分、常微分方程等内容。

- 应用数学:包括空间解析几何、矩阵与变换、概率与统计、数理逻辑等内容。

2. 选修版考试内容选修版考试内容基于必修版内容,增加了以下两个选修模块:- 数学与实践:重点关注数学的实际应用场景,包括金融数学、数据分析、运筹学等内容。

- 数学研究:通过引导学生进行数学研究,培养学生的数学思维和创新能力。

学生需要选择一个研究方向,并完成一份研究报告。

三、备考建议1. 掌握基础知识:核心内容仍然是必修版的数学知识点,考生需要充分掌握基础知识,并深入理解概念和原理。

2. 高效备考:根据自己的实际情况,制定合理的备考计划。

新高考数学考试大纲

新高考数学考试大纲

新高考数学考试大纲新高考数学考试大纲是针对中国高考改革后数学科目的考试要求和内容的详细说明。

它旨在指导学生和教师明确学习目标,把握考试重点,以及合理规划教学和复习计划。

以下是新高考数学考试大纲的主要内容概述。

# 一、考试目标新高考数学考试旨在考查学生的数学基础知识、基本技能、数学思维和解决问题的能力。

考试不仅注重学生对数学概念、原理的理解和掌握,还强调学生运用数学知识解决实际问题的能力。

# 二、考试内容新高考数学考试内容分为必考内容和选考内容。

必考内容1. 数与代数:包括数的基本概念、代数表达式、方程与不等式、函数及其性质等。

2. 几何:包括平面几何、立体几何、解析几何等,重点考查空间想象能力和几何直观。

3. 统计与概率:涉及数据的收集、处理、描述和分析,以及概率的基本概念和计算。

4. 数学建模:考查学生运用数学知识解决实际问题的能力。

选考内容1. 解析几何:深入学习平面和空间中的几何图形及其性质。

2. 微积分初步:包括极限、导数、积分等基本概念和计算方法。

3. 线性代数基础:涉及矩阵、向量空间、线性变换等基本概念。

4. 数学逻辑:包括命题逻辑、谓词逻辑等逻辑推理方法。

# 三、考试形式新高考数学考试通常包括选择题、填空题、解答题和综合题等多种题型,以全面考查学生的数学能力。

1. 选择题:考查学生对数学概念和原理的理解和应用。

2. 填空题:测试学生对数学公式、定理的掌握和运用。

3. 解答题:要求学生展示解题过程,考查逻辑推理和证明能力。

4. 综合题:结合多个数学领域,考查学生的综合运用能力和创新思维。

# 四、考试要求1. 基础知识:学生需要掌握数学的基本概念、原理和公式。

2. 基本技能:包括计算能力、空间想象能力、逻辑推理能力等。

3. 数学思维:强调抽象思维、逻辑推理和创新思维的培养。

4. 问题解决:考查学生运用数学知识解决实际问题的能力。

# 五、教学建议1. 注重基础:确保学生对数学基础知识有扎实的掌握。

2024年高考数学考试大纲

2024年高考数学考试大纲

2024年高考数学考试大纲本部分包括必考内容和选考内容两部分,必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。

(一) 必考内容与要求1.集合(1) 集合的含义与表示①了解集合的含义、元素与集合的属于关系。

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2) 集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3) 集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用韦恩(Venn)图表达集合的关系及运算。

2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1) 函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图像理解和研究函数的性质。

(2) 指数函数①了解指数函数模型的实际背景。

②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。

④知道指数函数是一类重要的函数模型。

(3) 对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。

③知道对数函数是一类重要的函数模型。

④了解指数函数与对数函数互为反函数(a&gt;0,且a≠1 )。

(4) 幂函数①了解幂函数的概念。

2024新高考数学考纲

2024新高考数学考纲

2024年新高考数学考纲一、数学基础知识数学基础知识是高考数学考试的重要内容,涵盖了代数、几何、概率与统计等多个方面。

考生需要掌握以下内容:1. 代数部分:(1)函数:包括函数的定义、函数的性质(单调性、奇偶性、周期性等)、函数的应用等。

(2)数列:包括等差数列、等比数列的通项公式、求和公式等。

(3)不等式:包括不等式的性质、不等式的解法、不等式的证明等。

(4)解析几何:包括直线、圆、椭圆、双曲线的方程和性质等。

2. 几何部分:(1)平面几何:包括三角形、四边形、圆等图形的性质和判定等。

(2)立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。

3. 概率与统计部分:(1)概率:包括事件的概率、独立事件的概率、条件概率等。

(2)统计:包括数据的收集、整理、分析、描述等。

二、几何与空间几何与空间部分主要考察考生的空间想象能力和逻辑推理能力,考生需要掌握以下内容:1. 平面几何:包括三角形的重心坐标、四边形的对角线长度相等、圆的半径相等等基本性质。

2. 立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。

在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。

3. 解析几何:包括直线与圆的位置关系,椭圆、双曲线和抛物线的方程和性质等。

在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。

4. 空间向量:包括空间向量的加减运算、数乘运算、数量积运算等基本运算规则。

在解题过程中,考生需要能够运用空间向量的运算规则解决空间位置关系问题。

5. 图形变换:包括平移变换、旋转变换等基本变换规则。

在解题过程中,考生需要能够运用图形变换的规则解决几何作图和判断问题。

6. 圆的性质:包括圆的标准方程、一般方程和参数方程的求法,直线与圆的位置关系等。

在解题过程中,考生需要能够运用圆的性质解决直线与圆的位置关系问题。

高考数学试卷大纲

高考数学试卷大纲

一、试卷结构本试卷分为选择题、填空题、解答题三个部分,总分150分,考试时间150分钟。

二、考试内容1. 必修一:集合与函数概念、指数函数、对数函数、三角函数、数列。

2. 必修二:平面向量、空间几何、立体几何、解析几何。

3. 必修三:算法初步、概率统计、复数。

4. 选修一:三角恒等变换、三角函数的性质与应用、解三角形。

5. 选修二:立体几何的应用、解析几何的应用、概率统计的应用。

6. 选修三:算法的应用、复数的应用。

三、题型及分值分布1. 选择题(共20题,每题3分,共60分)(1)集合与函数概念(2题)(2)指数函数、对数函数(3题)(3)三角函数(5题)(4)数列(5题)(5)平面向量(2题)(6)空间几何(2题)2. 填空题(共10题,每题3分,共30分)(1)集合与函数概念(2题)(2)指数函数、对数函数(2题)(3)三角函数(2题)(4)数列(2题)(5)平面向量(2题)3. 解答题(共10题,每题15分,共150分)(1)三角恒等变换(2题)(2)三角函数的性质与应用、解三角形(2题)(3)立体几何的应用、解析几何的应用(2题)(4)概率统计的应用(2题)(5)算法的应用、复数的应用(2题)四、考试要求1. 理解集合与函数概念,掌握指数函数、对数函数、三角函数的基本性质和图像。

2. 掌握数列的概念和性质,能够运用数列解决实际问题。

3. 理解平面向量的基本概念和运算,掌握空间几何和立体几何的基本知识。

4. 掌握解析几何的基本知识,能够运用解析几何解决实际问题。

5. 掌握算法初步、概率统计、复数的基本知识,能够运用它们解决实际问题。

6. 能够运用三角恒等变换、三角函数的性质与应用、解三角形解决实际问题。

7. 能够运用立体几何的应用、解析几何的应用、概率统计的应用解决实际问题。

8. 能够运用算法的应用、复数的应用解决实际问题。

五、试卷特点1. 试题内容丰富,涵盖了高中数学的基本知识。

2. 试题难度适中,既有基础题,也有有一定难度的试题。

高中数学学业水平考试大纲说明

高中数学学业水平考试大纲说明

高中数学学业水平考试大纲说明高中数学学业水平考试是对高中生数学学业水平的重要检验,对于学生的综合素质评价和高中毕业具有重要意义。

以下将对高中数学学业水平考试大纲进行详细说明,帮助同学们更好地了解考试要求,为备考做好充分准备。

一、考试性质与目的高中数学学业水平考试是依据普通高中课程标准进行的终结性考试,旨在全面检测学生数学学科核心素养的发展水平,以及学生在数学学科方面达到的学业水平。

其目的主要包括以下几个方面:1、衡量学生是否达到普通高中数学课程标准所规定的数学学科毕业要求。

2、为高中学生毕业提供数学学科的学业水平依据。

3、为评价高中数学教学质量提供参考。

二、考试内容与要求(一)必修课程1、集合与常用逻辑用语(1)集合:理解集合的含义,掌握集合的表示方法,能够进行集合的运算。

(2)常用逻辑用语:理解充分条件、必要条件、充要条件的含义,能够进行命题的判断与推理。

2、函数(1)函数的概念与性质:理解函数的概念,掌握函数的单调性、奇偶性等性质。

(2)指数函数、对数函数、幂函数:掌握这三类基本初等函数的图象与性质,能够运用它们解决相关问题。

(3)函数的应用:能够运用函数模型解决实际问题。

3、三角函数(1)任意角与弧度制:理解任意角的概念,掌握弧度制与角度制的换算。

(2)三角函数的概念、同角三角函数基本关系、诱导公式:掌握三角函数的定义,能运用基本关系和诱导公式进行化简和求值。

(3)三角函数的图象与性质:掌握正弦函数、余弦函数、正切函数的图象与性质,能够进行图象的变换和应用。

4、向量(1)平面向量的概念及线性运算:理解平面向量的概念,掌握向量的加法、减法、数乘运算。

(2)平面向量的基本定理及坐标表示:掌握平面向量基本定理,能够进行向量的坐标运算。

(3)平面向量的数量积:理解平面向量数量积的概念,能够运用数量积解决有关问题。

5、数列(1)数列的概念:理解数列的概念和通项公式。

(2)等差数列、等比数列:掌握等差数列和等比数列的通项公式、前 n 项和公式,能够运用它们解决相关问题。

高中数学学考大纲最新解读

高中数学学考大纲最新解读

高中数学学考大纲最新解读高中数学学业水平考试(简称学考)对于高中生来说是一项重要的考核,而学考大纲则是指引学生学习和备考的重要依据。

最新的高中数学学考大纲相较于以往有了一些变化,这些变化对于学生的学习和教师的教学都有着重要的影响。

接下来,让我们深入解读一下这份最新的学考大纲。

首先,我们来看一下考试内容的调整。

在函数部分,对函数的性质和应用的要求更加具体和深入。

例如,对于函数的单调性、奇偶性、周期性等性质,不仅要求学生能够理解和判断,还要求能够熟练运用这些性质解决实际问题。

同时,在函数的应用方面,新增了一些与实际生活紧密结合的案例,如利用函数模型解决经济、环境等领域的问题,这就要求学生具备将数学知识应用到实际情境中的能力。

在几何部分,对于空间几何体的结构和表面积、体积的计算,要求更加注重空间想象能力和逻辑推理能力。

学生需要能够通过直观感知、操作确认、思辨论证等方法,认识和理解空间几何体的性质。

而且,对于解析几何的内容,强调了曲线方程的建立和应用,要求学生能够熟练掌握直线、圆、椭圆、双曲线、抛物线等曲线的方程和性质,并能运用它们解决综合性的问题。

在概率统计部分,增加了对大数据和统计图表的分析要求。

学生需要学会从大量的数据中提取有用的信息,并进行合理的分析和推断。

同时,对于概率的计算和应用,也更加注重实际情境的创设,让学生在解决实际问题的过程中,理解概率的意义和价值。

接下来,我们探讨一下考试要求的变化。

新大纲更加注重学生的数学思维能力和创新能力的培养。

不再仅仅局限于对知识点的记忆和简单应用,而是要求学生能够独立思考、分析问题、提出解决方案。

例如,在一些综合性的题目中,会提供多个解题思路和方法,鼓励学生选择适合自己的方式来解决问题,培养学生的创新意识和创新能力。

在能力要求方面,新大纲强调了数学运算能力、逻辑推理能力、空间想象能力、数学建模能力和数据分析能力的综合发展。

对于数学运算,要求学生不仅要准确、快速地进行计算,还要理解运算的原理和方法;逻辑推理能力则要求学生能够从已知条件出发,通过合理的推理和论证,得出正确的结论;空间想象能力要求学生能够在头脑中构建出几何图形的形状、位置和关系;数学建模能力要求学生能够将实际问题转化为数学问题,并建立相应的数学模型进行求解;数据分析能力则要求学生能够对数据进行收集、整理、分析和解释,从而得出有价值的结论。

高中数学新课标考试内容

高中数学新课标考试内容

高中数学新课标考试内容高中数学新课标考试内容涵盖了数学基础知识、基本技能、数学思想方法以及数学应用等多个方面。

考试旨在全面考查学生对数学知识的掌握程度和运用能力。

以下是高中数学新课标考试内容的详细说明:1. 数学基础知识- 数与式:包括实数、复数、指数、对数、多项式、分式等。

- 方程与不等式:涉及一元二次方程、不等式、方程组等。

- 函数:包括函数的概念、性质、图象、反函数、三角函数等。

- 几何:包括平面几何、立体几何、解析几何等。

- 概率与统计:涉及随机事件的概率、统计图表、概率分布等。

2. 数学基本技能- 运算能力:包括基本的加减乘除运算、方程求解、函数求解等。

- 逻辑推理:能够运用逻辑推理解决数学问题。

- 空间想象:能够对几何图形进行空间想象和分析。

- 数据处理:能够运用统计方法对数据进行收集、整理和分析。

3. 数学思想方法- 数形结合:能够将数学问题与图形相结合,进行直观分析。

- 转化与化归:能够将复杂问题转化为简单问题,或者将问题化归为已知问题。

- 类比与归纳:能够通过类比和归纳发现数学规律。

- 抽象与概括:能够从具体问题中抽象出数学概念,并进行概括。

4. 数学应用- 实际问题解决:能够将数学知识应用于解决实际问题。

- 跨学科应用:能够将数学与其他学科知识相结合,进行综合应用。

- 创新思维:能够运用数学知识进行创新性思考和问题解决。

5. 考试形式与题型- 选择题:考查学生对基础知识点的掌握。

- 填空题:考查学生对概念、公式、定理的理解和应用。

- 解答题:考查学生的综合分析能力和问题解决能力。

- 证明题:考查学生的逻辑推理和证明能力。

- 应用题:考查学生将数学知识应用于实际问题的能力。

高中数学新课标考试内容的设计旨在培养学生的数学素养,提高学生的数学思维能力,以及增强学生解决实际问题的能力。

通过这些内容的学习,学生不仅能够掌握数学知识,还能够培养良好的学习习惯和创新精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年高中数学《考纲及考试说明》与备考策略的浅谈题纲宁夏银川一中孙廷一、《考纲及考试说明》数学1.命题指导思想2.考试行式与试卷结构3.考试内容和要求二、高三数学备考复习应对策略1.解答高考数学试题的策略2.高三数学考前复习应对策略三、题型示例(猜想)2011年高中数学《考纲及考试说明》与(宁夏银川一中)高三数学备考复习策略的浅谈银川一中孙廷《考纲及考试说明》数学一.命题指导思想:(1)高校招生的选拔性考试。

(2)考查数学基础知识,基本技能和数学思想方法,对数学本质的理解水平,体现课程标准对知识与技能,过程与方法,情感态度与价值观等目标要求。

(3)命题注重试题的创新性,多样性和选择性,具有一定的探究性和开放性。

(4)试卷具有较高的信度,效度,必要的区分度和适当的难度。

二.考试行式与试卷结构:闭卷,笔试120分钟150分试卷。

第一卷为12个选择题,第二卷4个填空题和5个解答题,选考部分为三选一,由选修系列4的“几何证明选讲”,“坐标系与参数方程”,“不等式选讲”各命制1个解答题,若多选以首选题给分。

三种题型分数比约为2:1:5.试卷难度适中,难度系数分为:容易题难度为0.7,中等题难度为0.4~0.7,难题难度为0.4以下,总体服从正态分布。

三.考试目标与要求:1.知识要求:(1)知道(了解,模仿):对所列知识的含义有初步的,感性认识。

这一层次所涉及的主要行为动词有:了解,知道,识别,摸仿,会求,会解等。

(2)理解(独立操作):对所列知识内容有较深的理性认识。

这一层次所涉及的主要行为动词有:描述,说明,表达,表示,推测,想象,比较,判断,初步应用等。

(3)掌握(运用,迁移):能够对所列知识内容进行推理证明。

这一层次所涉及的主要行为动词有:掌握,导出,分析,推导,证明,研究,讨论,运用,解决问题等。

对知识的要求由低到高的三个层次中,高一级的层次要求包括低一级层次。

2.能力要求:(1)空间想象能力。

(2)抽象盖括能力。

(3)丽论证能力。

(4)运算求解能力。

(5)数据处理能力。

(6)应用意识。

(7)创新意识。

3.个性品质要求:要求学生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,行成审慎的思维习贯,体会数学的美学意义,以平和的心态参加考试,以实事求实的科学态度解答试题。

4.考查要求:考查内容的命题坚持“贴近生活,背景公平,控制难度”的原则,对知识的考查侧重于理解和应用,尤其是综合和灵活应用。

对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,切合学生实际。

四.考试内容和要求:1.必考内容和要求(一)集合:(1)集合的含义与表示(了解:集合的元素及描述)。

(2)集合间的基本关系(理解:集合间的相等,子集,全集,空集的含义)。

(3)集合的基本运算(理解:集合的交并扑运算,并能使用韦恩图)。

(二)函数概念与基本初等函数1:(1)函数(了解:函数概念,分段函数及函数奇偶性的含义;理解:函数单调性,最值及其几何意义;运用基本初等函数的图像分析函数的性质)。

(2)指数函数(了解指数函数实际背景,理解其含义及性质,体会指数函数摸型)。

(3)对数函数(理解对数的概念及运算性质,会用换底公式简化运算,理解对数函数的概念及单调性并能应用,体会对数函数摸型,了解互为反函数概念)。

(4)幂函数(了解幂函数概念,掌握课本五个幂函数的图像和性质)。

(5)函数与方程(结合函数图像,了解函数零点与方程根的关系,并能判断根的存在性及根的个数)。

(6)函数模型及其应用(了解指数函数,对数函数,幂函数,二次函数及分段函数等的增长特征,构建函数摸型解决实问题)。

(三)立体几何初步:(1)空间几何体(了解柱,锥,台,球及其简单几何体的结构特征,表面积和体积的计算公式(不记)会三视图并会用斜二侧法画出直观图)。

(2)点,直线,平面之间的位置关系(理解点,直线,平面位置关系的定义,了解公理1~4,理解相关判定定理和性质定理并能运用)。

(四)平面解析几何初步:(1)直线与方程(理解直线的倾斜角和斜率的概念,会用斜率判断两直线的平行和垂直,掌握直线的两点式斜率计算公式,掌握确定直线的几何要素及直线方程的几种形式,会应用两点间距离公式,点到直线的距离公式,两平行线距离公式,会求两直线交点坐标)。

(2)圆与方程(掌握确定圆的几何要素及圆的方程,会判断直线与圆,圆与圆的位置关系,了解用代数方法解决几何问题的思想)。

(3)空间直角坐标系(了解空间坐标系及会用空间两点间距离公式)。

(五)算法初步:(1)算法的含义,程序框图(了解算法的含义及思想,理解程序框图的三种基本逻辑结构:顺序,条件分支,循环)。

(2)基本算法语句(了解几种基本算法语句——输入,输出,赋值,条件,循环语句的含义)。

(六)统计:(1)随机抽样(理解随机抽样的必要性和重要性,会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法)。

(2)用样本估计总体(了解分步的意义和作用,能画出频率分布直方图,频率折线图,茎叶图,会计算数据标准差(不记公式),会用样本的频率分布估计总体分布,会提取并会用样本的基本数字特征估计总体的基本数字特征(如平均数,标准差)).(3)变量的相关性(会作散点图并能找出关联变量的相关关系,了解最小二乘法,会确定线性回归方程(不记公式))。

(七)概率:(1)事件与概率(了解随机事件发生的频率与概率的联与区别,了解互斥事件的概率加法公式)。

(2)古典概型(理解古典概型和概率计算公式并能应用).(3)随机数与几何概型(了解随机数的意义及几何概型的意义,能用摸拟方法估计概率)。

(八)基本初等函数2(三角函数):(1)任意角,弧度制(了解任意角的概念及弧度制的概念,能互化角度与弧度)。

(2)三角函数(理解三角函数定义及一个周期的性质,理解诱导公式及同角三角函数基本关系式并能运用,理解单位圆中三角函数线的运用,了解三角函数的物理意义,体会三角函数是描述周期变换现象的重要函数摸型)。

(九)平面向量:(1)平面向量的实际背景及基本概念(了解向量的实际背景,理解平面向量的概念,相等,几何表示)。

(2)向量的线性运算(了解向量线性运算的性质及几何意义,掌握向量加法,减法,数乘的运算及其几何意义,理解两个向量共线的含义)。

(3)平面向量的基本定理及坐标表示(了解平面向量的基本定理及其意义,掌握平面向量的正交分解及坐标表示,会用坐标表示向量加法,减法,数乘的运算,理解用坐标表示向量共线的条件)。

(4)平面向量的数量积(理解平面向量的数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系,掌握平面向量的数量积的运算及坐标表示,会求两向量的夹角及垂直的判定)。

(5)向量的应用(会用向量方法解决某些平面几何,力学等问题)。

(十)三角恒等变换:(1)两角和与差的三角函数公式(会推导和,差,倍角三角函数公式及应用)。

(2)简单的三角恒等变换(会用和,差,倍角三角函数公式进行简单的恒等变换【包括积化和差,和差化积,半角公式等,但不需要记忆】)。

(十一)解三角形:(1)正弦定理和余弦定理(掌握)。

(2)应用(利用正弦定理和余弦定理解决一些实际问题)。

(十二)数列:(1)数列的概念和简单表示法(了解)。

(2)等差数列,等比数列(理解等差数列,等比数列的概念,掌握等差数列,等比数列及前n项和公式并能运用,了解等差数列与一次函数,等比数列与对数函数的关系)。

(十三)不等式:(1)不等关系(了解)。

(2)一元二次不等式(会一元二次不等式代数解法及图像解法,会构建一元二次不等式摸型解决实际问题)。

(3)二元一次不等式组与简单线性规划问题(了解二元一次不等式的几何意义,会从实际情景中抽象出二元线性规划问题并能用平面区域表示二元一次不等式组及其最优解)。

(4)基本不等式(了解证明过程,会用基本不等式求最值)。

(十四)常用逻辑用语:(1)名题及其关系(理解名题的概念,了解四种名题的概念及关系,理解必要条件,充分条件,充分且必要条件的意义及应用)。

(2)简单的逻辑联结词(了解逻辑联结词“或”,“且”,“非”的含义)。

(3)全称量词与存在量词(理解全称量词与存在量词的意义,能正确地对含有一个量词的名题进行否定)。

(十五)圆锥曲线与方程:(1)圆锥曲线(掌握椭圆,抛物线定义,图形,性质,标准方程及简单应运,了解双曲线的定义,图形,标准方程,几何性质,理解数形结合的思想)。

(2)曲线与方程(了解方程与曲线的对应关系)。

(十六)空间向量与立体几何:(1)空间向量及其运算(了解空间向量的概念,基本定理及其意义,掌握空间向量的正交分解及坐标表示,线性运算及坐标表示,掌握空间向量的数量积的运算及坐标表示,会用两向量的数量积判定向量的共线和垂直)。

(2)空间向量的应用(理解直线的方向向量和平面的法向量,能用向量方法解决直线与直线,直线与平面,平面与平面的有关问题及线线角,线面角,面面角的确定)。

(十七)导数及其应用(1)导数概念及其几何意义(了解导数概念,理解导数几何意义)。

(2)导数运算(能根据导数定义求简单函数的导数,熟记常见基本初等函数的导数公式并能灵活应用,会求简单复合函数的导数)。

(3)导数在研究函数中的应用(了解函数的单调性,最大(小)值与导数的关系及应用)。

(4)生活中的优化问题(会利用导数解决实际问题)。

(5)定积分与微积分基本定理(了解定积分的概念及微积分基本定理的含义)。

(十八)推理与证明(1)了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合理推理在数学发现中的任用。

(2)了解演绎推理的含义,了解合理推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理。

(3)了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点。

(4)了解反证法的思考过程和特点。

(5)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

(十九)数系的扩充和复数的引入(1)理解复数的基本概念,理解复数相等的充要条件。

(2)了解复数的代数表示法及其几何意义;能将代数形式的复数在平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示。

(3)能进行复数代数形式的四则运算,了解两个具体复数相加、相减的几何意义。

(二十)计数原理(1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题。

(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题。

(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题。

(4)会用二项式定理解决与二项展开式有关的简单的问题。

(二十一)概率与统计(1)理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个离数型随机变量的分布列。

相关文档
最新文档